用户名: 密码: 验证码:
不同土层水、氮、磷空间组合对冬小麦生理生态特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和养分是限制作物生长发育的两个重要因子,但对于决定作物产量高低的首要因子是水还是肥并无一致结论。人们对水肥与产量之间的相互关系进行了大量研究,取得了重要进展。过去的研究主要集中在水肥在数量和时间的耦合方面,而对空间耦合(土层间的组合)研究资料相对较少。本试验针对黄土高原地区表层土壤干旱下层湿润特点,以冬小麦为指示作物,以土垫旱耕人为土(褐土)为供试土样,应用长期通气培养法,在阐明湿度和温度对0-90cm土壤剖面不同土层(每30cm为1土层)氮素矿化影响的基础上,采用隔层土柱试验,模拟土壤水分养分空间分布的几种状况,研究土柱不同部位水分、氮、磷空间组合对冬小麦生长发育、光合特性、养分分配利用及产量构成的影响。通过研究,获得以下主要结论:
     1.不同土层土壤有机氮的矿化累积量均随温度、水分含量升高而增加,各土层增幅的大小顺序为0-30cm>30-60cm>60-90cm,0-30cm土层矿化量远远大于其它土层,30-60cm土层矿化量虽然大于60-90cm土层,但差异有限;0-30cm土层可矿化氮是0-90cm土层可矿化氮的主体,其矿化氮占67.90%,30-60cm和60-90cm土层矿化氮占32.10%。0-30cm土层土壤氮素矿化量增加过程显著快于其它两层土壤,不同土层土壤氮素矿化过程不同,在培养期间0-30cm土层氮素矿化量与培养时间符合线性关系,而30-60cm和60-90cm土层符合对数函数;不同土层氮素矿化速率k与含水量w间为直线关系,相关系数r在0.93以上,0-30cm土层的k值对温度反映最为敏感,其次为30-60cm土层,以60-90cm土层反映最小。在较高温度培养条件下,随温度增加,土层越深,矿化速率增加越慢;温度和水分对不同土层土壤氮素矿化具有明显的正交互作用。对0-30cm土层,温度和水分对氮素矿化均表现出显著的正效应,随两因子同时增加,氮素矿化增加,但在高温情况下水分效果更加突出;而对30-60cm和60-90cm土层,虽然水分和温度对氮素矿化均表现出正效应,但温度效应比水分效果更加突出。0-30cm土层土壤有机氮矿化过程对温、湿度的反应比深层更为敏感,说明在生产实践中应根据不同土层土壤有机氮的含量和实际矿化过程来确定矿化所需的水热条件。
     2.叶绿素荧光参数对水分胁迫反应敏感,上干下湿(0-30cm土层干旱胁迫,30-90cm土层湿润)水分处理冬小麦叶片基础荧光(Fo)增大,而最大荧光(Fm)、可变荧光(Fv)、PSⅡ光化学效率(Fv/Fm)及PSⅡ潜在活性(Fv/Fo)等参数显著降低;氮、磷营养对叶绿素荧光参数也有一定影响,施肥总体可以调节水分胁迫对荧光参数的影响,氮磷配施较单施氮、单施磷有更强的调节能力;不同土层单施氮,各荧光参数间差异性不显著,而不同土层单施磷对各荧光参数的影响有一定规律,表现为0-90cm和0-30cm土层施肥比30-60cm和60-90cm土层施肥Fo减小,而Fm、Fv、Fv/Fm和Fv/Fo增大;在土柱整体湿润处理下,各土层氮磷配施处理间荧光参数差异显著;对土柱上干下湿处理,除Fv外,不同氮磷配施处理间其它参数差异性均达显著水平。
     3.上干下湿(0-30cm土层干旱胁迫,30-90cm土层湿润)的水分处理不同程度降低了小麦叶片SPAD值、净光合速率(Pn)和籽粒产量。两种水分处理下,氮磷配施处理对叶片SPAD值、净光合速率(Pn)和小麦产量的影响最为显著,其次是施磷处理,施氮处理影响不显著。从不同土层施肥处理看,对单施氮而言,在两种水分处理下,以0-90cm土层均匀施入叶片的SPAD值、Pn和小麦籽粒产量显著高于0-30cm、30-60cm和60-90cm土层施氮处理;对单施磷而言,在两水分条件下,0-90cm土层施磷处理小麦叶片的SPAD值、Pn和籽粒产量与0-30cm施肥处理间差异不显著;对氮磷配施而言,在整体湿润处理下,0-90cm土层氮磷配施处理小麦叶片的SPAD值、Pn和的小麦籽粒产量最高,与0-30cm土层施肥处理间差异不显著,但显著高于30-60cm和60-90cm土层施肥处理;对上干下湿处理,各土层施肥处理小麦叶片的SPAD值差异不显著,0-90cm土层氮磷配施处理小麦叶片Pn和小麦产量显著高于30-60cm土层施肥处理,30-60cm土层施肥处理显著高于60-90cm土层施肥处理和未施肥处理。
     4.上干下湿(0-30cm土层干旱胁迫,30-90cm土层湿润)水分处理显著影响抽穗期小麦旗叶面积和株高,与整体土层湿润相比二者分别降低7.03%和3.77%;上干下湿水分处理不同程度降低了小麦地上部和根系生物量及收获指数,但根冠比增加。单施磷小麦叶面积、旗叶面积和株高与氮磷配施间差异不显著,但前者有效分蘖数减少2.6个/柱,单施氮和CK叶面积、株高和有效分蘖数均极显著低于单施磷和氮磷配施处理。两种水分处理下,氮磷配施对小麦地上部生物量的影响最为显著,其次是施磷处理,施氮处理效果较差,而地下部生物量和根冠比在单施磷时最高。这与供试土壤各土层严重缺磷,而氮素供应相对丰富有关。0-90cm与0-30cm土层单施磷和氮磷配施处理间总叶面积、旗叶面积、株高以及有效分蘖数差异不显著,但均显著高于30-60cm和60-90cm土层相应施肥处理,不同层次单施氮处理间差异缺乏规律性。单施氮以均匀施入0-90cm土层地上部生物量和根系生物量最高,其次是施入30-60cm土层,施入0-30cm土层最低;单施磷以0-90cm土层施入地上部和根系生物量及根冠比与0-30cm土层施入差异较小,但均显著高于30-60cm和60-90cm土层施入;对氮磷配施而言,地上部和根系生物量从高到低依次是施入0-90cm、0-30cm、30-60cm、60-90cm土层施肥处理。由于土壤供氮充分,将氮肥集中施于0-30cm土层对生物量形成具有一定抑制作用,而均匀施入0-90cm土层有明显促进作用,在上层干旱胁迫时,这种趋势更加明显;在氮磷配施或者单施磷时,无论是上干下湿水分状况下,还是全土柱湿润下,0-30cm土层较充分的氮磷配合供应,有利于提高作物生物量。
     5.采用非破坏性、定点直接观察和研究植物根系的Minirhizotrons测定法,对不同土层水分、氮、磷组合对冬小麦根长、根表面积、根体积、根数、根系直径和根系生物量等指标的影响进行研究,并探讨根系特征与水分利用效率的关系。研究表明,根系直径主要分布在0.0000-0.5000mm之间,少部分分布在0.5000-1.0000mm之间,偶见直径大于1.0000mm根系,表现为0-30cm土层根系直径较大,30cm以下土层根系直径较小;根系直径受不同水肥处理影响较小。上干下湿(0-30cm土层干旱胁迫,30-90cm土层正常供水)水分组合小麦根长、根表面积、根体积和根数分别比整体湿润(0-90cm土层正常供水)分别增加18.9%、25.3%、29.8%和8.0%差异达显著或极显著水平。各处理小麦根系虽均在孕穗期达到高峰,灌浆初期开始衰退,但不同肥料处理小麦根系生长发育和分布规律不同:未施肥(CK)和单施氮小麦根长、根表面积、根体积和根数在孕穗期前一直有较快的增长速度,但总量较少,单施磷和氮磷配施小麦根长、根表面积、根体积和根数在拔节期前增长迅速,拔节后增长较慢,但数量较高。从不同土层施肥处理看,不同土层单施氮差异不显著;0-90cm土层单施磷显著高于0-30cm、30-60cm和60-90cm土层单施磷(P<0.05),对氮磷配施,0-90cm与0-30cm土层施肥处理间差异不显著,但均显著高于30-60cm和60-90cm土层施肥。不同处理小麦根系生物量均以0-30cm土层最高,平均占总根系生物量的67.2%,30-60cm和60-90cm土层分别占17.4%和15.4%,但施肥土层根系生物量相对增加,根系有在施肥土层聚积现象。总体看上干下湿水分处理小麦水分利用效率(WUE)有增加趋势,比整体湿润处理增加0.039mg/cm3水,施肥后小麦WUE均增加,以0-90cm土层施肥处理WUE最高。冬小麦的WUE与根长、根表面积、根体积、根数呈极显著正相关,相关系数r2分别为0.7992、0.7719、0.7243和0.7893(n=25),与根系总生物量相关性较弱,相关系数r2为0.2974,说明在影响WUE上根系形态特征比总生物量更加显著。
     6.小麦不同部位含氮、磷量表现为籽粒>根系>叶、穗余部>茎;氮、磷累积量表现为籽粒>>茎秆、叶>穗余部>根系。上干下湿水分处理使得小麦籽粒、穗余部含氮分别减少0.90%和2.40%,含磷量分别减少4.34%和12.99%,对其它器官氮、磷含量的影响不一。与整体湿润相比,上干下湿水分处理可降低小麦各器官氮、磷累积量,但对不同器官分配比例影响不大。与不施肥(CK)相比,氮磷配施小麦各器官含氮、磷量明显增加,单施氮时各部位含氮量均显著增加,但含磷量增幅较小;而单施磷时含磷量显著增加,含氮量略有降低;施肥后各器官氮、磷累积量虽然均增加,但在氮、磷、氮磷处理籽粒中氮、磷累积量所占比例减小;不同器官氮、磷累积量主要取决于生物量,而不是氮、磷含量。各土层根系氮、磷累积量除以0-30cm土层根系氮、磷累积量为最高这一般性特点外,施肥土层根系氮、磷累积量相对增加,与生物量的变化相一致。对单施氮处理,以0-90cm土层施肥各器官氮、磷累积量最高;而对单施磷和氮磷配施,均以0-90cm土层施肥处理籽粒及根系氮、磷累积量最高,其它器官高低不一。
     7.不同土层水肥处理的氮、磷肥利用率和农学效率差异显著,氮肥利用率高低在4.73%-41.19%之间,磷肥利用率高低在4.11%-13.58%之间,磷肥农学效率高于氮肥。单施氮整体湿润时氮肥利用率较上干下湿(0-30cm土层干旱胁迫,30-90cm土层湿润)低4.87%,而氮磷配施整体湿润时氮肥利用率较上干下湿高6.38%,差异均达显著水平;单施磷在两种水分处理下磷肥利用率差异较小,而氮磷配施在整体湿润时磷肥利用率较上干下湿增加5.01%(P<0.05)。上干下湿时氮磷配施氮肥利用率较单施氮高10.48%,磷肥利用率与单施磷处理相差仅为0.58%;整体湿润时氮磷配施氮肥利用率较单施氮高21.73%,磷肥利用率较单施磷处理高4.80%,说明0-30cm土层良好的水分条件有利于提高氮磷配施时氮、磷肥利用率。单施氮在两种水分处理下均以0-90cm土层施肥处理氮肥利用率最高;氮磷配施在整体湿润时0-90cm土层施肥与0-30cm土层施肥氮肥利用率显著高于30-60cm和60-90cm土层施肥处理;上干下湿时,0-90cm土层施肥处理的氮肥利用率显著高于其它土层施肥处理,分别比0-30cm、30-60cm和60-90cm土层施肥处理高9.5%、10.1%和20.2%;单施磷以0-90cm土层施入磷肥利用率最高,为8.55%,其次是0-30cm土层施肥处理,为7.93%;氮磷配施以0-30cm土层施肥磷肥利用率最高,显著高于其它土层施肥。单施氮或磷在上干下湿时氮、磷肥农学效率均高于整体湿润处理,但氮磷配施处理氮、磷肥农学效率均在整体湿润处理下较高;氮肥农学效率在单施氮和氮磷配施时均以0-90cm土层施肥最高;磷肥农学效率在上干下湿单施磷时以0-90cm土层施肥最高,其它则以0-30cm土层施肥处理最高。
