用户名: 密码: 验证码:
脂肪酶的固定化及在离子液体中催化合成生物柴油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油是以动植物油脂为原料制造的可再生能源,可作为石油柴油的替代或部分替代燃料。生物柴油的发展不仅有利解决能源短缺问题,而且可以减少温室气体的排放量。通过对桐油的理化指标的检测分析,陕南桐油的主要理化指标为:酸值3.6601mgKOH.g~(-1),过氧化值4.428mol.L~(-1),磷脂含量40.634mg.Kg~(-1),碘值167.2g/100g,皂化值191.6mgKOH.g~(-1),不皂化值0.1502mgKOH.g~(-1),挥发物含量25℃下在0.2%以内,相对密度0.9365,折射率1.5193,粘度200.4mpa.s。
     陕南桐油主要脂肪酸组成为:棕榈酸3.51%,亚麻酸15.61%,油酸3.58%,亚油酸1.75%,桐酸73.81%,硬脂酸1.74%。采用热重分析仪对陕南桐油基生物柴油的热解特性进行实验研究。结果表明,桐油基生物柴油热解行为与石化柴油相似,从此角度桐油适于作为生物柴油的生产原料。
     为了消除粗脂肪酶中杂质对固定化的影响,对Candida antarctica脂肪酶(CAL)在双水相中的分配情况进行了研究,考察了温度、PEG分子质量、NaCl浓度和(NH_4)_2SO_4浓度对分配系数(K_(CAL))的影响,结果表明:温度对K_(CAL)影响不大;低分子质量PEG与蛋白质的疏水作用可促进CAL的分配;两相间电势差等对分配平衡有较大影响;在PEG2000/(NH_4)_2SO_4)双水相体系中,CAL最佳的萃取分离条件为:室温下,20%PEG2000、12%(NH_4)_2SO_4、1.5%NaCl,此时,K_(CAL)=8.16,CAL回收率Y_(CAL)(%)=91.6%。
     探讨了大孔载体吸附固定化脂肪酶的机理及其热力学性质。选取4种不同载体(NW-ZT1、NW-ZT2、NW-ZT3、NW-ZT4),通过氮气低温吸附法对载酶载体的孔径分布情况进行分析,对吸附-交联法制备固定化脂肪酶的工艺条件进行考察。发现NW-ZT2为最适的固定化载体,其最佳固定化条件为:给酶量1400-1600ug.ml~(-1),戊二醛浓度为0.05%(V/V),缓冲液pH7.5,吸附温度30~℃,吸附时问10h。NW-ZT2载体为南极假丝酵母脂肪酶理想的吸附固定化载体。反应过程中,酶的脱落是造成固定化脂肪酶活性大大下降的一个直接原因。吸附同时用戊二醛交联,可以起一定加固脂肪酶的作用。
     用硅胶-PEG键合物修饰-偶联固定化脂肪酶。经红外光谱图(FT-IR)分析证明偶联最终形成了硅胶-PEG-脂肪酶固定化酶。同时对两种固定化脂肪酶在最适温度和最适反应pH方面的变化,以及它们的热稳定性和操作稳定性进行了探讨,结果表明修饰-偶联固定化脂肪酶(Limczyme)比吸附-交联法固定化脂肪酶(Liaclzyme)的各方面性能要优,两种方法固定化的脂肪酶均可有效地应用于催化反应中。
     由于离子液体具有不挥发、不可燃、导电性强、热容大、蒸气压小、性质稳定等优良性质,对许多无机盐和有机物有良好的溶解性。很多酶在离子液体中具有良好催化性能。通过对反应温度和反应时间的考察,确定按1:1加入氯代正丁烷与N-甲基咪唑,反应温度为75℃,反应时间为54h,此时的反应产物[BMIM]Cl得率为83.9%;第二步反应中,采用间歇微波辐射加热法合成[BMIM][BF_4],每加热15s,取出在磁力搅拌器上搅拌30s。最终确定加热反应总时间为105s,[BMIM]Cl与NaBF_4的摩尔比率为1.1:1,[BMIM][BF_4]相对于N-甲基咪唑的得率为86.3%。核磁波谱分析结果均证实且相互映证了所得产物确实为[BMIM][BF_4]。
     通过条件优化,得到Limczyme催化桐油利用酯交换反应制备生物柴油的最佳工艺参数:以[BMIM][BF_4]为反应介质,pH=7.5,反应温度40℃,含水量10%,固定化脂肪酶Limczyme用量5%,摇床转速应200rpm,反应时间48小时,双底物甲醇与桐油的醇油比应保持在1.0,采用分步添加的方式,提出了在此酯交换反应中甲醇添加的“酯交换反应的塔板现象”。
     Limczyme制备生物柴油的动力学符合双底物的乒乓Bi Bi机制的醇抑制机制。所得动力学方程为去:(?),其中最大反应速度V_(max)=1.76×10~(-3)mol.m_~(-3).min~(-1).g~(-1),桐油的米氏常数aK_(ml)=0.5738mol.m~(-3),甲醇的米氏常数K_(m2)=1.3746mol.m~(-3),甲醇的抑制常数K_(iMe)=0.2025mol.m_(-3)。
Biodiesel,a renewable, biodegradable, nontoxic and cleaning fuel, is made from plant oil or animal oil,is expected as a part of substitute for conventional fossil diesel. Biodiesel could have advantanges of solving energy crisis and reducing the emission of Greenhouse Gas.Respectively,tung oil from the south of Shaanxi province was assayed by chemical analysis technologe, its compositions of fatty acid was discovered with gas chromotography, and the behaviors of its thermal mass loss was investigated by thermogravimetry.As results, the main physical and chemical indexes of Tung oil were acid value 3.6601 mgKOH.g~(-1), iodine value 167.2g.100g~(-1),saponification number 191.6mgKOH.g~(-1),paroxide value 4.428mol.L~(-1).Gas chromatograpy analysis showed that the fatty acids of Tung oil consisted of hexadecanoic acid 3.51%, linolenic acid 15.61%, linoleic acid 3.58%, oleic acid 1.75%, eleostearic acid 73.81%, stearic acid 1.74%.
     Biodiesel from Tung oil was researched on the thermogravimetry property.The experimental results showed that the effects of different heating rates were indistinct for pyrolysis. At the same time,I found that Tung oil was the better materials for preparation biodiesel than the others.
