用户名: 密码: 验证码:
作物水肥利用过程及调控试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何充分利用自然降水和更大限度发挥有限灌溉作用,实现同步提高作物产量和作物水肥利用效率及减少氮、磷肥污染是现代农业发展过程中急待研究的重要课题之一。本研究以夏玉米、冬小麦为供试作物,采用田间试验和土柱模拟试验相结合的方法,研究了水、氮、磷调控措施对夏玉米/冬小麦生长的影响,揭示了作物养分吸收累积和转运规律,调控措施对作物水肥利用效率和玉米根系特性的影响,得出以下主要结论:
     1、在无灌溉条件下,氮、磷肥均能提高夏玉米叶面积指数和干物质累积量,随生育期推进,增长趋势逐渐明显,均以氮、磷肥用量分别为240、120 kg.hm-2水平时最好。氮、磷调控未改变茎、叶对氮、磷累积的单峰型动态变化规律,但能增加玉米植株各器官氮、磷累积量,且氮、磷肥配施效果更好。夏玉米植株对氮、磷吸收规律相似,拔节和灌浆期是两个高峰期,氮累积量随施氮量增加而增大。氮、磷调控措施下,夏玉米磷素累积最大速率出现时间较氮素晚,且氮、磷分别为240、120 kg.hm-2水平时最高,分别为1.66和0.29 g·d-1·m-2。
     2、夏玉米土壤剖面水分和硝态氮随深度的变化趋势基本一致,0~50 cm土层水分和硝态氮含量高,且呈降低趋势,50~110 cm土层含量低且波动小,灌浆期两者均达到最低值。随施氮量增加,成熟期土壤中硝态氮含量急剧上升;随施磷量增加,土壤硝态氮呈先增后减趋势。0~50 cm土层含水量施氮低于不施氮处理,50~110 cm土层则相反。氮、磷肥能提高夏玉米水分利用效率,并以氮、磷肥用量分别为240、120 kg.hm-2水平时最好。
     3、氮、磷肥能显著提高夏玉米产量,随施氮量增加其增幅呈先增后减趋势。当施磷量增至120 kg.hm-2水平时,产量有下降趋势。夏玉米达到最高产量时的氮、磷肥用量分别为:259.40、116.92 kg.hm-2,且氮肥对产量影响大于磷肥。氮、磷配施亦能提高玉米植株吸氮量和氮收获指数,氮、磷肥用量分别为240、120 kg.hm-2时最高,并可减小土壤氮素损失,提高籽粒品质。氮肥利用率与氮素利用效率均随施氮量增加而减小。
     4、水、氮及以秸秆为主要原料的新型土壤改良剂均能提高冬小麦干物质累积量,秸秆改良剂与288 kg.hm-2氮肥配施时可提高37.8 %,但未改变其累积规律,拔节和灌浆期是两个累积高峰期,分别占16.7 %~25.5 %、49.8 %~58.7 %。施加秸秆改良剂可提高冬小麦光合速率和叶片水分利用效率。冬小麦茎、叶中氮、磷含量随生长期延续减小,成熟时钾大量贮存于茎秆中。秸秆改良剂和氮肥均能显著提高氮、磷在茎叶和籽粒中的含量以及植株氮、磷累积量,对钾含量影响不明显,且两者配施再配以灌水效果更好。氮、磷出现最大累积速率时间较对照早,无灌水条件下氮素最大累积速率出现时间随施氮量增加而提前,灌水则反之。氮素最大累积速率出现时间较磷早。灌水条件下秸秆改良剂与288 kg.hm-2氮肥配施处理和其与160 kg.hm-2氮肥配施处理氮、磷最大累积速率最高。叶对氮、磷转运量和转运效率均小于茎杆,氮素转运量较磷素多。
     5、高氮肥与秸秆改良剂配施冬小麦增产效果显著,配以灌水后增产10.77 %。水、氮及秸秆改良剂能改善冬小麦返青和成熟期土壤水分和硝态氮含量,返青期0~100 cm土层水分变化剧烈,成熟期反之。秸秆改良剂与氮肥配施后0~200 cm土层蓄水量增幅较大,配以灌水更为显著。施氮量越多土壤中硝态氮累积量增幅越大,且对0~30 cm土层影响较大,灌溉后此层含量稍有降低。冬小麦氮素利用效率、氮肥利用率及氮素生产力均随氮施入量增加而降低。单施秸秆改良剂或氮肥对冬小麦水分利用效率影响不大,两者配施能使其显著提高,且秸秆改良剂与288 kg.hm-2氮肥配施处理最好。
     6、夏玉米土柱模拟试验结果发现,水分对根系干重、根系活力、根系表面积的影响较氮、磷肥大。根系干重随土层深度增加而减小,0~10 cm土层尤为明显。0~20 cm根长密度较高,根长密度随土层深度增加先减小后上升。根系干重和根长密度随施氮量增加而降低,随施磷量增加一直增长,且玉米根冠比有减小趋势。氮肥和磷肥能提高玉米根系活力,在水分较好情况下其对磷肥更为敏感。
     7、由籽粒产量和根系各指标之间相关分析可知,根干重、根长密度、根表面积和根系活力与籽粒产量和玉米地上部分干物质量均呈极显著相关关系。根冠比只与地上部分相关。根表面积和根系活力之间呈极显著相关关系。根系活力和根系吸氮能力对玉米生长和籽粒的形成有很重要的作用,存在显著正相关性。
     8、结合各种调控措施对夏玉米/冬小麦籽粒产量及水肥利用效率影响,从控制土壤硝态氮积累量和减小氮素损失综合考虑,夏玉米适宜施氮量范围是120~240 kg.hm-2,施磷水平为120 kg.hm-2;在有限的灌水条件下,秸秆改良剂和氮肥配施能有效地为冬小麦生长提供良好的生长环境。
It is one of the important subjects in the development of modern agriculture that how to make full use of natural precipitation, give full play in limited irrigation conditions, improve crop yields as well as water-fertilizer use efficiency synchronously, and reduce continuation of nitrogen and phosphorus fertilizer. Taking summer maize and winter wheat as experimental crop and by using combination research method of field experiments and earth column simulation, this paper has researched the influence of different adjustment measures of water, nitrogen as well as phosphorus on summer maize and winter wheat, nutrient uptake, transfer regularity, water-fertilizer use efficiency, and physiological characteristics of maize roots.