     8.从水肥不同空间组合对光合、叶绿素荧光、根系分布、同化产物和养分分配、养分效率的影响等角度分析,无论对上干下湿水分分布,还是对整体湿润水分分布,保证0-30cm和0-90cm土层适量氮磷供应,不仅对产量形成和提高养分利用效率最为重要,而且有利于提高籽粒氮、磷含量及促进氮、磷养分向籽粒中的转移。但从生产实践角度出发,考虑到在石灰性土壤中肥料氮终产物以硝态氮为主,且容易移动,而磷肥不易在土壤中迁移这一特点,无论对整体湿润,还是最常见的上干下湿土壤水分分布状况,氮磷配施时,仍然以施入0-30cm土层较好。
Water and nutrients are major factors limiting crop production, but which is more important to crop yield is unsure. Lots of researches on water and fertilizer coupling in quantity and time had been made and many important results had been acquired, but research on water and fertilizer spatial coupling (in different soil layer) are relatively insufficient. So a cylindrical pot experiment was conducted with Eum-Orthic Anthrosols (Cinnamon soils) under rain-preventing condition to study the effects of spatial coupling of water, nitrogen and phosphorus on photosynthetic characteristics and yield of winter wheat, with the basis on the characteristic of surface layer drought and substrate wetness of loess plateau. The pot consisted of three layers with each layer of 30cm depth and a 2cm layer of coarse sand between soil layers for obstructing water and nutrients exchange. Before that, a study was made of the influence of water condition and temperature on soil nitrogen mineralization of different layers with aerobic incubation experiments. The main results are shown as follows:
     1. Nitrogen mineralization accumulation quantity of all soil layers gained with the increase in temperature and water content, but the mineralizable nitrogen in the layer of 0-30cm was much greater than those in other soil layers. The mineralizable nitrogen of the 0-30cm soil layer was the major part, accounting for 67.90% of the total, and the value of both 30-60cm and 60-90cm soil layers was 32.10%. Mineralization quantity of 0-30cm soil layer increased faster than another two soil layers. Every soil layer had different mineralization process under different water contents, that is to say, mineralization process of 0-30cm soil layer could be expressed with linear equation, and 30-60cm and 60-90cm soil layers with logarithm equation in incubation time. The relations of soil nitrogen mineralization rate (k) with water content (w) could be expressed by the linear equation, and the correlation coefficient was above 0.93. It was found that k of 0-30cm soil layer was most sensitive to temperature, and then of 30-60cm, and of 60-90cm the least. As a whole, nitrogen mineralization rate of deeper soil layer increased slowly with the temperature under the higher incubation temperature. These results suggested that temperature and water content had interactive effects on nitrogen mineralization quantity and rate. To 0-30cm, both temperature and water content had remarkable positive effect, but moisture is more evident under the higher incubation temperature. But to 30-60cm and 60-90cm, temperature exerted more evident effect. Temperature, moisture content and incubation time had also remarkable linear correlation (p< 0.0001). From the results, we found that mineralization process of 0-30cm soil layer was more sensitive to temperature and water content, which means that nitrogen mineralization process is determined by such factors as temperature, moisture and soil layer.
     2. The kinetic parameters of chlorophyll fluorescence of winter wheat were sensitive to water stress. The basic fluorescence(Fo) of wheat leaves increased under the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D), while the maximal fluorescence(Fm), the variable fluorescence(Fv), the photochemical efficiency(Fv/Fm) and potential activites(Fv/Fo) of PSII decreased remarkably. Nitrogen and phosphorus nutrient could weaken the effect of water stress on fluorescence parameters; and the effect of NP treatments (mixing nitrogen and phosphorus) was better than P treatment (applying phosphorus). Comparing layer treatments with the same fertilizer, we found that the difference of fluorescence parameters with N applying in different layers was unapparent, that Fo with P applying layer of 0-90cm and 0-30cm were lowered than of 30-60cm and 60-90cm, but Fm, Fv, Fv/Fm and Fv/Fo was higher; that the difference of fluorescence parameters with NP applying in different layers was remarkable.