     The partition behavior of Candida antarctica lipase (CAL) in aqueous two phase system(ATPS) was investigated. Respectively,temperature, molecule mass of polyethylene glycol(PEG),the concentration of NaCl and the concentration of ammonium sulfate were studied.The results showed that in ATPS, temperature was unimportant for partition coefficient of CAL (L_(CAL)),while the electric potential difference between top and bottom phase was important. It was also discovered that the less the molecule mass of PEG was, the more favorable conditions for the CAL congregation into the phase because of the increased hydrophobicity were formed. Under the room temperature, the optimized extraction conditions were as follows: 20% PEG, 12% (NH_4)_2SO_4,1.5%NaCl, and K_(CAL) was 81.6, the recovery rate of CAL was 91.6%.
     To study on mechanism of Candiada antartica lipase immobilized with macroporous carriers by adsorption.For four different carriers (NW-ZT2, NW-ZT3, NW-ZT4, NW-ZT1), their pore size distributions were investigated with the auto-absorption instrument by nitrogen low tempera -ture adsorption method. The behavior of lipase immobilized was researched by adsorption & cross-linking method, and immobilization lipase mechanism has been studied.NW-ZT2 should be the best carrier among these four carriers., and it's optimal conditions for immobiliza -tion: the amount of lipase 1400-1600ug/ml, glutaraldehyde concentration of 0.05% (V/V), buffer pH7.5, adsorption temperature 30℃,adsorption time 10h.We found that NW-ZT2 carrier was an ideal carrier for immobilizing Candiada antartica lipase by absorption. During the reaction processes with immobilization lipase as catalyzer, the loss of immobilization lipase activity was caused by lipase falling off the carrier. At the same time, we found it could play a role in strengthening lipase that lipase immobilized by absorption & cross-linked with NW-ZT2 and glutaraldehyde.
     In this paper, Candida antarctica lipase was immobilized by absorption & cross-linked method with NW-ZT2 and modified-conjugation method with silica gel-PEGThe final product silica gel-PEG-lipase(named Limczyme) was proved by analyzing IR spectrums.We have studied the optimum pH value, the optimum temperature, the thermo-stabilities and operational stabilities for two kinds of immobilized lipase.The study results show that the silica gel-PEG-lipase was better than the immobilized lipase by adsorption-cross-linked (named Liaclzyme), and both of them were efficient for transesterification reactions.
     There are some advantages for ionic liquids with non-volatile, non-combustible, electrical conductivity, big heat capacity, and small vapor pressure, stabilities and good solubility for many inorganic and organic compounds. Enzymes in ionic liquids have good catalytic properties.By inspecting the reaction temperature and reaction time,(?) determined the molar ratio 1:1 for chlorophthalic add n-butane and N-methyl imidazole,and reaction temperature was 75℃,reaction time was 54h, the reaction products(FAMEs) yield was 83.9% in [BMIM]C1; For the second step reaction, using intermittent microwave irradiation heating method to prepare [BMIM][BF_4],each heating 15s, stirring 30s with the magnetic stirrer after stopping heating.Finally,the total reaction time of heating 210s, [BMIM] Cl with NaBF_4 the molar ratio of 1.1:1,the yield of [BMIM][BF_4] based on the N-methyl imidazole was 86.3%. With Magnetic Resonance Spectroscopy,the results of the analysis confirmed that the end product was indeed [BMIM][BF_4].
     Optimizing reaction conditions, I obtained the best technology parameters of preparation biodiesel from Tung oil using Limczyme as catalyzer by transesterification reaction: [BMIM] [BF_4] as reaction medium, pH7.5, reaction temperature 40℃,water content of 10%, immobilized lipase Limczyme amount of 5%, shaker speed of 200rpm, reaction time of 48 hours. As double substrates, the molar ratio of methanol to Tung oil should be maintained at 1.0, used to add methanol approach step by step,named "transesterification sieve plate theory".
     The kinetic of Limczyme catalyzed preparation of biodiesel was consistent with the double substrates Ping-Pong Bi Bi mechanism of alcohol inhibition mechanism. Kinetic equationobtained was (?),and the largest reactionrate V_(max)=1.76×10~(-3)mol.m~(-3).min~(-1).g~(-1),the Michaelis constant Tung oil aK_(m1)=0.5738mol.m~(-3), the Michaelis constant of methanol K_(m2)=1.3746mol.m~(-3),methanol inhibition constant K_(iMe)= 0.2025mol.m~(-3).
引文
[1] 闵恩泽.发展我国生物柴油产业的机遇和对策[c].中国工程院化工、冶金材料学部第五届学术会议论文.2005.博螯.
    [2] 中油期货.2006-02-13.
    [3] 顾定槐.生物能源缺少统一的国标[N].中国化工报,2006-07-04.
    [4] 梁斌,闵恩泽,利用两部可再生资源发展生物柴油产业,四川大学学报(工程科学版),Vol.38 No.5 sept.2006
    [5] EPA.A comprehensive analysis of biodiesel impacts on exhaust emissions:draft technical report[R].EPA420-P-02-001,2002.
    [6] Bradsher K.Air Pollution rises with China'S Growth,Heraid Tribune,October 22,2003.
    [7] 姚专、侯飞,粮食与食品工业,Vol.13,2006,No.4 p:34-37
    [8] 钱伯章,朱建芳,生物燃料生产与技术发展,当代化工,2005,34(6):361-365.
    [9] Wendy Wen, Biodiesel production and consumption in China,Conference proceedings China Biofuels and Ethanol Outlook 2005
    [10] 张余延,脂肪酸及其深加工手册,化学工业出版社,北京,2002.
    [11] 谭晓风,油桐的生产现状及其发展建议,经济林研究,2006,24(3):62-64.
    [12] Kinabrew ,R G. In Tung Oil in Mississippi ,The Competitive Position Of the Industry [J].University of Mississippi:MS,1952.
    [13] 朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势[J].化工时刊,2004,18(1):23-27
    [14] 忻耀年.生物柴油的发展现状和应用前景[J].中国油脂,2005,30(3):49-54.
    [15] Miguel V, Trubiano G, Perez G, Borio D O,Errazu A F. 2001. Kinetic analysis of enzymatic esterification of fatty acids and ethanol. Stud Surf Sci Catal;133:619-24.
    [16] Perez G. 2003.Analysis of enzymatic alcoholisis reaction with vegetables oils. Master thesis, February.
    [17] Ma F. Hanna MA. Biodiesel production: a review. Bioresource Technol.,1999;70:l-15.
    [18] Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils.J Biosci Bioeng.,2001;92(5):405-16.
