用户名: 密码: 验证码:
奉贤微污染景观水体生物生态修复技术小试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,我国江河湖泊的水体污染和富营养化问题日趋严重,因此对受污染的江河湖库水体进行治理是社会经济发展及生态环境建设的迫切需要。湖泊水生植被的恢复是湖泊环境和生态综合治理的一个重要环节。生态浮床和人工湿地都是近年来在国内外采用的用于净化水质的生态修复的方法;利用微生物复合制剂进行污染环境治理由于具备理工艺简单,对污染位点的干扰、破坏小、污染物降解速度快、降解彻底、不易造成二次污染等优势,也被认为是一项很有前景的水污染治理技术。
     本文依托上海市世博科技专项(2007BAK27B05-7)-世博园景观水体生物生态修复技术研究示范应用,以及上海市环境保护局项目(编号2006-36)-滴水湖引水河水质净化研究等项目,以奉贤农业区的某污染河道为试验基地,主要研究了在静态条件以及不同水力负荷下,种植黄菖蒲的生态浮床与人工湿地对微污染配水的净水效果。并对将微生物复合制剂应用于微污染水体,促进微生物对污染物的降解转化,改善水环境质量进行了探讨。此外,进了利用水生植株残体进行厌氧发酵产气的研究,实现了资源的再利用。
     主要研究结论如下:
     1)研究了生态浮床对水质净化的作用。结果表明,生态浮床对CODMn、TN和TP均具有明显的去除效果,在静态期,浮床池对CODMn、TN和TP的净去除率分别达到了16.9%、50.3%和50%,达到国家规定的地表水Ⅲ类水质要求。由此可见,生态浮床是改善水体富营养化状况的一种可行性技术手段。
     2)比较了生态浮床与人工湿地对水质的净化作用。结果表明,总体情况下,生态浮床比人工湿地净化水体的效果稍有显著。静态期结果表明,生态浮床对CODMn的去除率为37.6%,人工湿地对CODMn的去除率为10.1%;生态浮床对TN的去除率为89.9%,人工湿地对TN的去除率为46.7%;生态浮床对氨氮的去除率为81.45%,人工湿地对氨氮的去除率为81.81%;生态浮床对TP的去除率为65.5%,人工湿地对TP的去除率为61.0%。动态期生态浮床和人工湿地的比较表明,生态浮床对污染物的去除率总体仍高于人工湿地。在水力负荷为0.035m/d时,生态浮床的CODMn去除率最高为41.92%,TN去除率最高为77.1%;在水力负荷为0.12m/d时,生态浮床的氨氮去除率最高,达到91.28%,TP的去除率最高,达到87.4%。
     3)研究了微生物制剂对受污染水体水质净化的影响。通过使用不同微生物复合制剂,以及结合植物及组合填料等不同载体的研究,发现当微生物复合制剂结合植物作为载体时处理效果要比结合填料好。静态试验的研究发现,河水中的土著菌在适当的条件下也能发挥作用。通过复合微生物制剂与载体的结合,2#(复合菌剂+硝化菌,黄菖蒲载体)对CODMn的去除率最高,达到95.84%,4#(复合菌剂+硝化菌+华师硝化菌+光合细菌,黄菖蒲载体)对TN、TP的去除率最高,可分别达到86.48%和96.60%,对于溶解氧的提高和氨氧化也有较好的能力。
     4)将水生植物残体作为沼气发酵的原料,进行资源化利用。研究了污泥接种量、PH值等对产气过程的影响,结果表明,在接种600ml/L污泥浓度时产气效率最好,为0.375(L/g植物样品干重),同时控制系统较高的pH值以及使用经过驯化的污泥有利于厌氧发酵。
Nowadays, water pollution and eutrophication problem of rivers and lakes in China are becoming more and more serious, therefore, it is urgent for social economic development and ecological environment construction to deal with the contaminated water bodies. Aquatic vegetation restoration is an important fact in water recovery and integrated management of ecological system. In recent years, ecological-floating beds and constructed wetlands are used at home and abroad for the ecological restoration of water purification. Using compound microorganism product is a newly pollution control technology developed in recent years at home and abroad. It is considered to be one very promising water pollution control technology because of its simple craft, small destroy to location, fast, thoroughly degrading, less secondary pollution, etc.