     3. SPAD and the net photosynthetic rate (Pn) of leaf and yield of wheat were inconsistently lower under the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D) than of 0-90cm soil-wet (W). Under each water treatment, compared to fertilizer treatments at the same layer, it showed that SPAD, Pn and yield of NP treatments were maximal, followed by P treatment, then was N treatment (applying nitrogen). Compared to layer treatments with the same fertilizer, it was found that SPAD, Pn and yield with nitrogen applying layer of 0-90cm were maximal, but the results were ruleless when nitrogen was applied in layer of 0-30cm, 30-60cm and 60-90cm; that, under W condition, yield with phosphorus applying layer of 0-30cm was highest; under D condition, yield with phosphorus applying layer of 0-90cm were highest; both SPAD and Pn with phosphorus applying layer of 0-90cm were highest, followed by 0-30cm; that under W or D treatment, yield, SPAD and Pn with nitrogen and phosphorus applying layer of 0-90cm were highest, of 0-30cm, 30-60cm and 60-90cm presented downtrend.
     4. Compared with 0-90cm soil-wet (W), leaf area and plant height of heading stage decreased by 7.03% and 3.77% separately under the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D). The above-ground biomass, root biomass and HI were inconsistently lower, but ratio of root to shoot (R/S) higher under the condition of D. Comparing fertilizer treatments at the same layer, it showed that the effective tillers were reduced by 2.6(n/pot) of P treatment than NP treatments; that the difference of the leaf area and plant height was not significant between P treatment and NP treatments; that leaf area, plant height and fertile tillers of N treatment and CK were markedly lower than P treatment and NP treatments. Under each water treatment, above-ground biomass of NP treatments was maximal, followed by P treatment, then was N treatment, but root biomass and R/S were maximal at the treatment of P, due to P deficiency and N enrichment in the soil. Comparing layer treatments with the same fertilizer, we found that leaf area, plant height and fertile tillers of P and NP applying layer of 0-90cm and 0-30cm were remarkably higher than of 30-60cm and 60-90cm; but the rule was not obvious at the treatment of N applying in different layer. Above-ground biomass and root biomass of N applying layer of 0-90cm was maximal, of 0-30cm was lowest. Above-ground biomass, root biomass and R/S of P applying layer of 0-90cm and 0-30cm were markedly higher than of 30-60cm and 60-90cm; and above-ground biomass and root biomass of NP applying layer of 0-90cm was maximal, followed by 0-30cm, 30-60cm and 60-90cm orderly. Because the soil was full of nitrogen, applying N in layer of 0-30cm was inhibitory to biomass, but of 0-90cm was stimulative, which was more obvious under the condition of D. The biomass of crop would be higher mixing nitrogen and phosphorus in layer of 0-30cm, regardless of the condition of D and W.
     5. Minirhizotrons is one of the new study methods, which has the merit of non-destructive and the fixed-point visual observation. The experiment dealt with the effects of spatial coupling of water, nitrogen and phosphorus on root character of different soil layers at different growth stages using minirhizotrons, and discussed the relation of root characteristics with water use efficiency (WUE). The root character indexes mainly included root length, root seeming area, root volume area, root number, root diameter and root biomass of winter wheat. The results showed that a majority of root diameters was between 0.0000mm and 0.5000mm and a little was beyond 0.5000mm. The diameters of root in 0-30cm soil layer were bigger than in other soil layers. And water and fertilizer had less effect on root diameter. There was a remarkable difference of different root character indexes between different water treatments. And compared with 0-90cm soil-wet (W), root length, root seeming area, root volume and root number increased by 18.9%, 25.3%, 29.8% and 8.0% separately under the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D). The rule of root growth and distributing were different between different fertilizer treatments, although growth momentums of all wheat roots arrived at the zenith at the booming stage and started to decline at the filling stage. Root length, root seeming area, root volume and root number of N treatment and CK were less, but had faster growth rate all along. Root length, root seeming area, root volume and root number of P treatment and NP treatments were higher, but had lower growth rate after the jointing stage. Comparing layer treatments with the same fertilizer, we found that there was no significant difference of root character indexes between the treatment of N applying in different layer, that all root character indexes were significant higher at the treatment of P applying in 0-90cm than 0-30cm, 30-60cm and 60-90cm soil layer, that significantly higher at the treatment of NP applying in 0-90cm and 0-30cm than 30-60cm and 60-90cm soil layer. On the whole, root biomass of 0-30cm soil layer was highest, accounting for 67.2% of 0-90cm soil layer averagely. And those of 30-60cm and 60-90cm accounted for 17.4% and 15.4% separately. But root growth increased relatively at the fertilizer layer. Compared with W, WUE of wheat increased by 0.039mg/cm3 under the water condition of D. Fertilizer treatments could improve WUE, and WUE of 0-90cm fertilization was highest. Correlation analysis showed that WUE and root length, root seeming area, root volume and root number were remarkable positive correlation and correlation coefficient(r2) was 0.7992, 0.7719, 0.7243 and 0.7893(n=25), that WUE and root biomass were lower correlation and r2 was only 0.2974. It showed that root character indexes had more remarkable effect on WUE than root biomass.
     6. Nitrogen and phosphorus content of grain was highest, followed by root, then was leaf and rachis and hull (RH), and stem was lowest. Nitrogen and phosphorus uptake of grain was highest, followed by stem and leaf, then was RH, and root was lowest. Nitrogen content of grain and RH decreased by 0.90% and 2.40% separately under the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D), and phosphorus content decreased by 4.34% and 12.99% separately. Compared with the water condition of 0-90cm soil-wet(W), nitrogen and phosphorus uptakes decreased under D, but distribution proportion changed little. Compared with CK, both nitrogen and phosphorus content of plant components of NP treatments increased. Nitrogen content of N treatment increased remarkably, but phosphorus content increased little. Nitrogen and phosphorus uptake increased with fertilizer treatments, but distribution proportion of grain decreased. Nitrogen and phosphorus uptake of different plant components lied mainly on biomass, not on nitrogen and phosphorus content. Root nitrogen and phosphorus uptake of 0-30cm soil layer were highest, and increased relatively at the fertilization layers. Nitrogen and phosphorus uptake of different plant components with fertilizer applying in the layer of 0-90cm was highest when only nitrogen applied. Nitrogen and phosphorus uptake of grain and root with fertilizer applying in the layer of 0-90cm was highest when only phosphorus or nitrogen and phosphorus applied.
     7. There was bigger difference between nitrogen utilization rate(NUR) and phosphorus utilization rate (PUR) of wheat of different treatments. NUR and PUR were in the range of 4.73%-41.19% and 4.11%-13.58% separately. Phosphorus agronomy efficiency (PAE) was higher than nitrogen agronomy efficiency (NAE). Compared with the water condition of 0-30cm soil-dry and 30-90cm soil-wet (D), NUR decreased by 4.87% under the water condition of 0-90cm soil-wet (W) when only nitrogen applied. But NUR increased by 6.38% when nitrogen and phosphorus mixed. There was no significant difference of PUR between W and D when only phosphorus applied, and remarkable difference when nitrogen and phosphorus mixed. PUR under W increased by 5.01% when nitrogen and phosphorus applied mixed. There was a difference of NUR and PUR between different fertilizer treatments. NUR of NP treatments was higher than N treatment under D, and NUR increased by 10.48%. But the difference of PUR between NP treatments and P treatment was only 0.58% under D. The difference of NUR and PUR was higher under W than D. NUR and PUR increased by 21.73% and 4.80% separately. It showed that better water condition of 0-30cm soil layer could improve NUR and PUR of NP treatments. NUR was highest whether nitrogen or nitrogen and phosphorus applying layer of 0-90cm under two water conditions. PUR was 8.55% when only phosphorus applying layer of 0-90cm, and it was higher than phosphorus applying in other layers. But PUR was highest when nitrogen and phosphorus applying at the same time in the layer of 0-30cm. NAE and PAE were higher under D than W when only nitrogen or phosphorus applied, but it was contrary when nitrogen and phosphorus mixed. NAE was highest when nitrogen or nitrogen and phosphorus applied in the layer of 0-90cm. PAE was highest when phosphorus applied in the layer of 0-90cm under D and nitrogen and phosphorus applied in the layer of 0-30cm under W.
     8. From the point of view of the effect of water and fertilizer spatial coupling on photosynthesis, chlorophyll fluorescence, root distribution, assimilation matter and nutrient distribution and nutrient efficiency, enough effective nitrogen and phosphorus supplying of 0-30cm and 0-90cm soil layer was very important to crop growth regardless of the condition of D and W. It was not only very important to increase yield and nutrient efficiency, but also advantageous to increase nitrogen and phosphorus content and transfer nutrient to grain. Practically, fertilizer should be applied in the layer of 0-30cm when mixed nitrogen and phosphorus, because NO3--N move easily in calcareous soil and phosphorus slow.