     The contents and major conclusion of this paper are as follows:
     1、Under the condition of no irrigation, nitrogen and phosphorus fertilizer can improve the leaf area index as well as cumulant expansion of dry matter above ground parts of summer maize, and the growth trend is gradually significant following the growth stage, moreover, the situation reached the summit at 240 kg.hm-2 and 120 kg.hm-2 of nitrogen and phosphorus fertilizer respectively. When nitrogen and phosphorus cumulant expansion is single peak type, nitrogen and phosphorus regulation do not modify the dynamic change law of stem and leaf, but they can increase the nitrogen and phosphorus cumulant expansion of different organs of maize plant, and the effects are better if nitrogen and phosphorus fertilizer are used cooperatively. The absorption regulation of nitrogen and phosphorus is similar in summer maize plant, i.e., jointing stage and filling stage are two peak periods, and nitrogen cumulant expansion shows increase tendency following the increase of nitrogen application rate. Under the regulation measure of nitrogen and phosphorus, the appearance time of maximal rate of phosphorus cumulant expansion of summer maize is later than nitrogen, moreover, the nitrogen and phosphorus cumulant expansion are highest when they are at the level of 240 kg.hm-2 and 120 kg.hm-2, reaching 1.66 g·d-1·m-2 and 0.29 g·d-1·m-2 respectively.
     2、Following the changing of depth, the variation tendency on soil profile water and nitrate nitrogen of summer maize is basically identical, i.e., the water and the content of nitrate nitrogen are high and show decreasing tendency in 0 to 50 cm soil layer, also the water and the content of nitrate nitrogen are low and little fluctuation in 50 to 110 cm soil layer, moreover, they all reach to minimum in filling stage. Following the increase of nitrogen application rate, the content of nitrate nitrogen in soil of mature period is a steep rise, and following the increase of phosphorus application rate, the content of nitrate nitrogen in soil first increased and then decreased. Nitrogen treatments is lower than no nitrogen treatments of soil moisture content in 0 to 50 cm, but the situation of soil moisture content in 50 to 110 cm is opposite. Nitrogen and phosphorus fertilizer can improve the water use efficiency of summer maize, and the effects are best when the nitrogen and phosphorus amount is 240 and 120 kg.hm-2 respectively.
     3、Nitrogen and phosphorus fertilizer can improve the yield in summer maize, and increase amplitude first increased and then decreased following the nitrogen application rate. When the phosphorus application rate increases to 120 kg.hm-2, the yield shows decrease tendency. Moreover, the yield of summer maize reaches the highest when the application rate of nitrogen and phosphorus is 259.40 kg.hm-2 and 116.92 kg.hm-2 respectively, and the influence on yield of nitrogen fertilizer is greater than phosphorus fertilizer. With nitrogen and phosphorus fertilizer cooperating application, nitrogen uptake and N harvest index of maize plant can be improved, reaching the highest level when the application rate of nitrogen fertilizer and phosphorus fertilizer reaches 240 kg.hm-2and 120 kg.hm-2 respectively, moreover, soil nitrogen loss can be reduced, also grain quality can be increased. The utilization rate of nitrogen fertilizer and phosphorus fertilizer all decreases following the increase of nitrogen application rate.
     4、Water, N fertilizer, and the new soil conditioner that mainly material was straws (PJG) can improve accumulation of dry matter of winter wheat, PJG was mixed with 288 kg.hm-2 N fertilizer, it was increased 37.8 %, but it hasn’t change the accumulation regularity. Jointing stage and filling stage is 2 accumulation peak period, accounts for 16.7 %~25.5 % and 49.8 %~58.7 % separately. Applied with the straw modifier can improve the photosynthesis rate and water use efficiency of blades. N, P content of winter wheat stem and blades decreases with the pro-long of growth period. K content is high in mature winter wheat. Straw modifier and N fertilizer can significantly increase the N、P content and N, P cumulates in stem and blades. It has litter influence on K content in stem and blades. The beginning time of maximum accumulation rate of N and P is earlier than that of CK. Under the condition of no-irrigation, the beginning time of maximum accumulation rate of N advances with the increasing of nitrogen rate and it is opposite to irrigation. the beginning time of maximum accumulation rate of N is earlier than that of P. Under the condition of irrigation, the maximum accumulation rate of N and P is highest which applied by straw modifier and 288 kg.hm-2, 160 kg.hm-2nitrogenous fertilizers. N and P transportation amount of leaves is lower than that of stem, and N transportation amount is higher than that of P.
     5、The combined application of high N fertilizes and straw modifier can increase the yield of winter wheat remarkable. The yield is increased to 10.77 % after irrigation. Water, N and straw modifier can improve the water and Nitrate N of winter wheat during green stage and mature stage. Soil moisture of 0~100 cm changes strenuous during green stage, on the contrary, it's in mature stage. After combined application of Straw modifier and N fertilize, water storage of 0~200 cm increases greatly. Accumulation of Nitrate N increases greatly under the condition of large nitrogen rate. Nitrogen rate has great influence on 0~30 cm soil layer and Nitrate N of 0~30 cm soil layer decreases after irrigation. Nitrogen use efficiency of winter wheat and nitrogen productivity decreases with the increasing of N application. Single application of straw modifier or N fertilizer has little influence on water use efficiency of winter wheat. But combined application of high N fertilizes and straw modifier can increases water use efficiency of winter wheat significantly. Combined application of 288 kg.hm-2 N fertilizes and straw modifier Straw has the best effect on water use efficiency of winter wheat.