     The paper relies on the Shanghai World Expo Science and Technology project (2007BAK27B05-7) "The application and demonstration of ecological restoration Expo landscape water technology" and the Shanghai Environmental Protection Bureau project "Study on derived river water purification of Drip Lake" (No.2006-36), etc. This paper mainly studied the effectiveness of the ecological floating bed and the constructed wetlands in the conditions of static and different hydraulic loading about water purification. Pollutant transform to be enhanced and water environmental quality to be improved by adding compound microorganism product to the system were studied in this thesis. Also in this paper, anaerobic digestion of plant residue from eutrophic water is discussed to achieve re-use of resources.
     the main conclusions are drawn as followings:
     1) The effect of water purification by ecological floating bed was studied in this paper. Results showed that the removal effect of floating bed on CODMn, TN, TP is obvious.16.9%CODMn、50.3% TN and 50% TP were removed by ecological floating bed in static condition and the water quality achieved gradeⅢ,the criteria is stipulated for ground water by our country. It showed us that the eutrophication phenomenon can be improved significantly through the ecological floating bed.
     2) Comparison of water purification by ecological floating bed and constructed wetland was studied in this paper. In general case, water quality improved by the ecological floating bed is slightly significant than the constructed wetland. Results showed that in ecological floating beds, CODMn、NH3-N、TN and TP were removed by 37.6%、89.9%、81.45% and 65.5% while removed by 10.1%、46.7%、81.81% and 61.0% in the constructed wetland during the static phase condition. The comparison in dynamic condition showed that on the overall removal of pollutants, ecological floating bed is still higher than the wetland. In the hydraulic loading of 0.035m/d, the ecological floating bed CODMn removal was rate up to 41.92%, while TN removal rate up to 77.1%; In the hydraulic loading of 0.12m/d, the ecological floating bed NH3-N removal was rate up to 91.28%, while TP removal rate up to 87.4%.
     3) The effect of water purification by compound microorganism product was studied in this paper. Through using different compound microorganism product combining with plants and filler, better treatment effect would achieve when the compound microorganism product combined with the plant as a carrier than combined with the filler. Meanwhile, the results of batch test show that the indigenous microorganism in the river played the important role under the appropriate condition. As the compound microorganism product combined with the carrier,2# (compound agents+ nitrifying bacteria, yellow iris carrier) got the highest removal rate of CODMn 95.84%,4 # (compound agents+nitrifying bacteria+ECNU nitrifying bacteria+photosynthetic bacteria, yellow iris carrier) got the highest removal rate of TP 86.48% and TN 96.60%, they also have good ability to increase dissolved oxygen and ammonia oxidation.
     4) Aquatic residues could be used as a raw materials for methane fermentation to reuse resources. Inoculation of the sludge and PH value would affect the process of gas produce. The results showed that 600ml/L sludge inoculum concentration, higher pH and acclimated sludge are favorable to the digestion and generation of biogas.
引文
[1]杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略[J].给水排水,2001,27(1):94-101.
    [2]田永杰,唐志坚,李世斌.我国湖泊富营养化的现状和治理对策[J].环境科学与管理,2006,31(5):119-121.
    [3]饶群,芮孝芳.富营养化机理及数学模拟研究进展[J].水利2001,21(20):15-19.
    [4]Jorgensen. Application of ecology in environmental management [M]. Boca Raton, FL, USA: CRC Press,1983.
    [5]金相灿等.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990:1-316.
    [6]朴承俊,王宏山,瞿春艳等.水体富营养化现状及对策分析[J].煤炭技术,2008,27(8):134-137.
    [7]UNEP.水体富营养化[J].苏玲译.世界环境,1994,42(1):23-26.