    [19] Barnwal BK, Sharma MP. Prospects of Biodiesel production from vegetable oils in India. Renew Sust Energy Rev.,2005;9(4):363-78.
    [20] Miguel V, Trubiano G. Perez G, Borio D O,Errazu A F. Kinetic analysis of enzymatic esterification of fatty acids and ethanol. Stud Surf Sci Cata.,l 2001:133:619-24.
    [21] Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sust Energy Rev., 2000;4:111-33.
    [22] Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel production from waste cooking oil:1.Process design and technological assessment. Bioresource Techno.,l 2003;89:l-16.
    [23] Freedman B, Pryde EH, Mounts TL. Variables affecting the yields of fatty esters from transesterified vegetable oils.JAOCS, l984;61(10):1638-43.
    [24] Noureddini H, Zhu D. Kinetics of transesterification of soybean oil. JAOCS.,1997;74(11):1457-63.
    [25] Freedman B, Butterfield R, Pryde E. Transesterification kinetics of soybean oil. JAOCS., 1986;63(10):1375 - 80.
    [26] Mittelbach M, Tratnigg B. Kinetics of alkaline catalyzed methanolysis of sunflower oil. Fat Sci Technol 1990;92(4):145-8.
    [27] Darnoko D, Cheryan M. JAOCS 2000;77( 12): 1263-7.
    [28] Harrington KJ, D A rcy-Evans C. Ind Eng Chem Prod Res Dev., 1985;24:314.
    [29] Stern R, Hillion G, Eur P. Appl EP 1990;356:317 [Cl.C07C67/56];Stern R, Hillion G,Eur P.Chem Abstr 1990:113:P58504k.
    [30] Aksoy HA, Kahraman I,Karaosmanoglu F,Civelekoglu H. JAOCS.,1988,65:936-8.
    [31] Jackson.M.A. and J.W. King. 1997. Lipase-Catalyzed Glycerolysis of Soybean Oil in Supercritical Carbon Dioxide.JAOCS 74(2):103-106.99. Jager,H.2002. Oils a nd Fats In Life. S(?)FW-Journal.,128:2-6.
    [32] Oliveira. J.V. and D. Oliveira. 2006. Kinetics of the Enzymatic Alcoholysis of Palm Kernel Oil in Supercritical CO2.Ind. Eng. Chem.Res.,39: 4450 -4454.
    [33] Srivastava. S.. J.Modak. and G. Madras. 2002. Enzymatic Synthesis of Flavors in Supercritical Carbon Dioxide.Ind.Eng. Chem.Res.,41:1940-1945.
    [34] Perez G. Analysis of enzymatic alcoholisis reaction with vegetables oils. Master thesis, February 2003.
    [35] Nelson LA, Folgia TA, Marmer WN. JAOCS 1996;73(8):1191-5.
    [36] Shimada Y, Watanabe Y. Sugihara A,Tominaga Y. J Mol Catal B:Enzymatic, 2003;17:133-42.
    [37] Perez G. 2003.Analysis of enzymatic alcoholisis reaction with vegetables oils. Master thesis, February.
    [38] Pirozzi,D.2003. Improvement of Lipase Stability in the Presence of Commercial Triglycerides. Eur. J. LipidSci.Technol.,105(11):608 613 169.
    [39] From, M., P. Adlercreutz,and B. Mattiasson. 1997. Lipase Catayzed Esterification of Lactic Acid. Biotechnology Letters., 19(4): 315-317
    [40] Wu, X.Y.. S. Jaaskelainen, and Y. Linko. 1996. An Investigation of Crude Lipases for Hydrolysis. Esterification, and Transesterification. Enzyme and Microbial Technology.,19: 226-231.
    [41] 孙君社,江正强,刘萍.酶与酶工程及其应用.北京:化学工业出版社.2006,10(3):85-93
    [42] Kazuhiro B,Shinji H.Repeated use of whole-cell biocatalysis immobilized within biomass support particles for biodiesel fuel production-Journal of Molecular Catalysis B:Enzymatic.,2002,17:157-165
    [43] Gryglewicz,S.,E.Jadownicka,and A. Czemiak. 2000. Lipase Catalyzed Synthesis of Aliphatic, terpene, and Aromatic Esters by Alcoholyis in Solvent-free Medium. Biotechnology Letters .,22: 1379-1382
    [44] Nelson. L.A., T.A. Foglia, and W.N. Marmer.1996.Lipase-Catalyzed Production of Biodiesel.. JAOCS 73(8):1191-1195
    [45] Hadzir.N.M.. M. Basri, M.BA. Rahman, C.N.A Razak,R.N.Z.A Rahman, and A.B Saleh.2001. Enzymatic Alcoholysis of Triolein to Produce Wax Ester. J. Chem Technol Biotechnol.,76:511-515.
    [46] Soumanou, M.M. and U.T.Bornscheuer. 2003. Lipase-catalyzed Alcoholysis of Vegetable Oils. Eur.J.Lipid Sci.Technol.,105:656-660.
    [47] Pu, W., Y. Li-Rung, and W. Jian-Ping. 2001. Immobilization of Lipase By Salts and The Transesterification Activity in Hexane. Biotechnology Letters., 23:1429-1433.
    [48] Nelson. L. A.. Foglia,A.,and Marmer, W. N. 1996. Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Sot... 73,1191-1195.
    [49] TAN Tian-Wei,GAO Yang et.al,Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media,Chin J Biotech.,2006,22(1):114-118.
    [50] Srivastava,S.,J.Modak,and G.Madras. 2002. Enzymatic Synthesis of Flavors in Supercritical Carbon Dioxide.Ind.Eng. Chem. Res.41:1940- 1945.
    [51] Kragl.U..M. Eckstein,and N. Kaftzik. 2003. Biocatalytic Reaction in Ionic Liquid. In Ionic Liquids in Synthesis (editor:P. Wassercheid and T. Welton. WILEY-VCH Verlag GmbH & Co. KgaA.Weinheim.336-347.
    [52] Lau,R.M.. F. van Rantwijk, K.R. Seddon, and R.A. Sheldon. 2000. Lipase-Catalyzed Reactions in Ionic Liquids.Organic Letters 2(26):4189- 4191.
    [53] Lozano, P., T. De Diego, D. Carrie, M. Vaultier, and J.L.Iborra.2001.Over-stabilization of Candida antartica Lipase Bby Ionic Liquids in Ester Synthesis. Biotechnology Letters 23:1529-1533.