     6、Water has more significant influence on dry weight, activity and surface area of root than that of N and P fertilizer in soil column simulating of summer maize. The dry weight of root decreases with increasing of soil depth, especially the 0~10 cm of soil depth. Density of 0~20 cm root length is large. Fist increase and then decrease with the increasing of soil depth. Dry weight and root length density decreases with the increasing of N application rate and increases with the increasing of P application rate. The root-shoot ratio of maize has a decreasing tendency. N and P fertilizer can improve the root activity of maize and the maize activity is sensitive to N fertilizer in the condition of better water.
     7、According to the correlation analysis between grain yield and root, root dry weight, root length density, combined root area and root activity have a very significant correlation with grain yield and dry matter quantity above ground. Ratio of root weight only has a correlation with that of above ground. Combined root area has a very significant correlation with root activity. Root activity and the nitrogen absorption of root have an important role on maize growth and grain formation and there was a significant correlation.
     8、combining with the influence of different regulation measure on grain formation and utilizing efficiency of water, considering with the regulation of nitrate-nitrogen accumulation and decreasing the nitrogen loss, the paper suggests that the range of N application is 120~240 kg.hm-2, P application is 120 kg.hm-2. Under the condition of limit irrigation, straw modifier and application of 160 kg.hm-2 N fertilizers can provide a better growth environment effectively for winter wheat.
引文
[1]李焕义,王桂英,李福田.半干旱地区发展节水农业的技术措施[J].黑龙江农业科学,2000(2):34-35.
    [2]何文社,方铎.水土保持与水资源可持续发展[J].科技前沿与学术评论,2001,23(2):13-17.
    [3]金坷,汪德水,蔡典雄,等.水肥耦合效应研究I-不同降雨年型对N、P、水配合效应的影响[J].植物营养与肥料学报,1999,5(1):1-7.
    [4]吕殿青,张文孝,谷洁,等.渭北东部旱塬氮磷水三因素交互作用研究.见:汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:286-292.
    [5] Benbi D K. Efficiency of nitrogen use by dry land wheat in a sub-humid region in relation to optimizing the amount of available water[J]. Journal of Agricultural Science,1989,115(1):7-10.
    [6]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(1):47-53.
    [7]汪德水,程宪国,张美荣,等.旱地土壤中的肥水激励机制.见:汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:195-203.
    [8]吴春胜.不同水平的氮磷及水分对玉米苗期根系的影响[J].吉林农业人学学报,1990,12(4):24-26.
    [9]张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报, 1993,8(4):76-82.
    [10]李雁鸣,梁振兴,梅楠.冬小麦生育期间根系脱氢酶活性的初步研究[J].河北农业大学学报,1996,19(2):4-8.
    [11] Grant R F, Robertson J A. Phosphorus uptake by root systems: mathematical modeling in ecosys[J]. Plant and Soil, 1997,188:279-297.
    [12] Godlinski F, Leinweber P, Meissner R, et al. Phosphorus status of soil and leaching losses: results from operating and dismantled lysimeters after 15 experimental years[J]. Nutrient Cycling in Agroecosystems, 2004.68:47-57.
    [13] Mathews R B, Wassmann R, Buendia L V,et al. Using a crop/soil simulation model and GIS techniques to assess methane missions from rice fields in Asia. II. Model validation and sensitivity analysis[J]. Nutrient Cycling in Agroecosystems, 2000,58:161-177.
    [14] McDowell R W, Sharpley A N, Condron L M, et al. Processes controlling soil phosphorus release runoff and implications for agricultural management[J]. Nutrient Cycling in Agroecosystems, 2001.59:269-284.
    [15]张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报,2001,7(4):396-402.
    [16]胡斌.夏玉米秸秆覆盖效果的试验研究[J].灌溉排水,1998,1793:46-48.
    [17]黄泽在等.以肥调水提高旱地农业生产率[J].土壤肥料,1993(6):21-26.
    [18] Lahiri A N, Singh S, Kackar N L. Proc. India[J]. Nat. Sci Acad, Part B, 1973,39:77.
    [19] Viets F G. Water deficit and nutrient availability[J]. In: Kozlowski T T(ed). Water deficits and plant growth. Acad Press, 1972(3).
    [20]山仑,张岁歧.节水农业及其生物学基础[J].水土保持研究,1999,6(1): 2-6.
    [21] Bhan S, Misra D K. Efects of variety, spacing and soil fertility on root development in groundnut under arcid condition[J]. Indian J. Agric. Sci,1970,40:1050-1055.
    [22]佟屏亚,凌碧莹.夏玉米干物质累积动态模拟[J].北京农业科学,1996,14(5):21-24.
    [23] Ramachandra T V, Krishnamurthy K, Kailasarn C. Functional crop and cob growth models of maize cultivars[J]. Agronomy and Crop Sci., 1992,168:208-221.
    [24]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [25]高亚军,李生秀,李世清,等.澄城高肥力田块小麦的水肥耦合效应.见:旱地农田肥水关系原理及调控技术[M].北京:中国农业科学技术出版社,1995,235-245.
    [26]肖世和,陈孝.小麦开花后生物产量及其组分的动态分析[J].作物学报,1995,21(2):155-160.
    [27]杨延兵,高荣岐,尹燕枰,等.氮素与品种对小麦产量和品质性状的效应[J].麦类作物学报,2005,25(6):78-81.