    [8]马经安,李红清.浅谈国内外江河湖库水体富营养化状况[J].长江流域资源与环境,2002,11(6):575-579.
    [9]国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001.23-28,98-103.
    [10]金相灿.湖泊富营养化控制和管理技术[M].化学工业出版社.
    [11]何淑英,李继香,徐亚同.污染河流的治理技术研究进展[J].2008,36(2):75-79.
    [12]夏继红,严忠民.国内外城市河道生态型护岸研究现状与发展趋势[J].中国水土保持,2004(3):20-21.
    [13]晓鸿,王跃邦,刘明义,等.江河堤防植物护坡技术研究成果推广应用中国水土保持,2002(1):17-18.
    [14]谢礼国,郑怀礼.湖泊富营养化的防治对策研究[J],2006,26(4):7-12.
    [15]陈开宁,包先明,史龙新,等.太湖五里湖生态重建示范工程-大型围隔试验[J].湖泊科学,2006,18(2):139-149.
    [16]唐静杰,周青.生态浮床在富营养化水体修复中的应用[J].环境与可持续发展,2009(2):24-27.
    [17]刘艳平,许继宏,翟赛亚.水面种植高等植物在滇池水治理中的应用[J].现代农业科技,2006,11.
    [18]陈玉成.污染环境生物修复工程[C].化学工业出版社:北京,2003.
    [19]陈燕,李寅,堵国成.石油污染水体的生物修复[J].水处理技术,2003,29(5):249-252.
    [20]戴兴春,徐亚同,黄民生.污染环境中微生物修复的几种办法[J].上海化工,2004,29(1):10-12.
    [21]王一华,傅荣恕.中国生物修复的应用及进展[M].山东师范大学学报自然科学版,2003,18(2):79-83
    [22]罗义,毛大庆.生物修复概述及国内外研究进展[J].辽宁大学学报自然科学版,2003,30(4):298-302.
    [23]黄文成.沉水植物在治理滇池草海污染中的作用[J].植物资源与环境,1994,3(4):29-33.
    [24]姜应和,宋涛.受污染水体的水质恢复方法[J].环境污染治理技术与设备.2003,4(2):69-72.
    [25]马曦,王里奥,林建伟.受污染地表水体生物修复技术研究进展[J].环境科学与管理,2006,31(2):34-38.
    [26]方云英,濮培民,杨肖娥.利用水生植物原位修复污染水体[J].应用生态学报,2008,19(2):407-413.
    [27]郭蔚华,张智,何冰等.高等水生植物修复双龙湖水体叶绿素a变化试验研究[J].重庆环境科学,2002,(03):272-277.
    [28]李尚志,唐永琼.利用水生植物对污染水体进行生态修复[J].深圳大学学报理工版,2005,22(3):272-277.
    [29]Takashi Asaeda, Vu Kien Trung, Jagath Manatunge. Modeling the effects of macrophyte and decomposition on the nutrient budget in Shallow Lakes[J]. Aquatie Botany,2000,68:217-237.
    [30]朱伟,陈清锦.伊乐藻在冬季低温条件下对污染水体的净化效果[J].生态环境,2004,13(4):497-499.
    [31]郭长城,喻国华.菹草对污染河道水质的改善作用[J].水科学与工程技术,2006(5):18-20.
    [32]成小英,王国祥,濮培民等.冬季富营养化湖泊中水生植物的恢复及净化作用[J].湖泊科学,2002,14(2):139-145.
    [33]童昌华,杨肖娥,濮培民.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159-163.
    [34]李春雁,崔毅.生物操纵法对养殖水体富营养化防治的探讨[J].海洋水产研究,2002,23(1):71-74.
    [35]田伟君,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003(8):19-21.
    [36]肖羽堂,赵美姿,高立杰.富氧生物膜法修复微污染水源的机理研究[J].长江流域资源与环境,2005,14(6):796-801.