    [54] Kondo, A., Liu, Y.. Furuta,M.,Fujita,Y.,Matsumoto, T., and Fukuda,H. 2000: Preparation of high activity whole cell biocatalyst by permeabilization of recombinant flocculent yeast with alcohol. Enzyme Microb. Techuol 27, 8068 11.
    [55] Du W,Xu Y Y,Liu D H,et al.Comparative study on lipase-catalysed transesterification of soya bean oil for biodiesel production with different acyl acceptors[J]. Journal of Molecular Catalysis B:Enzymatic.,2004,30:125-129.
    [56] Xu Yuanyuan.Du Wei.Liu Dehua. Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor[J]. Journal of Molecular Catalysis B: Enzymatic.2005.32:241-245.
    [57] Modi M K,Reddy J R C.Rao B V S K,et al. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor[J]. Bioresource Technology,2007,98:1260-1264
    [58] Andrea Salis,Marcella Pinna,Maura Monduzzi.et al,Biodiesel production from triolein and short chain alcohols through biocatalysis[J].Journal of Biotechnology,2005,119:291-299.
    [59] Abigur R D.Vadia P O,Foglia T A,et al.Lipase-catalyzed production of biodiesel fuel from some nigerian lauric oils[J].Biochemical Society Transactions,2000,28(6):919-981.
    [60] Watanabe, Y., Y. Shimada, A. Sugihara, H.Noda,H.Fukuda,and Y.Tominaga. 2000. Continuous Production of Biodiesel Fuel from 子Vegetable Oil Using Immobilized Candida Antarctica Lipase. JAOCS 77(4): 355-360.
    [61] De B K,Bhattacharyya D K.Band C. Enzymatic synthesis of fatty alcohol esters by alcoholysis[J]. J. Am Oil Chem.Sot.,1999,76,451-453.
    [62] Watanabe, Y., Y. Shimada,A. Sugihara,and Y. Tominaga. 2001.Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fixed-Bed Bioreactor. JAOCS 78(7): 703-707.
    [63] Samukawa T,Kaieda M,Matsumoto,et al. Pretreatment of immobilized cundidu antarctica lipase for biodiesel fuel production from plant oil[J].J.Biosci. Bioeng..2000,90:180-183.
    [64] Lee, K.T.,T.A. Foglia, and K.S.Chang. 2002. Production of Alkyl Esters as Bio Diesel from Fractionated Lard and Restaurant Grease.JAOCS 79(2):191-195.
    [65] Du, W, Y. Xu, and D. Liu. 2003. Lipase-catalyzed TransesterifIcation of Soya Bean Oil for Biodiesel Production During Continuous Batch Operation. Biotechno/. AppL.BiocheM.38:103-106.
    [66] Jackson, M.A. and J.W. King. 1997. Lipase-Catalyzed Glycerolysis of Soybean Oil in Supercritical Carbon Dioxide.JAOCS 74(2):103-106.99. Jager. H. 2002. Oils and Fats In Life.S(?)FW-Journal 128:2-6.
    [67] Oliveira, J.V. and D. Oliveira.2006.Kinetics of the Enzymatic Alcoholysis of Palm Kernel Oil in Supercritical CO2.Ind Eng. Chem. Res. 39: 4450-4454.
    [68] Mittelbach,M.1990:Lipase catalyzed alcoholysis of sunflower oil. J. Am. Oil Chem. Sot., 67. 1688170.
    [69] Abigor, R, Uadia,P., Foglia,T., Haas. M.. Jones, K., Okpefa,E., Obibuzor, J., and Bafor, M. 2000: Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochem. Sot. Trans., 28,979-981.
    [70] Shimada,Y., Sugihara,A., Nakano, H., Kuramoto, T., Nagao, T.. Gemba,M., and Tominaga,Y.1997: Purification of docosahexaenoic acid by selective esteritication of fatty acids from tuna oil with Rhizopus delemur lipase. J. Am. Oil Chem.Sot.,74,97-101.
    [71] Shimada,Y., Sugihara,A.,Minamigawa,Y.,Higasbiyama,K.,Akimoto, K., Fujikawa,S.,Komemushi, S., and Tominaga,Y.1998: Enzymatic enrichment of arachidonic acid from Mortierella single-cell oil. J. Am. Oil Chem. Sot.. 75.1213-1217.
    [72] Abigur. R.D., P.O. Vadia,T.A. Foglia,M.J. Haas, K.C.Jones, E.Okpefa,J.U. Obibuzur, and M.E. Bafor. 2000.Lipase-Catalyzed Production of Biodiesel Fuel from Some Nigerian Lauric Oils.Biochemical Society Transactions 28(6):979-981.
    [73] De, B. K., Bhattacharyya.D.K..and Band& C.1999: Enzymatic synthesis of fatty alcohol esters by alcoholysis. J. Am Oil Chem. Sot., 76,451-453 .
    [74] Li L L,Du W,Liu D H,et al. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium[J]. Journal of Molecular Catalysis B: Enzymatic,2006,43:58-62
    [75] P. Walde, P.L. Luisi,1989.A continuous assay for lipases in reverse micelles based on Fourier transform infrared spectroscopy, Biochemistry 28:3353-3360.
    [76] R.E. Riter.D.M.Willard, N.E. Levinger.1998.Water immobilization at surfactant interfaces in reverse micelles, J. Phys.Chem. 102:2705-2714.
    [77] R.E. Riter, E.P.Undiks, J.R. Kimmel, N.E. Levinger,1998.Formamide in reverse micelles: restricted environment effects on molecular motion. J. Phys.Chem.B 102:7931-7938.
    [78] Y. Yamada. R. Kuboi, I. Komasawa, 1994.Extraction of enzymes and their activities in AOT reverse micellar systems modified with nonionic surfactant,J.Chem. Eng. Jpn. 27:404-409.
    [79] M.M.R. Talukder,Y.Hayaohi.2003.Activity and Stanbility of Chromobacterium viscosum lipase in modified AOTreverse micelles. Journal of Molecular Catalysis B: 22:203-209.
    [80] Muhammad Moniruzzaman.Yoshishigo Hayashi.2006.Effect of aprotic solvents on the enzymatic activity of lipase in AOT reverse micelles.Biochimical Engineering Jounal,30:237-244.
    [81] Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K... Kondo, A.. Shimada, Y., Noda, H., and Fukuda. H. 2000:Pretreatment of immobilized Cundidu antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng., 90,180-183.
    [82] Wei Du, Yuan-Yuan Xu, De-Hua Liu, Ze-Bo Li. 2005. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production.Journal of Molecular Catalysis B: Enzymatic 37:68-71.