    [28]古巧珍,杨学云,孙本华,等.长期定位施肥对小麦籽粒产量及品质的影响[J].麦类作物学报,2004,24(3):76-78.
    [29]林琪,侯立白,韩伟.不同肥力土壤下氮肥施用量对小麦籽粒产量和品质的影响[J].植物营养与肥料学报,2004,10(6):561-567.
    [30]郝明德,王旭刚,党廷辉,等.黄土高原旱地小麦多年定位施用化肥的产量效应分析[J].作物学报,2004,30(11):1108-1112.
    [31]王旭刚,郝明德,李建民,等.氮磷配施对旱地小麦产量和吸肥特性的影响[J].西北农林科技大学学报(自然科学版),2007,35(2):138-142.
    [32]朱显谟.黄土高原土壤与农业[M].北京:农业出版社,1989:286-297.
    [33]陈欣,宇方太,沈善敏.磷肥低量施用制度下土壤磷库的发展变化Ⅱ:土壤有效磷及土壤无机磷组成[J].土壤学报,1997,34(1):81-87.
    [34]顾益初,钦绳武.长期施用磷肥条件下潮土中磷素的积累、形态转化和有效性[J].土壤,1997(1):13-17.
    [35]刘建玲,张福锁.小麦-玉米轮作长期肥料定位试验中土壤磷库的变化Ⅰ:磷肥产量效应及土壤总磷库、无机磷库的变化[J].应用生态学报,2000,11(3):360-364.
    [36]周宝库,张喜林.长期施肥对黑土磷素积累、形态转化及其有效性影响的研究[J].植物营养与肥料学报,2005,11(2):143-147.
    [37]曹爱琴,廖红,严小龙.低磷土壤条件下菜豆根构型的适应性变化与磷效率[J].土壤学报,2002,39 (2):276-281.
    [38]戴敬.不同施肥水平的棉花根系生氏及生理活性[J].上海农业学报,1998,14(2):56-60.
    [39]段舜山,谷文祥,张人勇,等.半干旱地区小麦群体的根系特征与抗旱性的关系[J].应用生态学报,1997,8(2):134-138.
    [40]马元喜.不同土壤对小麦根系生长动态的研究[J].作物学报,1987(1):25-30.
    [41]苗果园,高志强,张云亭等.水肥对小麦根系整体影响及其与地上部相关的研究[J].作物学报,2002,28(4):445-450.
    [42]陈际型.钾素营养对水稻根系生氏和养分吸收的影响[J].土壤学报,1997,34(2):182-187.
    [43]陈培元,詹谷宇,谢伯泰.冬小麦根系的研究[J].山西农业科学,1980,(6):1-6.
    [44]宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性变化[J].植物营养与肥料学报,2004,10(1):6-11.
    [45]易镇邪,王璞,屠乃美.夏播玉米根系分布与含氮量对氮肥类型与施氮量的响应[J].植物营养与肥料学报,2009,15(l):91-98.
    [46]宋海星.水、氮供应对作物根系生理特性及吸收养分的影响[D].西北农林科技大学,2002:1.
    [47]刘培利,林琪,隋方功,等.紧凑型玉米根系高产特性的研究[J].玉米科学,1994,2(1):59-63.
    [48] Foehse D, Jungk A. Influence of phosphate and nitrate supply on root hair formation of rapespinach and tomato[J]. Plant and soil,1983,74:359-368.
    [49] Johnson F, Allan D L, Vance C P. Phosphorus stress-Induced proteoid roots show altered metabolism in Lupinus albus[J]. Plant physiol,1994,104:657-665.
    [50] Root-System Development and Water-Extraction Model Considering Hydrotropism[J]. Plant and soil.
    [51]史瑞和.植物营养学原理[M].南京:江苏农业出版社,1989,61-62.
    [52] Sharp R E, Davies W J,Root growth and water uptake by maize plants in drying soil[J]. Exp. Bot,1985,36:1441-1456.
    [53]李生秀,高亚军,王喜庆,等.水分对土壤养分迁移的影响.见:旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:6-11.
    [54]张和平,刘晓楠.华北平原冬小麦根系生长规律及其与氮肥磷肥和水分的关系[J].华北农学报,1993,8(4):76-82.
    [55]孙广玉,何庸,张荣华,等.大豆根系生长和活性特点的研究[J].大豆科学,1966,15(4):317-320.
    [56]刘为红,孙黛珍,卢布,等.谷子根系生长发育规律及环境条件对其影响的研究[J].干旱地区农业研究,1996,14(2):20-25.
    [57]王绍中,茹天祥.丘陵红粘土旱地冬小麦根系生长规律的研究[J].植物生态学报,1997,21 (2):175-190.
    [58]王玉贞,李维岳,尹枝瑞.玉米根系与产量关系的研究进展[J].吉林农业科学,1999,24(4):6-8.
    [59]杨秀红,吴宗璞,张国栋.大豆品种根系性状与地上部性状的相关性研究[J].作物学报,2002,28 (1):72-75.
    [60]刘殿英,黄炳茹,董庆裕.土壤水分对冬小麦根系的影响[J].山东农业大学学报,1991,22(2): 103-110.
    [61] Barta V, Mala S. Sugar beet cu1tivar root yield and quality under non一irrigation and irrigation conditions. Vedecke Prace Vyskumneho Ustavu Zavlahoveho Hospodarstva v Bratislave[M]. Slovak Republic,1994,(21):13-24.
    [62] Schortemeyer M, Feil B, Stamp P. Root morphoIogy and nitrogen uptake of maize imultaneously supplied with ammonium and nitrate in a split-root system[M]. Ann-bot. London: New York: Academic Press,1993,72(2):107-115.