    [37]王学江,夏四清.悬浮填料移动床处理苏州河支流河水试验研究[J].环境污染治理技术与 设备,2002,3(1):27-30.
    [38]卢创新.河涌水污染特征及其悬浮式生物膜法处理技术研究[D].暨南大学,2007.
    [39]唐玉斌,郝永胜,陆柱.景观水体的生物激活剂修复[J].城市环境与城市生态,2003.16(4):38-41.
    [40]黄伟来,李瑞霞.城市河流水污染综合治理研究[J].环境科学与技术,2006,29(10):109-112.
    [41]卢士强,徐祖信,林卫青.综合调水对苏州河周边水系水质影响的数值模拟[J].环境污染与防治.2005,27(6):473-475.
    [42]曾宇,秦松.光合细菌法在水处理中的应用[J].城市环境与城市生态,2000,13(6):29-31.
    [43]陈宗明.上海苏州河的环境综合整治.城市发展研[J].1998,(3):47-51.
    [44]章营军,孙从军.浅谈污染河道水体治理[J].造船工业建设.2001(4):34-39.
    [45]刘和,陈英旭.环境生物修复中高效基因工程菌的构建策略[J].浙江大学学报(农业与生命科学版),2002,28(2):208-212.
    [46]沈士德,梁和平.基因工程菌在富营养化水体中应用的试验研究[J].勘察科学校术,2003(6):21-23.
    [47]陈金霞,徐亚同.微生物在苏州河生态系统中的地位及作用[J].环境污染治理技术与设备,2002,3(7):70-74.
    [48]李雪梅,杨中艺,简闻光等.有效微生物群控制富营养化湖泊蓝藻的效应[J].中山大学学报,2000,39(1):91-85.
    [49]李捍东,王庆生,张国宁.优势复合菌群用于城市生活污水净化新技术的研究[J].环境科学研究,2002,13(5):14-17.
    [50]庞金钊,杨宗政,孙永军等.投加优势菌净化城市湖泊水[J].中国给水排水,2003,19(6):51-52.
    [51]施大林,何义进,孙梅等.四联活菌制剂对养殖水体中氨氮及亚硝酸盐的降解[J].水产科学,2009,28(11):664-668.
    [52]徐亚同,史家梁,袁磊.上澳塘水体生物修复试验[J].上海环境科学,2000,19(10):480-484.
    [53]马曦,王里奥,林建伟.受污染地表水体生物修复技术研究进展[J].环境科学与管理,2006,21(3):34-38.
    [54]庞金钊,杨宗政,曹式芳.微生物制剂在城市湖泊水体生物修复中的作用[J].环境污染与防治,2003,25(5):301-305.
    [55]朱亮等.EM菌液在活性污泥系统中的实验研究[J].工业水处理,2001,21(10):13-15.
    [56]孙广友.中国湿地科学的进展与展望.地球科学进展[J]..2000,15(6):666-672.
    [57]Hammer, D.A. Constructed wetlands for wastewater treatment. Michigan:Lewis Publisher Inc.1989,5-20.
    [58]刘红玉,吕宪国,张世奎.湿地景观变化过程与累积环境效应研究进展[J]..地理科学进展,2003,22(1):60-70.
    [59]Drizo A. Frost CA, Grace J. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Wat Sci Tech,1999,33(7):3595-3602.
    [60]Greenway M. Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Wat Sci Tech,1997,35(5):135-142.
    [61]Wittgren H B. Wastewater treatment wetlands in cold climates. Wat Sci Tech,1997, 35(5):45-53.
    [62]Srinivasan,N.,etal. Improvement of domestic wastewater quality by subsurface flow constructed wetlands. Bioresource Technol.,2000,75(1):19-25.
    [63]Miklas Scholz, etal. Performance comparis on of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Ioresource echnology,2002,83:71-79.
    [64]KnightR.L. The use of treatment wetlands for petroleum industry effluents. Environmental Science and Technology,1999,33(7):973-980.