    [83] Shimada, Y.. Watanabe, Y., Samukawa, T., Sugibara. A., Noda, IL, Fukuda,I-I.,and Tominaga, Y.1999: Conversion of vegetable oil to biodiesel using immobilized Cundidu untarcticu lipase. J. Am. Oil Chem. Sot., 76,789-793.
    [84] Kragl,U.,M. Eckstein, and N. Kaftzik.2003 Biocatalytic Reaction in Ionic Liquid. In Ionic Liquids in Synthesis (editor:P. Wassercheid and T. Welton. WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim.336-347.
    [85] Lau, R.M., F. van Rantwijk,K.R. Seddon, and R.A. Sheldon. 2000. Lipase-Catalyzed Reactions in Ionic Liquids.Organic Letters 2(26):4189-4191.
    [86] Lozano, P., T. De Diego, D. Carrie, M. Vaultier, and J.L.Iborra.2001. Over-stabilization of Candida antartica Lipase Bby Ionic Liquids in Ester Synthesis. Biotechnology Letters 23:1529-1533.
    [87] Sung Ho Ha,Mai Ngoc Lan.Sang Hyun Lee.et al.Lipase-catalyzed biodiesel production from soybean oil in ionic liquids[J]. Enzyme and Microbial Technology,2007,41:480-483
    [88] 刘鹰.离子液体在催化过程中的应用,北京:化学工业出版社,2008.2:5-6.
    [89] 罗贵民,酶工程(第2版).北京:化学工业出版社,2008.4:128.
    [90] Maruyama T, Nagasawa S, Goto M. Biotechnol. Lett. ,2002.24: 1341-1345
    [91] Kaar J L,Jesionowski A M.Berberieh J A,Moulton R,Russell A J,Impact of ionic liquid physical properties on lipase activity and stability,Jurnal of the American Chemical Society,2003.125( 14):4125-131)
    [92] 夏咏梅.吴红平,张阴等,离子液体的制备及其在酶催化中的应用,化学进展,2006,18(12):1660-1667.
    [93] Seddon K P.Lau R M.Rantwijk F, et al.[J].0rgun.Lett.,2000,2:4189-4191.
    [94] Kaar J L,Jesionowski A M.Berberich J A.et al.Impact of ionic liquid physical properties on lipase activity and stability[J].J Am Chem Soc,2003,125(14):4125-4131.
    [95] 袁毅,白姝,姜晓妍等.离子液体中酶催化反应的研究进展,化工进展,2005,24(7):710-717.
    [96] Schofer S H.Kaftzik N,Wasserscheid P,et al.[J].Chem.Commun.,2001,(5):425-426)
    [97] Park S.Kazlauskas R J.[J].Org.Chem.,2001,66:8395-840l.
    [98] Persson M ,Bomscheuer U T.Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents.Journal of Molecular Catalysis B:Enzymatic,2003,22(1):21-27.
    [99]Seddon K P,Lau R M.Rantwijk F, et al.[J].0rgun.Lett.,2000.2:4189-4191.
    [100] Bomseheuer U T.Persson M,Increased stability of an esterase from Bacillussterarothermophilus in ionic liquids as compared to organic solvents,Journal of Molecular Catalysis B:Enzymatic,2003,22(1-2):21-27.
    [101] Lau R M.Van Rantwijk F,Seddon K R,et al.Organ Lett,2000,2(26):4189-4191.
    [102] Nara S J.Hariani J R.Salunkhe M M.Tetrahedron Lett,2002,43(16):2979-2982.
    [103] Lazano P. De Diego T. Carrie D. Michel V. Iborra J.L.Biotechnol.Lett, 2001,23:1529.
    [104] Rerberich J A . Kaar J L, Russel A J.Biote, Prog.[J].,2003,19:1029-1032.
    [105] Eekstein M.Sesing M,Kragl U.Adlerereutz P.At low water activity alPha-ehymotrypsin is more active in an ionic liquid than in non-ionic organic solvents,Biotechnology,Letters, 2002.24(11):867-872.
    [106] 谭晓风.油桐的生产现状及其发展建议,经济林研究,2006.24(3):62-64.
    [107] Srivastava A,Prasad R,Triglycerides-based diesel fuels.Renew Sustain Energy. 2000,4:111-144.
    [107] Srivastava A,Prasad R,Triglycerides-based diesel fuels.Renew Sustain Energy. 2000.4:111-144.
    [108] Wardle DA.Global sale of green air travel supported using biodiesel.Renew Sustain Energy,2003,7:1-64.
    [109] Goodrum JW,Volatility and boiling points of biodiesel from vegetable oils and tallow.Biomass Bioenergy. 2002, 22:205-16.
    [110] Ma F.Hanna MA.Biodiesel production:a review.Bioresource Technol. 1999,70:1-15.
    [111] Aline F.Bezerra,Valter J.Fernandes Jr..Antonio.Souza,Thermoanalytical characterization of castor oil biodiesel, Phsical& chemical [J] 2007,11:964-975.
    [112] 于文景,于平.油脂制取加工技术、工艺流程、质量检测与生产管理、包装储藏实务大全[M],北京:金版电子出版公司,2000:1308-1373,1412-1463.
    [113] 姜利寒,非均相固体碱催化剂用于酯交换反应研究,四川大学硕士学位论文,四川大学化工学院,2006.
    [114] 马俊林,郭俊宝,徐广辉等.大豆油制备生物柴油的工艺探索,可再生能源,126(2):35-37.
    [115] 何东平,油脂精炼与加工工艺学[M],北京:化学工业出版社,2005.4:251,327-328.
    [116] 陈爽,郭庆杰,王志奇,刘会娥,含油污泥热解动力学研究,中国石油大学学报(自然科学版),2007, 31(4): 116-120.
    [117] Robert H.Essenhigh,Mahendra K.Misra.Autocorrelations of kinetic parameters in coal and char reactions.Energy and Fuels,1990,4(2):171-177.
    [118] Bradford M A. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein: the Principle of Protein-dye Binding. Anal Biochemistry, 1976. 72: 248-255.
    [119] 谢涛等:PEG/(NH4)2SO4双水相体系萃取甘草中的有效成分,化学研究与应用,2005,17(2):230-232.
    [120] 国家药典委员会,中华人民共和国药典,三部[M].北京:化学工业出版社,2005.附录32.