引文
[1] 李生秀, 付会芳, 袁虎林, 等. 几种测氮方法在反映土壤供氮能力方面的效果[J]. 土壤, 1990, 22(4):194-197
    [2] Stanford G, Smith SJ. Nitrogen mineralization potentials of soil[J]. Soil Sci Soc Am Proc, 1972, 36: 465-472
    [3] Fierer N, Schimel JP. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations[J]. Soil Biol Biochem, 2002, 34: 777-787
    [4] Hatch DJ, Bhogal A, Lovell RD. Comparison of different methodologies for field measurement of net nitrogen mineralization in pasture soils under different soil conditions[J]. Biol Fertile Soils, 2000, 32: 287-293
    [5] Ferris H, Venette RC, Meulen HR. Nitrogen mineralization by bacterial-feeding nematodes: Verification and Measurement[J]. Plant and Soil, 1998, 203: 159-171
    [6] Stanford G, Epstein E. Nitrogen mineralization-Water relations in soils[J]. Soil Sci. Soc. Amer. Proc, 1974, 38: 103-107
    [7] 唐树梅, 漆智平. 含量与氮矿化的关系[J]. 热带农业科学, 1997, (4):54-60
    [8] 郭大应, 谢成春, 熊清瑞, 等. 喷灌条件下土壤中的氮素分布研究[J]. 灌溉排水,2000,19(2): 76-77
    [9] Bremer E, Kuikman P. Influence of competition for nitrogen in soil on net mineralization of nitrogen[J]. Plant and Soil, 1997, 190: 119-126
    [10] Stanford G, Fireve MH, Schwaninger. Temperature coefficient of soil nitrogen mineralization[J]. Soil Science, 1973, 115 :321-323
    [11] 傅高明. 黑麦有机氮在土壤中矿化的研究[J]. 土壤肥料, 1995, (3): 4-8
    [12] Nadelhoffer KJ, Giblin A E, Shaver GR, et al. Effects of temperature and substrate quality on element mineralization in six arctic soils[J]. Ecology, 1991, 72: 242-253
    [13] 王常慧, 邢雪荣, 韩兴国. 温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响[J]. 生态学报, 2004, 24 (11): 2472-2476
    [14] 周才平, 欧阳华. 温度和湿度对暖温带落叶阔叶林土壤氮矿化的影响[J]. 应用生态学报, 2001, 25 (2): 204-209
    [15] 周才平, 欧阳华. 温度和湿度对长白山两种林型下土壤氮矿化的影响[J]. 应用生态学报,2001,12 (4): 505-508
    [16] Knoepp JD, Swank WT. Using soil temperature and moisture to predict forest soil nitrogen minerlization[J]. Biol Ferti Soils, 2002,36:177-182
    [17] Hart SC, Perry DA. Transferring soils from high-to low-elevation forests in creases nitrogen cycling rates: Climate change implication[J].Global Change Biology, 1995, 5:23-32
    [18] 巨晓棠, 李生秀. 土壤氮素矿化的温度水分效应[J]. 植物营养与肥料学报, 1998, 4 (1):37-42
    [19] 戴晓艳, 须湘成, 陈恩凤. 不同肥力棕壤和黑土各粒级微团聚体氮素矿化势[J]. 沈阳农业大学学报, 1990, 21(4): 327-330
    [20] 李贵桐, 赵紫娟, 黄元仿, 等. 秸秆还田对土壤氮素转化的影响[J]. 植物营养与肥料学报, 2002, 8(2):162-167
    [21] 蒋景诚, 陈金秀, 周淑阁. 污灌土壤中有机氮的矿化速率及其影响因素[J]. 地球科学一中国地质大学学报, 1989,14 (6):627-633
    [22] Ren L, Zhang RD. Estimating nitrate leaching with a transfer function model incorporating net mineralization and uptake of nitrogen[J]. Journal of environmental quality, 2003, 32(4):1455-1463
    [23] Sygihara S, Konno T. Kinetics of mineralization of organic nitrogen[J]. Bulletin of the National Institute of Agro- Environmental Science,1986, 1:127-166
    [24] 陶勤南. 稻田土壤氮矿化速率的研究[J]. 土壤学报, 1993, 30: 237-244
    [25] Arnon I. Physiological principles of dry and crop production[A]. In Gupta US. Physiological Aspects of Dry-land Farming [C].New York: Universal Press.1975, 3-124
    [26] Paez A, Gonzalezm E, Yrausquin X. Water stress and clipping management effects on guineagrass. II: growth and biomass allocation[J]. Agronomy Journal, 1995, 87: 698-706
    [27] 鲍巨松, 杨成书, 薛吉全, 等. 不同生育期水分胁迫对玉米生理特性的影响[J]. 作物学报, 1991, 17(4): 261-265
    [28] 张永强, 毛学森, 孙宏勇, 等. 干旱胁迫对冬小麦叶绿素荧光的影响[J]. 中国生态农业学报, 2002,10(4): 13-15
    [29] Ogren E. Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves[J]. Plant Physiology, 1990, 93: 1280-1285
    [30] Balota, M, Lichtenthaler HK. Red chlorophyll fluorescence as an ecophysiological method to assess the behavior of wheat genotypes under drought and heat[J]. Cereal Research Communication, 1999, 27: 179-187
    [31] Xu CH, Li DQ, Zou Q. Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages[J]. Acta Phytophysiologica Sinica, 1999, 25(1): 29-37
    [32] Shangguan ZP, Shao MA, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Plant Physiology,2000,156: 46-51
    [33] Hassan I. Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L[J]. Photosynthetica, June 2006, 44: 312-315
    [34] 李世清, 田霄鸿, 李生秀. 养分对旱地小麦水分胁迫的生理补偿效应[J]. 西北植物学报, 2000, 20(1): 22-28
    [35] 王邦锡, 何均贤, 黄久常, 等. 水分胁迫导致小麦叶片光合作用下降的非气孔因素[J]. 植物生理学报,1992,18(1): 77-84
    [36] Dressman DC. Expression of genes encoding Rubisco in sugar beet (Beta Vulgaris L) Plant subjected to gradual desiccation[J]. Plant and Cell Physiol, 1994, 35(4): 645-653
    [37] Angelopoulis K, Dichio B, Xiloyannis C. Inhibition of photosynthesis in olive trees(Olea europawa L.) during water stress and rewatering[J]. J Exp Bot, 1996, 47: 1093-1100
    [38] Earl HJ. Stomatal and non-stomatal restrictions to carbon assimilation in soybean lines differing in water use efficiency[J]. Environmental and Experimental Botany, 2002, 48: 237-246
    [39] Hall AJ, Connor DJ, Whitfield DM. Root respiration during grain filling in sunflower: The effects of water stress[J]. Plant and Soil, 1990,121:57-66
    [40] Nielsen DC, Halvorson AD. Nitrogen fertility influence on water stress and yield on winter wheat[J].Agronomy Journal, 1991, 83:1065-1070
    [41] Camara KM, Payne WA, Rasmussen PE. Long-term effects of tillage, nitrogen and rainfall on winter wheat yields in the Pacific Northwest[J]. Agronomy Journal, 2003, 95: 22-25
    [42] Boland AM, Jerie PH, Mitchell PD. The effect of a saline and non-saline water table on peach tree water use, growth, productivity and ion uptake[J]. Australian Journal of Agricultural Research, 1996, 47(1): 121-139
    [43] 张岁歧, 李秧秧. 施肥促进作物水分利用机理及对产量的影响研究[J]. 水土保持研究, 1996, 3(1): 185-191
    [44] Ruan JY, Zhang FS, Wong M.H. Effect of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of Camellia sinensis L[J]. Plant and Soil, 2000, 223:63-71
    [45] Ming F, Mi GH, Zhang FS, et al. Differential response of rice plants to low-phosphorus stress and its physiological adaptive mechanism[J]. Journal of Plant Nutrition, 2002, 25 (6): 1213-1224
    [46] Sun HG, Zhang FS, Li L, et al. The morphological changes of wheat genotypes as affected by the levels of localized phosphate supply[J]. Plant and Soil, 2002, 245: 233-238