    [65]籍国东,等.自由表面流人工湿地处理超稠油废水[J]..环境科学,2001,22(4):95-99.
    [66]Meutia A A. Treatemnt of laboratory wastewater in a tropical constructed wetland comparing surface and subsurface flow [J]. Wat Sci Tech,2001,44(11-12):499-506.
    [67]US ENVIRONMENT PROTECTION AGENCY. Manual-Constructed Wetlands Treatment of Municipal Wastewaters (EPA/625/R-99/010) [R]. Cincinnati, Ohio:Office of Research and Development, National Risk Management Research Laboratory,1999.
    [68]Kim S Y, Geary P M. The impact of biomass harvesting on phosphorus uptake by wetland plants[J]. Wat Sci Tech,2001,44(11-12):61-67.
    [69]Tanner C C. Substratum phoshorus accumulation during maturation of gravel-bed constructed wetlands[J]. Wat Sci Tech,1999,40(3):147-154.
    [70]Mann R A, Baror H J. Phophorus removal in constructed wetlands using gravel and industrial waste substrate[J].Water Science and Technology,1993,27(1):107-113
    [71]贺锋等.复合构建湿地运行初期理化性质及氮的变化[J].长江流域资源与环境,2002,11(3):279-283.
    [72]缪绅裕,陈桂珠.人工湿地中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报,1999,19(2):236-241.
    [73]段志勇,刘超翔.复合植物床式人工湿地研究[J].环境污染治理技术与设备,2002,3(8):4-7.
    [74]张鸿,陈光荣,吴振斌,等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报:自然科学版,1999,33(4):575-578.
    [75]李杰,钟成华,邓春光.人工湿地研究进展[J].安徽农业科学,2007,35(6):1778-1780.
    [76]Brix H. Do macrophytes play a role in constructed wetlands treatment [J]. Water Science and Technology,1997,35(5):11-17.
    [77]郑雅杰.人工湿地系统处理污水新模式的探讨[J].环境科学进展,1995,3(6):1-8.
    [78]吴振斌,陈辉蓉,雷腊梅等.人工湿地系统去除藻毒素研究[J].长江流域资源与环境,2000,9(2):242-247.
    [79]Cheng S, Grosse W, Karrenbrock F, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng,2001,18(3):317-325.
    [80]吴振斌,陈辉蓉,成水平等.人工湿地磷的去除研究.水生生物学报[J].2001,25(1):28-35.
    [81]梁威,吴振斌.构建湿地基质微生物类群与污水净化效果及其相关分析[J].中国环境科学,2002,22(3):282-285.
    [82]高拯民,等.城市污水土地处理利用设计手册.北京:中国标准出版社,1990.
    [83]张虎成,田卫,俞穆清等.人工湿地生态系统污水净化研究进展[J].环境污染治理技术与设备,2004,5(2):11-17.
    [84]Zhu T. Phosphate sorption and chemical characteristics of lightweight aggregates (LWA)-Potential filter media in treatment wetlands. WatSciTech,1997,35(5):103-108.
    [85]Geller G. Horizontal subsurface flowsystems in the German speaking countries:summary for long term scientific and practical experience recommendation. WatSciTech,1997, 35(5):157-166.
    [86]袁东海,景丽洁,张孟群等.几种人工湿地基质净化磷素的机理[J].中国环境科学,2004,24(5):614-617.
    [87]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-55.
    [88]崔理华,朱夕珍,骆世明,等.垂直流人工湿地系统对污水磷的净化效果[J].环境污染治理技术与设备,2002,3(7):13-17.
    [89]Drizoa, Frostca, Gracej,etal. Physico-chemical screening of phosphate-removing substrates for usein constructed wetland systems[J].Water Research,1999,33(17):3595-3602.
    [90]DuncanC.P, Groffman P M. Comparing microbial parameters in natural and constructed wetlands [J]. Journal of Environmental Quality,1994(23):298-305.
    [91]李科德,胡正嘉.芦苇床系统净化污水的机理[J].中国环境科学,1995,15(2):140-144.