    [63]冯广龙,刘吕明.土壤水分对作物根系生长及其调控作用[J].生态农业研究,1996,(3):5-9.
    [64] Eugenio F, Coelho, Dani Or. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation[J]. Plant and Soil, 1999,206:123-136.
    [65] Michael J, Nnacey V. Nitrogen fertilizer movement in the soil as influenced by nitrogen rate and timing in irrigated[J]. Soil sci. soc. Americal.[J].2000,64:1883-1892.
    [66]吴永成,周顺利,王志敏,等.华北地区夏玉米土壤硝态氮的时空动态与残留[J].生态学报,2005,25(7):1620-1625.
    [67]朱献玳,陈学留,刘益同,等.玉米根系的生长及其在土壤中的分布[J].莱阳农学院学报,1991,8(1):15-19.
    [68]马瑞昆,贾秀领,蹇家利,等.前期控水条件下冬小麦的根系和群体光合作用特点[J].麦类作物学报,2001,21(2):88-91.
    [69] Wraith J M, Wright C K, Soil water and root growth[J]. Hort Science,1998,33(6):951-959.
    [70] Coelho E F. Root distribution and water upake patterns of corn under surface and subsurface dripirrigation[J]. Plant and Soil (Netherlands),1999,206(2):123-136.
    [71] Jesko T, Navara J, Dekankova K. Root growth and water uptake by flowering maize plants, under drought conditions. Biology of root formation and development[M]. New York(USA). Plenum Press, 1997:270-271.
    [72] Takahashi H, Soott T K, Hydrotropism an itsi nteraction with gravitropism in maize roots[J]. Plant Physiol,1991,96:558-564.
    [73] Jodari karimi F. et al. Root distribution and water use efficiency of alfalfa as innuenced by depth of irrigation[J]. A gro J., 1983,75:207-211.
    [74]田佩占.大豆品种根系生态类型的研究[J].作物学报,1984,10(3):173-178.
    [75] Arslan A, Kurdali F. Rainfed vetch-barley rnixed cropping in the Syrian semi-arid conditions. Water use emciency and root distribution[J]. Plant and soil (Netherlands),1996,183(1): 149-160.
    [76] Hudak C M, Patterson R P. Root distribution and soil moisture depletion patern of a drought-resistant soybean plant introduction[J]. Agronomy journal (USA),1996,88(3):478-485.
    [77]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-56.
    [78]苗果园,张云亭,尹钧等.高原早地冬小麦根系生长发育规律的研究[J].作物学报,1989, 15(2):104-115.
    [79] Narayan D. Root growth and productivity of wheat culu vals under different soil moisture condition[J]. International Journal of Ecology and environmental sciences,1991,17(1):19-26.
    [80]慕自新,张岁岐,郝文芳,等.玉米根系形态性状和空间分布对水分利用效率的调控[J].生态学报,2005,25(11):2895-2900.
    [81] Barber, S. Soil Nutrient Bio-availability: A Mechanistic Approach[M]. Wiley,NewYork,1984.
    [82] Qiupeng Zeng, Patrick H. Brown. Soil potassium mobility and uptake by corn under differential soil moisture regimes[J]. Plant and soi1, 2000.221:121-134.
    [83]汪德水.旱地农田肥水协同效应与耦合模式[M].北京:气象出版社.1999:44,85.
    [84]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994, 12(1):47-53.
    [85]樊小林,李玲,何文勤,等.氮肥、干旱胁迫、基因型差异对冬小麦吸氮量的效应[J].植物营养与肥料学报,1998,4(2)9:131-137.
    [86] Varma S S, Malik B S. Potassium absorption as affected by nitrogen and phosphorus application under varying soil moisture regimes in some cereal and leguminous crops. In potassium in soils, crops and fertilizers[J]. Indian Soc. Soil Sci. eds. 1976:124-128.
    [87]王艳,米国华,张福锁.氮对不同基因型玉米根系形态变化的影响研究[J].中国生态农业学报,2003,11(3):69-71.
    [88]孟兆江,刘安能,庞鸿宾,等.夏玉米调亏灌溉的生理机制与指标研究[J].农业工程学报,1998,14(4):88-92.
    [89]梁银丽,杨翠玲.不同抗旱型小麦根系形态与生理特性对渗透胁迫的反应[J].西北农业学报,1995,4(4):31-36.
    [90]史奕,邹邦基,陈利军,等.从施肥促进小麦根系活力看以肥调水的效果.见:旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:111-115.
    [91]高亚军,王喜庆,杜建军,等.施肥对提高水分利用效率的影响.见:旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:191-194.
    [92]杜建军,王朝辉,田霄鸿等.施肥对作物吸取转运利用土壤水分的影响.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995:182-186.
    [93]刘素华,李韵珠,綦雪梅,等.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996,1(5):67-73.
    [94] Taylor, H M. Gardner, H R. Penetration of cotton seeding Taproots as influenced by bulk dencity, moisture content and strength of soil[J]. Soil Sci.1963,96:153-156.
    [95] Taylor, H M. Hlepper, B. Rooting density and water extraction for corn[J]. Agron. J.1973, 65:965-968.
    [96] Jamison, V C. Changes in air-water relation-ships due to structural improvement of soils[J]. Soil Sci.1953,76:143-151.
    [97] Smith, G E. Soil fertility-the basis higher Crop production[J]..Bulletin Crops.1954,38:22-30.
    [98] Russell, J S. Nitrogen fertilizer and wheat in semiarid environment[J]. Aust.J.Exp.Agric.and An.Husb., 1967,7:453-462.
    [99] Brown, P L. Water use and soil water depletion by dryland wheat as affected by nitrogen fertilization[J].Agron.J., 1972,63:43-46.