    [47] Shen JB, Rengel Z, Tang CX, et al. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus[J]. Plant and Soil, 2003, 248: 199-206
    [48] 梁银丽, 康绍忠, 张成娥. 不同水分条件下小麦生长特性对氮磷营养的调节作用[J]. 干旱地区农业研究, 1999, 17(4):58-63
    [49] 张宝贵, 李贵桐. 土壤生物在土壤磷有效化中的作用[J].土壤学报,1998, 36(1):104-111
    [50] Rodriguez D, Goudriaan J, Oyazabal M. Phosphorous nutrition and water stress tolerance in wheat plants[ J] . J. Plant Nutr., 1996, 19(l): 29-39
    [51] Jawson MD, Franzluebbers AJ, Glusha DK. Soil fumigation within monoculture and rotation: response of corn and mycorrhizae[ J]. Agron J,1993, 85:1174-1180
    [52] Hedley MJ, Stewart JWB, Chauhan BS. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation[J]. Soil Sci Soc Am J, 1982, 46: 970-975
    [53] Uwasawa M, Sangton P, Cholitk W. Behavior of phosphorous in paddy soils of Thailand. II. Fate of phosphorous during rice cultivation in some representative soils[J]. Soil Sci Plant Nutr, 1988, 34(2): 183-194
    [54] 梁银丽. 土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J]. 生态学报,1996,16(3): 258-264
    [55] 刘殿英, 黄炳茹, 董庆裕. 土壤水分对冬小麦根系的影响[J]. 山东农业大学报,1991,22(2): 259-264
    [56] 刘殿英, 石立岩, 董庆裕. 不同时期施肥水对冬小麦根系活性和植株性状的影响[J]. 作物学报, 1993, 19(2):149-155
    [57] Saini GR, Chow TL. Effect of compact sub-soil and water stress on shoot and root activity of corn (Zea mays L.) and alfalfa (Medicago sativa L.) in a growth chamber[J]. Plant and Soil, 1982, 66: 291-298
    [58] Chiatante D, Diiorio A, Maiuro L, et al. Effect of water stress on root meristems in woody and herbaceous plants during the first stage of development[J]. Plant and soil, 1999,217:159-172
    [59] Adegbidi HG, Comerford NB, Jokela EJ, et al. Root development of Young Loblolly Pine in spodosols in Southeast Georgia[J]. Soil Sci. Soc. Am. J, 2004, 68:596-604
    [60] 梁银丽, 陈培元. 水分胁迫和氮营养对小麦根苗生长及水分利用效率的效应[J]. 西北植物学报, 1994, 15(1): 21-25
    [61] 梁银丽, 扬翠玲. 不同类型小麦品种对渗透胁迫的反应[J]. 西北农学报, 1995,(4):21-25
    [62] 王晨阳. 不同土壤水分条件下小麦根系生态生理效应的研究[J]. 华北农学报, 1992,7(4):1-8
    [63] Kage H, Kochler M, Stützel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions : measurement and simulation[J]. European Journal of Agronomy, 2004, 20: 379-394
    [64] 汤章城. 植物对水分胁迫的反应和适应性[J]. Ⅱ.植物对干旱的反应和适应性, 植物生理学通讯, 1983,4:1-7
    [65] Johnson MG, Tingey DT, Phillips DL, et al. Advancing fine root research with minirhizotrons[J]. Environmental and Experimental Botany, 2001, 45:263-289
    [66] Shao MA, Yang WZ, Li YS. A mathematical model of soil water uptake by plant roots[J]. Acta Pedologica Sinica, 1987, 24: 295-305
    [67] Zhang ZS, Li XR, Zhang PD, et al. Response of watermelon to gravel-mulch and supplemen-tary irrigation: yield, water use efficiency and root distribution[J]. Agricultural Sciences in China, 2004, 3, 914-922
    [68] Li P, Zhao Z, Li ZB. Vertical root distribution characters of Robinia pseudoacacia on the Loess Plateau in China[J]. Journal of Forestry Research, 2004, 15 (4): 87-92
    [69] 盛晋华, 乔永祥, 刘宏义, 等. 梭梭根系的研究[J]. 草业学报, 2004, 12 (2): 91-94
    [70] 李亚兵, 张立桢, 王桂平. DT-Scan 在棉花根系研究中的应用[J ]. 中国棉花, 1998, (5): 37-38
    [71] Mayandi S, Horst WJ. The diatal part of the transition zone is the most aluminum-sensitive apical root zone of maize[J]. Plant Physiol, 1998, 116:155-163
    [72] Victor NB, Zobel RW. Differential genotypic and root type penetration of compacted soil layers[J]. Crop Sci, 1998, 38: 776-781
    [73] Jones RH, Mitchell RJ , Stevens GN , et al. Controls of fine root dynamics across a gradient of gap sizes in a pine woodland[J]. Oecologia, 2003, 134, 132-143
    [74] Hendrick RL, Pregitzer KS. Applications of minirhizotrons to understand root function in forests and other natural ecosystems[J]. Plant Soil, 1996, 185: 293-304
    [75] Taylor HM, Upchurch DR, McMichael BL. Application and limitation of rhizotrons and minirhizotrons for root studies[J]. Plant and Soil, 1990, 129: 29-35
    [76] Majdi H. Root sampling methods-applications and limitations of minirhizotron technique[J]. Plant and Soil, 1996, 185:255-258
    [77] Torreano SJ, Morris LA. Loblolly pine root growth and distribution under water stress[J]. Soil Science Society of America Journal, 1998, 62: 818-827
    [78] 张志山, 李新荣, 张景光, 等. 用 Minirhizotrons 观测柠条根系生长动态[J]. 植物生态学报, 2006, 30 (3): 457-464
    [79] 朱兆良. 农田中氮肥的损失与对策[ J]. 土壤与环境, 2000, 9(1 ): 1-6
    [80] 樊小林, 廖宗文. 控释肥增加肥料利用率的原理和缓控释肥技术[J]. 植物营养与肥料学报, 1998, 4(3): 219-223
    [81] Camberato JJ, Bock BR. Spring wheat response to enhanced ammonium supply: I Dry matter and N content[J]. Agron J,1990,82:463-467
    [82] Heitholt JJ, Croy LI, Maness NO, et al. Nitrogen partitioning in genotypes of winter wheat differing ingrain N concentration[J]. Field Crop Res, 1990, 23: 133-134
    [83] Barneix AJ, Amozis PA, Guitman MR. The regulation of nitrogen accumulation in the grain of wheat plants[J]. Physiol Plant, 1992, 86: 609-617
    [84] Pilbeam DJ, Kirkby EA. Some aspects of the utilization of nitrate and ammonium by plants.In: Mengel K, Pilbeam D J eds.Nitrogen metabolism of plants[J]. Oxford: Clarendon Press,1992, 55-70
    [85] Walley F, Yates T, Groenigen JW, et al. Relationships between soil nitrogen availability incices, yield and nitrogen accumulation of wheat[J]. Soil Science Society of America Journal,2002, 66: 1549-1561
    [86] Zhang M, Nyborg M, McGill WB. Phosphorus concentration in barley (Hordeum vulgare L.)seed: influence on seedling growth and dry matter production[J]. Plant and Soil, 1990, 122: 79-83
    [87] Cassman KG, Bryant DC, Fulton AE, et al. Nitrogen supply effects on partition of dry matter and nitrogen to grain of irrigated wheat[J]. Crop Science, 1992,32(5): 1251-1258
    [88] Otto WM, Kilian WH. Response of soil phosphorus content, growth and yield of wheat to long-term phosphorus fertilization in a conventional cropping system[J]. Nutrient Cycling in Agroecosystem, 2001, 61: 283-292
    [89] 韩燕来, 介晓磊, 谭金芳, 等. 超高产冬小麦氮磷钾吸收、分配与运转规律的研究[J]. 作物学报, 1998, 24(6): 908-915