    [92]梁威,吴振斌,詹发萃等.人工湿地植物根区微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317.
    [93]吴亚英.人工湿地在新西兰的应用[J]..江苏环境科学,2000,13(3):32-33.
    [94]许航,陈焕壮,熊启权等.水生植物塘脱氮除磷的效能及机理研究[J].哈尔滨建筑大学学报,1999,32(4):69-73.
    [95]程晓如,陈欣燕,陈忠正.从微生物学探讨生物除磷脱氮机理[J].中国给水排水,1996,12(5):32-33.
    [96]Brown D S, et al. Inventory of constructed wetland in the United States[J]. Wat Sci Tech,1994,29(4):309-318.
    [97]Margaret Greenway. Nutrient bioaccumulation in wetland plants receiving municipal effluent in constructed wetlands in tropical Australia [A].5th International conference on wetland systems for water pollution control[C].15-19 Sept.1996. Vienna. Conference Preprint Book 1.1996.Ⅱ 1.1-8.
    [98]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水.2003,19(10):29-31.
    [99]Martin C.D.et al., Nutrient in an in-series constructed wetland system treating landfill leachate. Wat Sei Tech,1994,29(4):267-272.
    [100]Hopper H.G.et al., Microbial decomposition in aquatic environments:combined processes of extra cellular activity and substrate uptake. Applied Environmental Microbiology, 1988,54:784-790.
    [101]沈耀良,王宝贞.人工湿地系统的除污机理[J].江苏环境科技.1997,(3):1-6.
    [102]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报,2002,13(2):224-228.
    [103]B.C.Braskerud, etal. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution. Ecological Engineering,2002,18:351-370.
    [104]LongM. Nguyen. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetland streating farm dairy wastewaters. Ecological Engineering, 2000,16:199-221.
    [105]Carsten Schulz, Carsten Schulz, etal. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal waterflow. Aquaculture,2003,217:207-221.
    [106]Ying-FengLin, etal. Nutrientre moval from aquaculture wastewater using a constructed wetlands system. Aquaculture,2002,209:169-184.
    [107]Kadlec, H.R, etal. Treatment wetlands. FL:LewisPublishers,1996.
    [108]郝桂玉等.潜流湿地在水体生态修复中的应用[J].净水技术,23(1):34-38.
    [109]于少鹏等.人工湿地污水处理技术及其在我国发展的现状与前景[J].地理科学进展,2004,23(1):22-29.
    [110]宋志文等.人工湿地污水处理技术及其发展[J].青岛建筑工程学院学报,2004,25(2):59-62.
    [111]Hammer,D.A. Constructed wetlands for wastewater treatment. Michigan:Lewis Publisher Inc.1989,5-20.
    [112]U S EPA. Guiding principles for constructed treatment wetlands:providing for water quality and wildlife habit [M].Washington DC:U S EPA, Offoce of wetlands, Oceans and Watershed, 2000.
    [113]P.A.Mays, et al. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecological Engineering, 2001,(16):487-500.
    [114]F. Chazarenc and G. Merlin. Influence of surface layer on hydrology and biology of gravel bed vertical flow constructed wetlands. Water Science and Technology.2005,51 (9):91-97.
    [115]D.P.L. Rousseau, D. Horton, P. Griffin, P.A. Vanrolleghem, N. De Pauw. Impact of operational maintenance on the asset life of storm reed beds. Water Science and Technology.2005,51 (9):243-250.
    [116]J.L. Andersson, S. Kallner Bastviken and K.S. Tonderski. Free water surface wetlands for wastewater treatment in Sweden:nitrogen and phosphorus removal. Water Science and Technology.2005,51 (9):39-46.
    [117]徐丽华,周琪.不同填料人工湿地处理系统的净化能力研究[J].上海环境科学,2002,21(10):603-605.
    [118]成水平,吴振斌,况琪军.人工湿地植物研究[J].湖泊科学.2002,14(2):179-184.