    [100] Gregory, P J. Plant and management factors affecting the water use efficiency of Dryland Crops. In: Proceedings of the international conference on Dryland Farming.Challenge in Dryland Agriculture-A Global Perspective.Amarillo/Bushland.Texas.1988,171-175.
    [101] Brown, S C, Keatinge, Gregory, P J,et al. Effect of fertilizer,Variety and location on barley production under rain fed conditions in Northern Syria.I.Root and shoot growth. Field crops Res.,1987,16:53-66.
    [102] Borglaug N E, Dowswell C R. Feeding a human population that increasingly crowds a fragile planet [C].15th World Congress of Soil Science. Supplement to transactions. Acapulco, Mexico: International Society of Soil Science and Mexican Society of Soil Science, 1994, 10-16.
    [103]张乃凤,李家康.科学施用化肥,提高增产效益,降低农业成本[M].陈俊生主编.北京:中国农业出版社,1998.
    [104] Skinner R H, Radin J W. The effect of phosphorus nutrition on water flow through the apoplastic by pass in cotton roots[J].J Exp Bot.,1994,45:423-428.
    [105]王同朝,卫丽,吴克宁,等.地下水浅埋区水磷耦合对冬小麦的影响[J].节水灌溉,2004,(1):9-13.
    [106]关军锋,李广敏.施磷对限水灌溉小麦根冠及产量的影响研究[J].中国生态农业学报,2004,12(4):102-105.
    [107] Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen up take by plants: An important N uptake pathway[J]. Soil Biology and Biochemistry, 2005, 37: 413-423.
    [108]上官周平,李世清.旱地作物氮素营养生理生态[M].北京:科学出版社, 2004.
    [109] Adams M B, Campbell R G, Allen H L, et al. Root and foliar nutrient concentrations in loblolly pines: Effect of season, site, and fertilization[J]. For. Sci, 1987, 33: 984-996.
    [110] Urthy R, Dougherty P M, Zarnoch S J, et al. Effects of carbon dioxide fertilization, and irrigation on photosynthetic capacity of loblolly pine trees[J]. Tree Physiol, 1996, 16: 537-546.
    [111] Gough C M, Selier J R, Maier C A. Short-term effects of fertilization on loblolly pine (Pinus taeda L.) physiology[J]. Plant, Cell and Environment, 2004, 27: 876-886.
    [112] Amon. physiological principle of dryargland crop production[J]. In: Gupta, U.S. physiological aspects of dryland farming.1975,3:124.
    [113]程素云.施肥在提高旱作小麦水分生产效率中的作用[J].干旱地区农业研究,1987.
    [114]王立祥.西北黄土高原农田降水生产潜势及开发的研究[J].中国干旱农业科技资料选集.1983:54-61.
    [115]山仑.黄土高原水土流失区旱作农业的增产途径[J].水土保持通报,1981(1):33-41.
    [116]陈万金.中国北方旱地农业综合发展与对策[M].北京:中国农业出版社,1994,129-135.
    [117]黄正来,安徽农业大学学报,氮素供应对不同类型小麦品种籽粒产量和品质性状的影响[J]. 1999,26(4):414-418.
    [118] Strong W M. Effect of late application on the yield and protein in content of wheat.Aust JExp Agric Ani Husb, 1982,22:54-61.
    [119]王月福,于振文,李尚霞,等.土壤肥力和施氮量对小麦氮素吸收运转及籽粒产量和蛋白质含量的影响[J].应用生态学报, 2003,14(11):1868-1872.
    [120]徐恒永,赵振东,刘爱锋.氮肥对优质专用小麦产量和品质的影响Ⅱ氮肥对小麦品质的影响[J].山东农业科学), 2001(2):13-17.
    [121]崔振岭,石立委,徐久飞,等.氮肥施用对冬小麦产量、品质和氮素表观损失的影响研究[J].应用生态学报,2005,16(6):2071-2075.
    [122]董钻,谢甫绨.大豆氮磷钾吸收动态及模式的研究[J].作物学报,1996,22(1):89-95.
    [123]褚贵新,吕新,刘建国,等.冬小麦套作玉米作物氮磷吸收分配规律和施肥运筹[J].新疆农业科学,2000(5):199-202.
    [124]王贵平,张胜,王圣瑞,等.地膜覆盖对春玉米氮磷钾吸收累积和化肥利用率的影响[J].内蒙古农业大学学报,2000,21(5):157-161.
    [125]霍中洋,葛鑫,张洪程,等.施氮方式对不同专用小麦吸收及氮肥利用率的影响[J].作物学报,2004,30(5):449-454.
    [126]金继运,何萍.氮钾互作对春玉米生物产量及其组分动态的影响[J].玉米科学,1999, 7(4):57-60.
    [127]何萍,金继运,林葆,等.不同氮磷钾用量下春玉米生物产量及其组分动态与养分吸收模式研究[J].植物营养与肥料学报,1998,4(2):123-130.
    [128]李截然,李文雄.氮肥施用期对春小麦氮素利用率和蛋白质产量的影响[J].东北农学报,1991,22(30):205-215.
    [129]中国农业科学院土壤肥料研究所.中国肥料[M].上海科学技术出版社,1994:261-262.
    [130]张颖.不同产量类型春玉米养分吸收特点及其分配规律的研究[J].玉米科学,1997, 5(3):70-72.
    [131]赵俊晔,于振文,李延奇,等.施氮量对小麦氮磷钾养分吸收利用和产量的影响[J].西北植物学报,2006,26(1):98-103.
    [132]刘素华,李韵珠,黄元仿等.冬小麦水氮有效利用的研究[J].中国农业大学学报,1996, 1(5):67-73.