    [90] 王朝辉, 李生秀. 不同生育期缺水和补充灌水对冬小麦氮磷钾吸收及分配影响[J]. 植物营养与肥料学报, 2002, 8(3): 265-270
    [91] 赵广才, 张保明, 王崇义. 应用 15N 研究小麦各部位氮素分配利用及施肥效应[J]. 作物学报, 1998, 24(6): 855-858
    [92] 张鸿程, 皇甫湘荣, 宝德俊, 等. 冬小麦地上部器官氮磷钾的积累分配和运转的研究[J]. 土壤通报, 2000,31(4): 177-179
    [93] 李世娟, 周殿玺, 叶平, 等. 水分和氮肥运筹对小麦氮素吸收分配的影响[J]. 华北农学报, 2002 ,17 (1): 69-75
    [94] 樊小林, 李玲, 何文勤, 等. 氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J]. 植物营养与肥料学报, 1998,4(2):131-137
    [95] 王殿武, 周大迈, 张建平, 等. 太行山区旱作农田土壤水分动态及水肥产量效应研究[J].干旱地区农业研究, 1998, 16(2): 32-40
    [96] 汪德水. 旱地农田肥水协同效应与耦合模式[M].北京: 气象出版社.1999,85
    [97] Keulen H Van. Modelling the interaction of water and nitrogen[A]. In: Monteith J, Webb C, eds. Soil water and nitrogen in mediterranean-type environments [C]. 1981: 205-229
    [98] 张国盛, 张仁陡. 水分胁迫条件下氮磷营养对小麦根系发育的影响[J]. 甘肃农业大学学报, 2001, 36(2):163-167
    [99] Flavio H, Gutierrez B, Thomas GW. Phosphorus nutrition affects wheat response to water deficit[J]. Agron J, 1998, 90: 166-171
    [100] Wang QR, Li JY, Li ZS. Effect of phosphate fertilizers on growth and development of wheat genotypes in a calcareous soil[J]. Pedosphere, 1999, 9(4): 375-378
    [101] 段爱旺, 沈银萱, 崔文军, 等. 叶面喷施磷酸二氢钾对玉米杂交种掖单 13 幼苗水分利用效率的影响[J]. 作物学报, 1996, 22(3):382-384
    [102] 张岁歧, 山仑, 薛青武. 氮磷营养对小麦水分关系的研究[J]. 植物营养与肥料学报, 2000, 6(2):147-151
    [103] Gnanasire B. Cell membrane stability and leaf water relation affected by phosphorus nutrition and water stress in maize[J]. Soil Sci and Plant Nutri, 1990, 36(4): 661-666
    [104] Schachtman DP, Reid RJ, Ayling SM. Phosphorus uptake by plants: From soil to cell[J]. Plant Physiology, 1998, 116: 447-453
    [105] Flavio H, Gutierrez B, Thomas GW. Phosphorus nutrition and water deficits in field-grown soybeans[J]. Plant and Soil, 1999,207: 87-96
    [106] Angus JF, Herwarden AF. Increase water use and water use efficiency in dryland wheat[J]. Agron J, 2001, 93: 290-298
    [107] 王同朝, 卫丽, 吴克宁, 等. 旱农区水磷耦合效应对春小麦产量和水分利用效率的影响[J]. 农业工程学报, 2000,16(1):53-55
    [108] 孙志强. 陇东旱地水肥产量效应研究[J].干旱地区农业研究, 1992,10(4):57-61
    [109] 党廷辉. 施肥对旱地冬小麦水分利用效率的影响[J]. 生态农业研究, 1999, 7(2):28-31
    [110] 吕家珑, 张一平, 刘思春, 等. 施磷水平对 SPAC 水分能量特征的影响[J]. 生态学报, 2000, 20(3):255-263
    [111] Heitholt J. Stomatal limitation to carbon dioxide assimilation in nitrogen and drought stressed wheat [J]. Crop Sci, 1991 ,31 :135-139
    [112] Evans JR, Terashima I. Effects of nitrogen nutrition on electron transport components and photosynthesis in spinch [J]. Aust J Plant Physiol, 1987, 14: 281-292
    [113] Mahler RL, Koehler FE, Lutcher LK. Nitrogen source, timing of application, and placement effects on winter production[J]. Agron J, 1994, 86:637-642
    [114] Goos RJ, Schimelfenig JA, Bock BR, et al. Response of spring wheat to nitrogen fertilizers of different nitrification rates[J]. Agron J, 1999, 91: 287-293
    [115] Rez-Boem FH, Thomas GW. Phosphorus nutrition affects wheat response to water deficit[J]. Agron J, 1998, 90: 166-171
    [116] Lopes MS, Araus JL. Nitrogen source and water regime effects on durum wheat photosynthesis and stable carbon and nitrogen isotope composition[J]. Physiologia Plantarum, 2006, 126, 435-445
    [117] 郭天财, 方保停, 王晨阳, 等. 水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响[J]. 干旱地区农业研究, 2005,23(2): 6-10
    [118] 吴海卿, 杨传福, 孟兆江, 等.以肥调水提高水分利用效率的生物学机制研究[J].灌溉排水, 1998, 17(4):6-10
    [119] 王同朝, 李凤民. 分层供水施磷对春小麦光合性能及水分利用效率的影响[J]. 西北植物学报,1998, 18: 165-171
    [120] 赵立新, 荆家海. 水分胁迫条件下施肥对盆栽冬小麦的产量反应及对养分的吸收特征[J]. 土壤学报,1995, 26 (1): 6-8
    [121] 汪德水. 旱地农田肥水关系原理与调控技术[M]. 北京: 中国农业科技出版社, 1995,111-115
    [122] 梁银丽, 康绍忠. 坡地施肥水平对谷子根系生长和生产力的作用[J].干旱地区农业研究, 1998, 16(2): 53-57
    [123] 穆兴民. 旱地作物生育对土壤水肥耦联的响应研究进展[J]. 生态农业研究,1999, 7(1): 43-46
    [124] 汪德水, 程宪国, 姚晓晔, 等. 半干旱地区麦田水肥效应研究[J]. 土壤肥料,1994,2:1-4
    [125] 谷洁, 程逵. 向日葵的水肥效应与合理施肥研究[J]. 干旱地区农业研究,1997,15(3):48-51
    [126] 徐学选, 陈国良, 穆兴民. 春小麦水肥产出协同效应研究[J].水土保持学报, 1994, 8(4): 72-78
    [127] 吕殿青, 张文孝, 谷洁, 等. 渭北东部旱源氮磷水三因素交互作用与藕合模型研究[J]. 西北农业学报, 1994 3(3):27-32
    [128] 刘作新, 尹光华, 孙中和, 等. 低山丘陵半干旱区春小麦田水肥耦合作用的初步研究[J].干旱地区农业研究, 2000, 18(3):20-25
    [129] 孟兆江, 刘安能, 吴海卿. 商丘试验区夏玉米节水高产水肥耦合数学模型与优化力案[J]. 灌溉排水, 1997, 16(4): 18-21
    [130] 李世清, 李生秀. 水肥配合对玉米产量和肥料效果的影响[J]. 干旱地区农业研究, 1994, 12(1):47-53
    [131] 陈尚漠. 旱区施肥量与农田水分利用率关系的研究[J]. 中国农业气象, 1994,15(4):12- 151
    [132] 张镜清. 冬小麦耗水强度与施肥灌水的关系[A]. 汪德水. 旱地农田肥水关系原理与调控技术研究[C]. 北京: 中国农业科学技术出版社, 1995, 229-232
    [133] 唐玉霞, 孟春香, 贾树龙, 等.冬小麦对水肥反应差异与节水冬施肥技术[J].干旱地区农业研究, 1996,14(2):36-40
    [134] 兰晓泉. 半干旱黄土丘陵区农田水肥效应研究[J]. 土壤通报, 1998, 29(4):161-163
    [135] 李祖荫, 吕家珑. 早地小麦磷肥施用方法的探讨[J]. 干旱地区农业研究, 1991, 3: 22-26
    [136] 赵立新. 旱地冬小麦施肥效应研究[J]. 干旱地区农业研究, 1991 4: 46-51
    [137] Li D, Zhang J. Effect of upper soil drying on water efficiency of maize plants[J]. Acta Phytobiological Sinica, 1994, 4(2): 19-25
    [138] Adetunji MT. Nitrogen application and underground water contamination in some agricultural soil of South Western Nigeria[J]. Fertilizer Research, 1994, 37: 159-163
    [139] Sharma BR, Chaudhary TN. Wheat root growth, grain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sand soil[J]. Agriculture Water Management, 1983, 6: 365-373
    [140] 苏德纯, 任春玲, 王兴仁. 不同水分条件下施磷位置对冬小麦生长和磷营养的影响[J].中国农业大学学报, 1998,3(5):55-60
    [141] 马瑞昆, 骞家利, 贾秀领. 供水深度与冬小麦根系发育的关系[J].干旱地区农业研究, 1991, (3):1-9
    [142] 王同朝, 李凤民, 王俊, 等.分层供水施磷对春小麦光合性能、同化产物流向和水分利用效率的影响[J]. 植物生态学报, 1999,23(2):177-185
    [143] Alston AM. Effects of depth of fertilizer placement on wheat grown under three water regimes[J]. Australian Journal of Agricultural Research, 1976, 27(1) :1-10
    [144] 李秧秧, 邵明安. 小麦根系对水分和氮肥的生理生态反应[J]. 植物营养与肥料学报, 2000, 6(4):383-388
    [145] 丁新利, 张玉玲. 喷灌条件下冬小麦最佳水肥管理模式实验研究[J]. 干旱地区农业研究, 1999, 17(1):63-66
    [146] 上官周平, 周维. 栽培条件对冬小麦叶片水分利用效率的影响[J]. 植物营养与肥料学报, 1998, 4(3):231-236
    [147] 上官周平等. 黄土高原粮食生产与持续发展[M]. 西安: 陕西人民出版社, 1999
    [148] 高亚军, 李生秀. 北方旱区农田水肥效应分析[J]. 中国工程科学, 2002, 4(7): 75-78
    [149] Snapp SS, Borden H. Enhanced nitrogen mineralization in mowed or glyphosate treated cover crops compared to direct incorporation[J]. Plant and Soil, 2005, 270: 101–112.