    [121] Georgina Bassani,et.al, Porcine pancreatic lipase partition in potassium phosphate-polyethylene glycol aqueous two-phase systems. Journal of Chromatography B, 2007, 859:222-228.
    [122] R.Lumry.L.Rajender.Biopolymer,1970,9:1125.
    [123] A. Haghtalab, B. Mokhtarani, G. Maurer, J. Chem. Eng. Data 2003, 48:1170.
    [124] J. Lee, L. Lee,J.Biol. Chem. 1981,256:625.
    [125] 严希康,生化分离工程,北京:化学工业出版社,2001,177.
    [126] 苏拔贤.生物化学制备技术[M].北京:科学出版社,1998.78.
    [127] 赵水芳.生物化学技术原理及其应用[M].武汉:武汉大学出版社,1994.44.
    [128] 苏拔贤,生化制各技术,北京:科学出版社,1998:78.
    [129] 徐坚.王玉军,骆广生.戴袱元,膜材料的亲疏水性对固定化脂肪酶的影响.高校化学工程学报,2006,20(3):0395-0341.
    [130] Funda Yagiz,Dilek Kazan.Nilgun Akin A. Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites [}].Chemical Engineering Journal, [2007-03-24](http: //www.elsevier.com/locate/procbio.)
    [131] Bradford M A. Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein: the Principle of Protein-dye Binding [J]. Anal Biochemistry, 1976. 72: 248-255.
    [132] 彭密军,钟世按,周春山等.大孔吸附树脂分离纯化杜仲中活性成分[J].离子交换与吸附,2004, 20(1): 13-22.
    [133] 美国康塔仪器公司,康塔NOVAWin2(2.1版)操作手册[Z].2003.
    [134] 顾惕人,李外郎,马季铭等,表面化学[M].北京:科学出版社,2001.
    [135] Crit tenden J C,Sanongraj S, Bulloch J L, Hand D W,Rogers T N,Spet h T F,Ulmer M. Correlation of aqueous-phase adsorption isot herms. Envi ron. Sci. Technol, 1993,33:2926-2933.
    [136] Gregory F P, Nadine N P,Yuko N, Michael L S. Adsorption of nonpolar solute onto neutral polymeric sorbent s. Sep. Sci. & Technoll, 1989 , 24 (5 &6): 457-465.
    [137] Peng Li-feng, TanTianwei. Study on membrane immobilization of porcine pancreas lipase.China Oils and Fats (China).2000, 1:8-61.
    [138] Cao L Q. Carrier Bound Immobilized Enzyme : Principle,Application and Design. Weiheim: Wiley VCH, 2005.57, 62、178、450.
    [139] 温燕梅,邱彩虹,湛江海洋大学学报[J].2001,21(4):42-46.
    [140] 石家骥、崔福绵,中国抗生素杂志[J],2001,26(5):334-336.
    [141] 李笃信.贾德民,周萍,华南理工大学学报(自然科学版)[J], 1998,26(8): 63-67.
    [142] 王芳芳,郑艺华,徐斐等.离子交换与吸附[J].2005,21(1):9-16.
    [143] 孙君社,酶与酶工程及其应用[M],北京:化学工业出版社,2006.92.
    [144] Garcia2Delgado R A. Cotoruelo2Minguez L M , Rodriguez JJ . Equilibrium study of single2solute adsorption of anion surfactant s wit h polymeric XAD resins. Sep. Sci.&Technoll, 1992,27 (7): 9752987
    [145] 宋应华,朱家文,陈葵,武斌,大孔吸附树脂对红霉素的平衡吸附行为及其热力学性质,化工学报,2006,157(14):0715-0719.
    [146] 王建华,卫亚丽,文宗河,何建川,蛋白质结构的FT-IR研究进展,化学通报,2004,7:482-486.
    [147] 高静,檀文礼,黄志红,李伟杰.贺莹,糖对溶胶-凝胶法固定化脂肪酶CAL B的影响,化工学报,2007,58(12):3077-3081.
    [148] Salim Nassreddine, Ali Karout, M. Lorraine Christ, et.al,Transesterification of a vegetal oil with methanol catalyzed by a silica fibre reinforced aerogel encapsulated lipase,Applied Catalysis A:Gen.
    [149] Zaks A ,Klibanov AM. Enzymatic catalysis in organic media at 100℃[J]. Science ,1984,224:1249-1251.
    [150] Ito Y. Fujii H, Imanishi Y. Enzyme hybridization w ith synthetic polymers for use in organic media [J ]. Makri-omol Chem Rapid Comm un, 1992,13:315-319.
    [151] Ito Y, Fujii H, Imanishi Y. Modification of L ipase w ith Various Synthetic Polymers and Their CatalyticA ctivities in Organic Solvent [ J ]. B iotecnol Progress. 1994,10:398-402.
    [152] Hernaiz M J, Sanchez.Montero J M. Sinisterra J V.Modification of purified lipases from Candida rugosa w ith polyethylene glycol: A systematic study [J]. Enzym e and M icrob Technol, 1999,24:181-190.
    [153] Koops B C, V erheijHM , Slotboom A J ,et al. Effect of chem icalmodification on the activity of lipases in organic solvents[J]. Enzym e and M icrob Technol, 1999, 25: 622-631.
    [154] Takahashi K.Ajima A, Yoshimoto T ,et al. Polyethylene glycol-modi-fied catalase exhibits unexpectedly high activity in benzene [J]. Biochemical Biophysical Research Communications ,1984,125 :761-766.
    [155] Inada Y,Furukawa M.Sasaki H ,et al. Biomedical and biotechnological applications of PEG- and PM-modified proteins[J]. Trends in Biotech- nology .1995 ,13 :86-91.
    [156] Matsushima A. Kodera Y,Hiroto M,et al. Bioconjugates of proteins and polyethylene glycol :potent tools in biotechnological processes[J] Journal Molecular Catalysis B: Enzymatic, 1996,2: 1-17.
    [157] Longo MA ,Combes D. Thermostablility of modified enzymes :a detailed study[J]. J Chemical Technol Biotechnol, 1999,74:25-32.
    [158] Antonella Petri. Tiziana Gambicorti. Piero Salvadori. Covalent immobilization of chloroperoxidase on silica gel and properties of the immobilized biocatalyst[J]. Journal of Molecular Catalysis B:Enzymatic, 2004,27(2-3): 103-106.
    [159] 刘海燕,孙素芳,杨更亮,等.环氧化硅胶固定木瓜蛋白酶及其动力学性质[J].河北大学学报(自然科学版),2002,22(1):40-43.