    [133] Keulen H. Van. Modelling the interaction of water and Nitrogen[A].In:JOHN MONTEYYH, COLIN WEBB. Eds. Soil water and nitrogen in mediterranean-type environments [C].1981:105-229.
    [134]华天懋,李昌纬,赵伯善等.不同肥料结构对旱地小麦土壤水分生产效率的影响[J].西北农业学报.1992,1(4):57-62.
    [135] Jerry L. Haffield, Thomas J. Sauer, John H. Prueger. Managing soils to achieve greater water use efficiency: a review[J]. A gronomy Journal. J .2001.93:271-280.
    [136]汪德水,程宪国.旱地土壤中的肥水激励机制[J].植物营养与肥料学报,1995,1(1):64-70.
    [137] Ravi,V, Lourduraj A C. Comparative performance of plastic mulching on soil moisture content, soil temperature and yield of rainfed cotton[J]. Madras Agric. J.1996.83:709-711.
    [138]汪德水,程宪国,姚晓哗等.半干旱地区麦田水肥效应研究[J].土壤肥料,1994, (6): 15-18.
    [139] Russel. J S. Nitrogen fetilizer and wheat in semiarid envionment[J]. Aust, J, Exp. Agric. andAn.Husb.1967(7):453-462.
    [140] Jensen L S, Christensen L, Mueller T, et al. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.) [J]. Plant and Soil, 1997, 190: 193-202.
    [141]李宝珍,范晓荣,徐国华.植物吸收利用铵态氮和硝态氮的分子调控[J].植物生理学通讯,2009,45(1):80-88.
    [142]陈子明.氮素产量环境[M].北京:中国农业出版社,1996.
    [143]朱兆良.中国土壤氮素[M].南京:江苏科学技术出版社,1992.
    [144] Benbi DK, Biswas CR. Nitrogen balance and N recovery after 22 years of maize-wheat-cowpea cropping in a long term experiments [J]. Nutrient Cycling in Agroecosystems, 1997, 47:107-114.
    [145] Vanfassen HG, Lebbink G. Nitrogen cycling in high-input versus reduced-input arable farming[J].Netherlands Journal of Agriculture Science, 1990, 38:265-282.
    [146]肖焱波,李文学,段宗彦,张福锁.植物对硝态氮的吸收及其调控[J].中国农业科技导报,2002,4(2):56-59.
    [147]韩晓日,郭鹏程,陈恩凤等.土壤微生物对施入肥料氮的固持及其动态研究[J].土壤学报,1998,35(3):412-418.
    [148] Jenkinson D S, Fox R H, and Rayner J H. Interactions between fertilizer nitrogen and soil nitrogen-The so-called‘priming’effect [J]. J. Soil Sci., 1985, 36: 425-444.
    [149] Jensen L S, Christensen L, Mueller T, et al. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.) [J]. Plant and Soil, 1997, 190: 193-202.
    [150] Vos G J M, Bergevoet I M J, Védy J C, et al. The fate of spring applied fertilizer N during the autumn-winter period: Comparison between winter-fallow and green manure cropped soil [J]. Plant Soil, 1994, 160, 201-213.
    [151]巨晓棠.冬小麦/夏玉米轮作体系中土壤-肥料氮的转化及去向(D).中国农业大学博士学位论文, 2000.
    [152] Glendining M J, Poulton P R, Powlson D S et al. Fate of 15N-labelled fertilizer applied to spring barley grown on soils of contrasting nutrient status [J]. Plant and Soil, 1997, 195: 83-98.
    [153] Smith K A, Elmes A E, Howard R S et al. The uptake of soil and fertilizer-nitrogen by barley growing under Scottish climatic conditions [J]. Plant Soil 1984, 76: 49-57.
    [154]陈培元,李英,陈建军,等.限量灌溉对冬小麦抗早增产和水分利用的影响.干旱地区农业研究,1992,10(1):48-53.
    [155] Evans J R, Seemann J R. The allocation of protein nitrogen in the photosynthetic apparatus: Costs, consequences, and control [A]. In: Briggs WR ed. Photosynthesis [C], New York: Alan R. Liss, Inc., 1989, 183-205.
    [156] Ghashagaie J and Saugier B .Effect of nitrogen deficiency on leaf photosynthetic response of tall fescue to water deficit. Plant Cell Eviron. 1989, 12:2 61-27.
    [157] Legg B J, Day W, Lawlor D W,et al. The effects of drought on barley growth: Models and measurements showing the relative importance of leaf area and photosynthetic rate. J Agric Sci. 1979,92:703-716.
    [158]刘桐华,唐鸿寿,余崖波.小麦光合午休的成因及缓解措施的研究[J].生态学报,1987,7(4):314-320.
    [159]薛青武,陈培元.土壤干旱条件下N素营养对旱地小麦叶片叶绿素和糖含量的影响及其产量的关系[J].植物生理学报,1990,16(1):49-56.
    [160]李卫民,周凌云.供N对旱作小麦环境适应性的影响[J].土壤通报,2002,33(6):414-416.
    [161]上官周平.N素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,1997, 3(2):105-109.
    [162]陈培元,李英,陈建军等.限量灌溉对冬小麦抗早增产和水分利用的影响.干旱地区农业研究,1992,10(1):48-53.
    [163]张岁歧,山仑.氮素营养对春小麦抗旱适应性及水分利用的影响[J].水土保持研究,1995,2(1):31-35.
    [164]张岁歧,山仑.磷酸营养对小麦抗早性的影响.见:汪德水早地农田肥水关系原理与调控技术研究.北京:中国国农业科学技术出版社.1995,155-160.
    [165]徐萌,山仑.不同水分条件下无机营养对春小麦水分状况和渗透调节的影响[J].植物学报,1992,34(8):596-602.