    [150] Bremner JM. Nitrogen availability[A]. In :Black C A(ed.). Methods of soil analysis, Part 2[M]. Am.Soc. of Agron. Madison, Wis., 1965, 1324-1345.
    [151] 李韵珠, 黄元仿. 冬小麦的氮素利用率和供水关系[A]. 李韵珠等. 土壤水和养分的有效利用[C]. 北京: 北京农业大学出版社, 1994, 139-148
    [152] 朱兆良. 土壤氮素[A]. 中国土壤[C]. 北京: 科学出版社, 1988, 464-486.
    [153] Quemada M, Cabrera ML. Temperature and moisture effects on C and N mineralization from surface applied clover residue[J]. Plant and soil, 1997, 189: 127-137.
    [154] Holland EA, Townsend AR, Vitousek PM.Variability in temperature regulation of CO2 fluxes and N mineralization from five Hawaiian soils: implication for a changing climate[J]. Global Change Biology, 1995, 1: 115-23.
    [155] MacDonald NW, Zak DR, Regitzer K S. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization[J]. Soil Sci. Sco. Am. J, 1995, 59: 233-240.
    [156] Miklinska M, Maryanski M and LaskowskiR. Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change[J]. Biogeochemistry, 1999, 44: 239-257.
    [157] 李世清, 李生秀, 李凤民. 石灰性土壤剖面氮素的矿化作用[J]. 兰州大学学报, 2000, 36(1): 98-104.
    [158] 付会芳, 李生秀. 土壤氮素矿化与土壤供氮能力[J]. 西北农业大学学报,1992,20(增刊): 48-52.
    [159] Genty BE, Briantais MJ, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimical Biophysical Acta, 1989, 990: 87-92
    [160] Schreiber U, Bilger W, Neubauer G. Cholorphyll fluorescence: New instruments for special application. In Schulze ED, Caldwell MM eds. Ecophysiology of photosynthesis[J]. Berlin Springer-Verlag, 1994, 147-150
    [161] Krause GH, Weis E. Chlorophyll fluorescence and photosynthesis[J]. Ann Rew Plant Physiol Plant Mol Biol, 1991, 42: 313-349
    [162] Van Kooten O, Snel JFH. The use of chlorophyll nomenclature in plant stress physiology[J]. Photosynthesis Research, 1990, 25: 147-150
    [163] Herppich WB, Peckmann K. Responses of gas exchange, photosynthesis, nocturnal acid accumulation and water relations of aptenia cordifolia to short-term drought and rewatering[J]. Journal of Plant Physiology, 1997, 150: 467-474
    [164] 梁新华, 许兴, 徐兆桢, 等.干旱对春小麦叶绿素 a 荧光动力学特征及产量间关系的影响[J]. 干旱地区农业研究, 2001,19(3):72-77.
    [165] 冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [166] Hak R, Rinderle-Zimmer U, Lichtenthaler HK. Chlorophyll a fluorescence signatures of nitrogen deficient barley leaves[J]. Photosynthetica, 1993, 28 :151-159
    [167] Jacob J, Lawlor DW. In vivo photosynthetic electron transport does not limit photosynthetic capacity in phosphate-deficient sunflower and maize leaves[J]. Plant, cell and Environment, 1993,16: 785-1951
    [168] Li SC, Hu CH, Gong J, et al. Effect of low phosphorus stress on the chlorophyll fluorescence of different phosphorus use efficient maize (Zea may L.) [J]. Acta Agron Sin, 2004, 30(4): 365-370
    [169] 张其德, 张建华, 刘合芹, 等. 限水灌溉和不同施肥方式对冬小麦旗叶某些光合功能的影响[J].植物营养与肥料学报,2000,6 (1):24-29.
    [170] 王建程, 严昌荣, 卜玉山. 不同水分与养分水平对玉米叶绿素荧光特性的影[J]. 中国农业气象, 2005, 26(2): 95-98
    [171] 张守仁. 叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4): 444-448
    [172] Xu DQ, Zhang YZ, Zhang RX. Photoinhabition of plant photosynthesis[J]. Plant Physiology Communications, 1992, 28(4): 237- 243
    [173] 王可玢, 许春辉, 赵福洪, 等. 水分胁迫对小麦旗叶某些体内叶绿素 a 荧光参数的影响[J]. 生物物理学, 1997, 13(2): 274-278
    [174] 杨晓青, 张岁岐, 梁宗锁, 等. 水分胁迫对不同抗旱类型冬小麦幼苗叶绿素荧光参数的影响[J]. 西北植物学报, 2004, 24(5): 812-816
    [175] Maxwell K, Johnson GN. Chlorophyll fluorescence - A practical guide[J]. Journal of Experiment Botany, 2000, 51: 659-668
    [176] 张旺峰, 勾玲, 王振林, 等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003, 36(8): 893-898.
    [177] 沈玉芳, 李世清, 邵明安. 水肥空间组合对冬小麦光合特性和产量的影响[J].应用生态学报, 2007
    [178] 张和平, 刘晓楠. 黑龙港地区冬小麦生产中水肥关系及其优化灌水施肥模型研究[J]. 干旱地区农业研究, 1992, 10(1): 32-38
    [179] 郭天财, 姚战军, 王晨阳, 等. 水肥运筹对小麦旗叶光合特性及产量的影响[J] 西北植物学报, 2004, 24(1): 1786-1791
    [180] B1um A, Johnson JW. The effect of a drying top soil and a possible non-hydraulic root signals on wheat growth and yield[J]. J Exp Bot, 1991,42: 1225-1231
    [181] 郭安红, 李凤民, 李召祥, 等. 上层土壤干旱和根信号对春小麦产量形成的影响[J]. 应用生态学报, 1999, 10: 689- 695
    [182] Karrou M, Maranvile JW. Response of wheat cultivars to different soil nitrogen and moisture regimes[J] .I .Dry matter partitioning and root growth.. J Plant Nutr, 1994, 17: 724-744
    [183] Shi Y, Wei DB, Yu ZW, et al. Effects of fertilizer application depth on nitrogen utilization and yield in dry land wheat[J]. Acta Agric Nucleatae Sin, 2001, 15(3): 180-183
    [184] Xing WQ, Wang LQ, LuoYM, et al. Effect of Spacial Coupling Between Irrigation Water and Fertilizer on Corn in Semiarid Area[J]. Trans CSAE, 2002, 18(6): 46-49
    [185] 刘作新, 郑昭佩, 王建. 水肥互作对辽西半干旱区小麦和玉米生长的影响[J], 应用生态学报, 2000, l1(4): 540-544
    [186] 沈玉芳, 李世清, 邵明安. 半湿润地区土垫旱耕人为土不同土层氮矿化的水温效应研究[J]. 植物营养与肥料学报, 2006.
    [187] 张秋英, 李发东, 刘孟雨. 冬小麦叶片叶绿素含量及光合速率变化规律的研究[J]. 中国生态农业学报, 2005,13(3): 95-98
    [188] Niu LY, Ru ZG, Zhao HZ, et al. The systemic change rule of chlorophyll content of wheat leaf[J]. Tritical Crops, 1999, 19(2): 36-38
    [189] 张秋英, 刘晓冰, 金剑, 等. 水肥耦合对玉米光合特性和产量的影响[J].玉米科学,2001,9(2): 64-67
    [190] Wang CY. Effects application of nitrogen at the later stage on grain yield and plant physiological characteristics of super-high-yielding winter wheat[J]. Acta Agron Sin, 1998,24(1): 978-983
    [191] Xu HY, Zhao JS. Canopy photosynthesis capacity and the contribution from different organs inhigh-yielding winter wheat[J]. Acta Agron Sin, 1995, 21 (2): 204-209
    [192] Longnecker N, Kirby EJM, Robson A. Leaf emergence, tiller growth and apical development of nitrogen deficient spring wheat. Crop Science, 1993, 33: 154-160.