    [160] 姚淑萍,环氧基硅烷化硅胶的的制备及分析方法比较,山西化工,1994,No.3:41-43.
    [161] Magnus Glad, Sten Ohlson. Lennart Hansson, Mats-olle Mansson and Klaus Mosbach, I. Chromatography, 200,254(1980).
    [162] 高静,檀文礼,黄志红,李伟杰,贺莹,糖对溶胶-凝胶法固定化脂肪酶CAL B的影响,化工学报,2007,58(12):3077-3081.
    [163] 柏正武,尹传奇,吴莉,王存文,用氨基化硅胶和甲醛固定脂肪酶的研究,化学与生物工程,2004,1:29-31.
    [164] 李晔,酶的固定化及其应用,分子催化,2008,22(1):86-96.
    [165] 李志国,欧伶,宋庆训,魏东芝,固定化脂肪酶的动力学研究,华庆理工大学学报,2004, 30(1):107-110。
    [166] 山根恒夫著,邢新会译.生物反应工程.北京:化学工业出版社,2006.
    [167] 刘鹰,离子液体在催化中的应用,化学工业出版社,北京,.2008.2.
    [168] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem.Commun., 1992, 965-967.
    [169] 刘朋英,陈洪章.离了液体在生物催化中的应用,化工学报,2005.56(3):382-386.
    [170] Namboodiri V V,Varma R S,Solvent-free sonochemical preparation of ionic liquids,Organic Letters,2002,4(18): 3161-3163.
    [171] Xu D Q,Liu B Y,Luo S P,Xu Z Y,Shen Y C,A novel and eco-friendly method for the preparation of ionic liquids. Synthesis Stuttgart, 2003,17:2626-2628.
    [172] Huddleston J G,Visser A E,Reiehert W M,Willauer H D,Broker G A,Rogers R D,Charaeterization and comparison of hydrophilie and hydrophobie room temperature ionic liquids incorporating the imidazolium cation,Green Chemistry, 2001,3:156-164.
    [173] Aline F.Bezerra,Valter J.Fernandes Jr.,Antonio.Souza,Thermoanalytical characterization of castor oil biodiesel. Enzyme and Microbial Technology ,2007,11:964-975.
    [174] Zhou Y,AntoniettiM. Synthesis of very small TiO_2 nanocrystals in a room2temperature ionic liquid and their self, assembly toward mesoporous spherical aggregates[J]. J Am Chem Soc,2003,125:14960-14961.
    [175] 刘红霞,徐群,1-丁基-3-甲基咪唑四氟硼酸盐离了液体的合成研究(J).化学世界,2006,(11):679-681.
    [176] Sung Ho Ha, Mai Ngoc Lan, Sang Hyun Lee. et al. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids[J]. Enzyme and Microbial Technology.2007,41:480-483
    [177] Andrea Salis, Marcel la Pinna. Maura Monduzzi, et al, Biodiesel production from triolein and short chain alcohols through biocatalysis[J]. Journal of Biotechnology,2005,119:291-299.
    [178] Bonhote,P .; D ias,A.P.;P apageorgiou,N .; K alyanasundaram ,K.; G r atzel.M .Inorg.Chem., 1996,35:1168.
    [179] Holbrey,J. D .;S eddon,K.R J.C hem.Soc.D altonT ram.,1999,(13):2133.
    [180] McEwen,A.B.; N go,H .L .; L eCompte.H .; G oldman,J.L,J.Electrochem.So, 1999,146(5):1687.
    [181] Lozano P,De Diego T,Carrie D. et al. Over-stabilization of Candida antartica lipase bby ionic liquids in ester synthesis [J]. Biotechnology Letters,2001,23:1529-1533.
    [182] 李雪辉,张磊,李琼,耿卫国,叶玉嘉.王乐夫,1-丁基-3-甲基咪唑溴化物离了液体TGA-FT-IR研究,物理化学学报,2004,20(12):1465-1468
    [183] Dong K, Zhang S J.Wang D X, et al. Hydrogen bonds in imidazolium ionic liquids[J].J Phys Chem A, 2006,110: 9775-9782.
    [185] Shimada Y. Watanabe Y, Sugihara A. Tominaga Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing, J Mol Catal B: Enzym, 2002:17(3-5): 133-42.
    [186] Sung Ho Ha, Mai Ngoc Lan, Sang Hyun Lee. et.al, Lipase-catalyzed biodiesel production from soybean oil in ionic liquids,Enzyme and Microbial Technology, 2007, (41):480-483.
    [187] Moon YH,Lee SM,Ha SH,KooY-M.Enzyme-catalyzed reactions in ionic liquids. Korean J Chem Eng, 2006,23(2):247-63.
    [188] Park S, Kazlauskas RJ. Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantioand regioselective acylations. J Org Chem. 2001 ;66:8395-401.
    [189] Zhao D, Liao Y, Zhang Z. Toxicity of ionic liquids. Clean. 2007:35:42-8.
    [190] Matzke M, Stolte S, Thiele K, Juffernholz T, Arning J, Ranke J, et al. The influence of anion species on the toxicity of 1-alky1-3-methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem, 2007:9:1198-207.
    [191] Kragl, U., M. Eckstein, and N. Kaftzik. Biocatalytic Reaction in Ionic Liquid. In Ionic Liquids in Synthesis (editor: P. Wassercheid and T. Welton. WILEY-VCH Verlag GmbH & Co. KgaA, Weinheim, 2003. 336-347.
    [192] Lau, R.M., F. van Rantwijk, K.R. Seddon, and R.A. Sheldon. Lipase-Catalyzed Reactions in Ionic Liquids. 2000.Organic Letters, 2(26):4189 - 4191.
    [193] Lozano, P., T. De Diego, D. Carrie, M. Vaultier, and J.L. Iborra. Over-stabilization of Candida antartica Lipase Bby Ionic Liquids in Ester Synthesis. Biotechnology Letters, 2001.23:1529-1533.
    [194| Sung Ho Ha,Mai Ngoc Lan,Sang Hyun Lee.et al. Lipase-catalyzed biodiesel production from soybean oil in ionic liquids|J|. Enzyme and Microbial Technology,2007,41:480-483
    [195] D.Royon.M.Daz.G.EIIenrieder.S. Locatelli.Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent,Bioresource Technology.2007,98:648-653.
    [196] Ganske F, Bornscheuer U T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org Lett 2005;7:3097-8.