    [166] Boyer J S. Water deficits and photosynthesis. In: Koxlowski T T (ed), Water Deficits and Plant Growth III. Academic press, New york,1976,153-190.
    [129] Mengel K, KirKby E A. Principles of plant nutrition international potash nstitute[M]. Bern, Swizerland,1982.
    [168]南京农业大学.土壤农化分析(第二版)[M].北京;农业出版社,1996.213-218.
    [169]耿小红.玉米体内干物质积累与分配的动态比较[J].循环农业,2007,08:50-51.
    [170]董钻,谢甫锑.大豆氮磷钾吸收动态及模式的研究明.作物学报,1,996,22 (1):89 -95.
    [171]王贵平,张胜,王圣瑞,等.地膜覆盖对春玉米氮磷钾吸收累积和化肥利用率的影响[J].内蒙古农业大学学报,2000,21(5):157-163.
    [172]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化[J].中国农业科学,2003, 36(1):71-76.
    [173]张秋英,刘晓冰,金剑,等.水肥耦合对玉米光合特性及产量的影响[J].玉米科学,2001,9(2):64-67.
    [174]王志敏,赵明.作物栽培与生理学研究进展[M].北京:中国农业大学出版社,2003:611-618.
    [175]宁堂原,焦念元,李增嘉,等.施氮水平对不同种植制度下玉米氮利用及产量和品质的影响[J].应用生态学报,2006,17(12): 2332-2336.
    [176]潘庆民,于振文,王月福等.公顷产9000kg小麦氮素吸收分配的研究[J].作物学报,1999,25(5): 541-547.
    [177] Warrington R. Lost fertility,the production and loss of nitrate in soils. Transactions of the Highland and Agricultural Society of Sctland. 1905:1-35.
    [178]蔡柏岩,葛菁萍,祖伟.不同磷肥水平对大豆磷营养状况和产量[J].植物营养与肥料学报,2007,13(3):404-410.
    [179]袁新民,同延安,杨学云,等.施用磷肥对土壤NO3--N累积的影响[J].植物营养与肥料学报,2000,6(4):397-403.
    [180]张少民,郝明德,柳燕兰.黄土区长期施用磷肥对冬小麦产量、吸氮特性及土壤肥力的影响[J].西北农林科技大学学报(自然科学版),2007,35(7):159-163.
    [181]王启现,王璞,杨相勇,等.不同施氮时期对玉米根系分布及其活性的影响[J]..中国农业科学,2003,36(1):1469-1475.
    [182] Robert P, Durieux R P, Kamprath E J, Jackson W A, Moll R H. Root distribution of corn the effect of nitrogen fertilization [J]. Agronamy Joumal,1994,86:958-962.
    [183] Marschner H著.李春俭译.高级植物的矿质营养[M].北京:中国农业大学出版社,2001:355-356.
    [184]张岁岐,山仑.磷素营养和水分胁迫对春小麦产量及水分利用效率的影响[J].西北农业学报,1997,6(1):22-25.
    [185]周全来,赵牧秋,鲁彩艳,等.施磷对稻田土壤及田面水磷浓度影响的模拟[J].应用生态学报,2006,17(10):1845-1848.
    [186]江云,马友华,陈伟等.作物水分利用率的影响因素及其提高途径探讨[J].中国农学通报,2007,23(9):269-373.
    [187] Glendining M J, Powlson D S, Poulton P R, et al. The effects of long-term applications of inorganic nitrogen fertilizer on soil nitrogen in the Broadbalk wheat experiment [J]. J. Agric. Sci. (Camb.), 1996, 127, 347–363.
    [188] Sieling K, Brase T, Svib V. Residual effects of different N fertilizer treatments on growth, N uptake and yield of oilseed rape, wheat and barley [J]. Europ. J. Agronomy, 2006, 25: 40–48.
    [189] Bhan S, Misra D K. Efects of variety, spacing and soil fertility on root development in groundnut under acid condition. Indian J. A gric. Sci. 1970,40:1050-1055.
    [190] Gregory P J. Plant and management factors affecting the water use efficiency of Dryland Crops. P p: 171-175. In: Proceeding of the International Conference on Dryland Farmaing: Challenge in Dryland Agriculture-A Global Perspective. Amarillo/Bushland, Texas. 1988.
    [191] Sharme B R, Chaudhary T N,wheat root growth, gain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sand[J]. Agriculture water management,1983, 6:365- 373.
    [192]宋海星,李生秀.水、氮供应和土壤空间所引起的根系生理特性变化[J].植物营养与肥料学报2004,10(1):6-11.
    [193]杜建军,田青鸿,王朝辉,等.根系吸收养分水分的作用以及以肥促根的效应[A].汪德水.旱地农田肥水关系原理与调控技术[C].北京:中国农业科技出版社,1995,106-109.
    [194] Russel R S. Plant Root System; Their Functions and Interaction with the Soils [M] London, McCraw-Hill Book Company(UK) Ld., 1977.166.
    [195]袁永慧,邓西平.生物节水中的补偿效应与根系调控研究[J].中国农业科技导报,2003,5(6):24-28.
    [196]刘庚山,郭安红,任三学等.人工控制有限供水对冬小麦根系生长及土壤水分利用的影响[J].生态学报,2003,23(11):2342-2352.
    [197]刘厚诚,邝炎华.植物对营养胁迫的生理生化反应研究进展[J]华南农业大学学报,1998, 19(4):118-122.
    [198]杨根平,王韶唐.渗透胁迫对小麦幼苗根系呼吸的影响[J].植物生理学报,1989,15(2):179- 182.
    [199]曹翠玲,李生秀.水分胁迫和氮素有限亏缺对小麦拔节期某些生理特的性的影响[J].土壤通报, 2003,34(6):505-509.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700