    [193] 张淑香, 金柯, 蔡典雄, 等. 水分胁迫条件下不同氮磷组合对小麦产量的影响[J]. 植物营养与肥料学报, 2003, 9 (3): 276-279.
    [194] 任正隆. 小麦的叶面积、穗粒数和粒叶比的基因效应[J], 作物学报, 1983, 9(3): 195-198.
    [195] 刘三才. 我国小麦穗粒数及多粒种质的研究进展[J],国外农学-麦类作物, 1995, 3: 41-43.
    [196] 蔡庆生, 吴兆苏. 小麦籽粒生长各阶段干物质积累量与粒重的关系[J]. 南京农业大学学报, 1993, 16(1):27-32.
    [197] 雷振生, 林作楫. 黄淮小麦区冬小麦合理株型结构研究[J]. 华北农学报, 1994, 9(4): 27-32.
    [198] 李明兵, 杨兆生. 小麦品种性状演变规律的分析[J]. 麦类作物, 1999, 19(6): 30-34.
    [199] 罗培远. 作物水分利用效率的调节[A]. 邹琦等. 作物高产高效生理学研究进展[C]. 北京: 科学出版社, 1994,201-210.
    [200] 王竹林, 刘曙东, 何蓓茹. K 型杂交小麦籽粒灌浆特性研究[J]. 西北农业大学学报, 1997, 25(3): 36-40.
    [201] 史志诚. 陕西玉米小麦地膜覆盖栽培技术的应用与推广[J]. 西北农业大学学报, 1998, 26(6):75-79.
    [202] 赵微平. 小麦生理学和分子生物学[J]. 北京: 北京农业大学出版社, 1993.
    [203] 王韵唐. 植物抗旱的生理机理. 植物生理生化进展[M]. 北京: 科学出版社, 1993, 2: 120-133.
    [204] 高翔. 小麦产量结构性状研究[J]. 国外农学-麦类作物, 1994, 2: 40-41.
    [205] 贾继增. 小麦粒重与植株性状相关因素的统计分析[J]. 作物学报, 1984, 10(3): 201-205.
    [206] 宋荷仙, 李跃建, 冯君成, 等. 小麦收获指数和源、库性状的遗传研究[J]. 中国农业科学,1993, 26(3): 21-26.
    [207] 许为钢, 胡琳. 小麦收获指数的改良[J]. 国外农学—麦类作物, 1994, 6: 51-53.
    [208] Sharma RC. Selection for biomass yield in wheat[J]. Euphytica, 1993, 70: 35-42.
    [209] Caldwell MM, Richards JH. 1989. Hydraulic water efflux from upper roots improve effectiveness of water uptake by deep roots[J]. Oeclogia, 79:1-15.
    [210] 王志芬, 陈学留, 余美炎, 等. 大田冬小麦根系吸收活力的空间分布及其变化动态的研究[J]. 作物学报, 1998, 24(3): 354-359
    [211] 张立祯, 曹卫星, 张思平, 等. 棉花根系生长和空间分布特征[J]. 植物生态学报, 2005, 29 (2): 266-273
    [212] 刘殿英, 石立岩, 黄炳茹, 等. 栽培措施对冬小麦根系及其活力和植株性状的影响[J ] , 中国农业科学, 1993, 26 (5) : 51-56
    [213] 赵秉强, 张福锁, 李增嘉, 等. 间作冬小麦根系数量与活性的空间分布及变化规律[J]. 植物营养与肥料学报, 2003, 9 (2): 214-219
    [214] Degbidi HG, Comerford NB, Jokela EJ, et al. Root development of Young Loblolly Pine in spodosols in Southeast Georgia[J]. Soil Sci. Soc. Am. J, 2004, 68:596-604
    [215] 宋志伟, 卢良峰, 弓利英, 等. K 型杂种小麦对氮磷钾的积累分配与转移规律研究[J]. 土壤通报, 1995,26(6): 276-278
    [216] 石岩, 林琪, 李素美, 等. 土壤水分胁迫对小麦养分分配及产量的影响[J]. 植物营养与肥料学报, 1998, 4(1): 50-56
    [217] 曹翠玲, 李生秀. 水分胁迫和氮素有限亏缺对小麦拔节期某些生理特性的影响[J]. 土壤通报, 2003, 34(6): 505-509
    [218] 王立秋. 冀西北春小麦高产优质高效栽培研究-氮磷肥对春小麦产量和品质的影响[J]. 干旱地区农业研究,,1994, 12(3) : 8-13
    [219] Zhao GC, Zhang BM, Wang CY. Nitrogen accumulation and their relations to grain yield and protein content in high yielding winter wheat[J]. J Triticeae Crops, 2000, 20 (4) :90-93 (in Chinese)
    [220] 王月福, 于振文, 李尚霞, 等. 施氮量对小麦子粒蛋白质组分含量及加工品质的影响[J] . 中国农业科学,2002 ,35 (9) :1071- 1078
    [221] 王月福, 于振文, 李尚霞, 等. 土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J]. 应用生态学报, 2003, 14 (11) :1868-1872
    [222] 张睿. 半湿润农田生态系统不同施肥处理对小麦籽粒中氮、磷、钾含量和累积量的效应[J]. 西北植物学报, 2005, 25(1): 0150-0154
    [223] 高松洁, 王文静, 陈时良. 不同源库型小麦品种生理特点及其与粒重的关系[J]. 华北农学报, 2000, 15(1): 17-21
    [224] 任正隆, 李尧权. 小麦开花后的物质积累、籽粒相对生长率和灌浆速度在品种间的变异[J]. 中国农业科学, 1981, 6: 12-19
    [225] 吕殿青, 杨进荣, 马林英. 灌溉对土壤硝态氮淋洗效应影响的研究[J]. 植物营养与肥料学报, 1999, 5(4): 307-315
    [226] 范丙全, 胡春芳, 平建立. 灌溉施肥对壤质潮土硝态氮淋溶的影响[J]. 植物营养与肥料学报, 1998, 4 (1) :16-21
    [227] 吕殿青, 孙本华, 同延安. 氮肥施用对环境污染的影响[J]. 植物营养与肥料学报, 1998, 4 (1) :8-15
    [228] Ottaman MJ, Pope NV. Nitrogen fertilizer movement in the soil as influenced by nitrogen rate and timing in irrigated wheat[J]. Soil Sci Soc Am J, 2000, 64 :1883-1892
    [229] Guo SL, Wu JS, Hao MD, et al . Effect of long-term fertilization on NO3- N accumulation and moisture distribution in soil profile[J]. Chin J A ppl Ecol, 2003, 14 (1): 75-78
    [230] 李世清, 王瑞军, 李紫燕, 等. 半干旱半湿润农田生态系统不可忽视的土壤氮库—土壤剖面中累积的硝态氮[J]. 干旱地区农业研究, 2004, 22(4): 1-13
    [231] 马兴华, 于振文, 梁晓芳. 施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响[J]. 应用生态学报, 2006, 17 (4): 630-634
    [232] Chaney K. Effect of nitrogen fertilizer rate on soil nitrate nitrogen content after harvesting winter wheat [J]. J Agric Sci , 1990, 114 :171- 176
    [233] Liang B C, MacKenzie A F. Changes of soil nitrate-nitrogen and denitrification as affected by nitrogen fertilizer on two Quebec soils[J]. Journal of Environmental quality, 1994, 23(3): 521-525
    [234] Villani E M A, Barros N F, Novais R F, et al. Phosphorus diffusive flux as affected by phosphate source and incubation time[J]. Soil Sci. Soc. Am. J, 1998, 62: 1057- 1061
    [235] Fan MX, Mackenzie AF. Interaction of urea with triple superphosphate in a simulated fertilizer band[J]. Fertilizer Research, 1993, 36(1): 35-44
    [236] Wang DW, Liu SQ, Wen HD, et al. Study of the effect of fertilizer application and water-fertilizer coupling on spring wheat field in cold highland-semiarid region[J]. Sci Agric Sin, 1999, 32(5): 62-68
    [237] 李世清, 李生秀. 淹水培养条件下铵态氮肥对土壤氮素的激发效应[J].植物营养与肥料学报, 2001, 7(4): 361-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700