    [197] Lozano P, De Diego T, Carrie D, Vaultier M. Iborra J L. Lipase catalysis in ionic liquids and supercritical carbon dioxide at 1508C. Biotechnol Prog, 2003; 19:380-2.
    [198] Persson M, Bornscheuer U T. Increased stability of an esterase from Bacillus stearothermophilus in ionic liquids as compared to organic solvents. J Mol Catal B Enzym, 2003,22:21-7.
    [199] Lou W Y, Zong M H, Wu LYY, Wang J F. Efficient enantioselective hydrolysis of D,L-phenylglycine methyl ester catalyzed by immobilized Candida antarctica lipase B in ionic liquid containing systems. J Biotechnol, 2006:125:64-74.
    [200] Laszlo J A,ComPton D L,alpha-ehymotrypsin catalysis in imidazolium-based ionic liquids,Biotechnology and Bioengineering,2001,75(2):181-186.
    [201] Adamczak M, Bornscheuer UT, Bednarski W. Synthesis of ascorbyloleate by immobilized Candida antarctica lipase. Process Biochem, 2005;40:3177-80.
    [202] Eekstein M, Sesing M, Kragl U,Adlerereutz P,At low water activity alpha-chymotrypsin is more active in an ionie liquid than in non-ionic organic solvents,Biotechnology Letters,2002,24(11l):867-872
    [203] Song Q-X, Wei D-Z, Zhou W-Y. Xu W-Q, Yang S-L. Enzymatic synthesis and antioxidant properties of L-ascorbyl oleate and L-ascorbyl linoleate. Biotechnol Lett, 2004;V26:1777-80.
    [204] Fontes N, Harper N, Hailing PJ, Barreiros S. Salt hydrates for in situ water activity control have acid-base effects on enzymes in nonaqueous media.Biotechnol Bioeng, 2003;82:802-8.
    [205] Kuhl P, Hailing J. Salt hydrates buffer water activity during chymotrypsincatalysed peptide synthesis. Biochim Biophys Acta, 1991;1078:326-8.
    [206] Yang L, Dordick JS, Garde S. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity. Biophys J 2004;87:812-21.
    [207] Fontes N, Partridge J, Hailing PJ, Barreiros S. Zeolite molecular sieves have dramatic acid-base effects on enzymes in nonaqueous media. Biotechnol Bioeng, 2002,77:296-305.
    [209] Ghamguia H, Karra-Cha abouni M, Gargouri Y. 1-Butyl Oleate Synthesis by Immobilized Lipase from Rhizopus Oryzae: A Comparative Study between N-Hexane and Solvent-free System [J].
    [210] Xu Y Y. Du W, Zeng J, et al. Conversion of Soybean Oil to Biodiesel Fuel Using Lipozyme TL1M in a Solvent-free Medium [J]. Biocatal.Biotransform., 2004, 22(1): 45-48.
    [208] 罗贵民,酶工程(第二版).北京:化学工业出版社,2008.4:145.
    [209] Ghamguia H, Karra-Cha abouni M, Gargouri Y. 1-Butyl Oleate Synthesis by Immobilized Lipase from Rhizopus Oryzae: A Comparative Study between N-Hexane and Solvent-free System [J].
    [210] Xu Y Y. Du W, Zeng J, et al. Conversion of Soybean Oil to Biodiesel Fuel Using Lipozyme TL1M in a Solvent-free Medium [J]. Biocatal.Biotransform., 2004, 22(1): 45-48.
    [211] 李俐林,都伟,刘德华,新型反应介质中脂肪酶催化多种油脂制各生物柴油,过程工程学报,2006,6(5):799-803.
    [212] Samukawa T,Kaieda M,Matsumoto,et al. Pretreatment of immobilized cundidu antarctica lipase for biodiesel fuel production from plant oil[J].J. Biosci. Bioeng..2000.90:180-183.
    [213] Lee. K.T.,T.A. Foglia, and K.S. Chang. 2002. Production of Alkyl Esters as Bio Diesel from Fractionated Lard and Restaurant Grease.JAOCS 79(2): 191-195.
    [214] Watanabe, Y., Y. Shimada, A. Sugihara, and Y. Tominaga. 2001.Enzymatic Conversion of Waste Edible Oil to Biodiesel Fuel in a Fixed-Bed Bioreactor. JAOCS 78(7): 703-707.
    [215] 赵裕蓉,张鹏译,酶催化动力学方法与应用,北京:北学工业出版社,2007,81.
    [216] Fabien Letisse,Sylvain Lamare, Marie-Dominique Legoy, Solid/gas biocatalysis: an appropriate tool to study the influence of organic components on kinetics of lipase-catalyzed alcoholysis. Biochimica et Biophysica Acta,2003.1652:27-34.
    [217] C. L.aane, S. Boeren. K. Vos, C. Veeger, Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987.30:81-87.
    [218] R.H. Valivety, G.A. Johnston. C.J. Suckling, P.J. Hailing, Solvent effects on biocatalysis in organic systems.equilibrium position and rates of lipase catalyzed esterification, Biotechnol. Bioeng. 1991,38:1137-1143.
    [219] J.L. Schmitke, L.J. Stern, A.M. Klibanov, Comparison of X-ray crystal structures of an acyl-enzyme intermediate of subtilisin Carlsberg formed in anhydrous acetonitrile and in water. Proc.Natl. Acad. Sci.U. S. A. 1998.95:12918-12923.
    [220] J.B.A. Van Tol,R.M.M. Stevens, W.J. Veldhuizen, J.A. Jongejan,J.A.Duine. Do organic solvents affect the catalytic properties of lipases in ester hydrolysis and formation in various organic solvents? Biotechnol.Bioeng. 1995,47:71-81.
    [221] J.S. Dordick, Principles and selected applications of non-aqueous enzymology, in: H.W. Blanch, D.S. Clark (Eds.), Applied Biocatalysis,Marcel Dekker, New York, 1991, pp. 1-51.
    [222] P.A. Fitzpatrick, A.M. Klibanov, How can the solvent affect enzyme enantioselectivity, J. Am. Chem. Soc.1991,113 : 3166-3171.
    [223] K.E. Jaeger, M.T. Reetz, Microbial lipases form versatile tools for biotechnology, Trends Biotechnol. 1998,16 : 396-403.
    [224] Sulaiman AI-Zuhair,Fan Wei Ling,Lim Song Jun,Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase,Process Biochemistry, 2007,42:951-960.
    [225] 罗文,袁振宏,谭天伟等,酶促合成生物柴油反应动力学,石油化工,2007,36(12):1277-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700