    [119]刘超翔,胡洪营,张健等.人工复合生态床处理低浓度农村污水[J].中国给水排水,2002,18 (7):1-4.
    [120]Paing, J. Voisin. Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area. Water Science and Technology.2005,51 (9):145-155.
    [121]张甲耀,夏盛林.潜流型人工湿地污水处理系统氮去除及氮转化细菌的研究[J].环境科学学报,1999,19(3):323-327.
    [122]招文锐,杨兵,朱新民等.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学,2001:20(4):16-20
    [123]Jos T.A. Verhoeven et al., Wetlands for wastewater treatment:Opportunities and limitations. Ecological Engineering,1999,12:5-12.
    [124]夏汉平.人工湿地处理污水机理与效率[J].生态学杂志,2002,21(4):51-59.
    [125]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [126]唐述虞.铁矿废水的人工湿地处理[J].环境工程,1996,(4):3-7.
    [127]Bastian. R.K. et al,. The use of constructed wetlands for wastewater treatment and recycling. In:Moshiri. G.A.(Ed), Constructed Wetlands for water Quality Improvement. Lewis Publishers, Ann Arbor,1993, pp,59-68.
    [128]Y Hosoi, YKido, MMiki, etal. Field examination on reed growth, harvest and regeneration .for nutrient removal. Water Science and Technology,1998,38(1):351-359.
    [129]Reinelt L R Horner, Azous A. Impacts of urbanization on palustrine (depression freshwater) wetlands-research and management in the Pugetregion [J]. Urban Ecosystems,1998, (2):219-236.
    [130]于少鹏.哈尔滨市培育人工湿地净化污水研究.哈尔滨学院学报,2003,7:53-56
    [131]S·华莱士,G·怕金,C·考思.寒冷地区污水处理的人工湿地设计与运行[J].中国环保产业.2003(6):40-42.
    [132]S. Wallace, R. Kadlec. BTEX degradation in a cold-climate wetland system. Water Science and Technology.2005,51(9):165-171.
    [133]沈万斌,赵涛等.人工湿地环境经济价值评价及实例研究[J].环境科学研究,2005,18(2):70-74.
    [134]Cason R T. Valuation of tropical rainforests:philosophical and practical issues in the use of contigent valuation[J]. Ecological Economics,1998,24:15-29.
    [135]T. Koottatep, N. Surinkul, C. Polprasert,et al Treatment of septage in constructed wetlandsin tropical climate:lessons learnt from seven yearsof operation. Water Science and Technology.2005,51(9):119-126.
    [136]丁则平.介绍日本的湿地净化技术-人工浮岛(AFI)[J/OL]. [2002-05-06].
    [137]中村圭吾,岛谷幸宏.人工浮岛技能技术现况[J].土木技术资料,1999,41(7).
    [138]丁则平.日本湿地净化技术人工浮岛介绍[J].河海水利,2007.
    [139]张培文,陈祖煜.弹性模量和泊松比对边坡稳定安全系数的影响[J].岩土力学,2006,27(2):299-303.
    [140]王钊,陆士强.强度和变形参数的变化对土工有限元计算的影响[J].岩土力学,2005,26(12):1892-1894.
    [141]Griffiths DV, Lane P A.Slope Stability Analysis by Finite Elements[J]. Geotechnique,1999,49(3):387-403.
    [142]Zienkiewicz O C,Humoheson C, Lewis R W. Associated and Non-associated Visco-plasticity and Plasticity in Soil Mechanics[J].Geotechnique,1975,25(4):671-689.
    [143]Bishop A W. The Use of the Slip Circle in the Stability Analysis of Slopes[J].Geotechnique, 1955,1(1):7-17.
    [144]史秀华,梁素娟,杜林根.人工浮岛的制作解析及其在湿地中的应用展望[J].广东科技,2008,189(6):201-202.
    [145]李英杰,金相灿,年跃刚.人工浮岛技术及其应用[J].水处理技术,2007,33(10):49-53.
    [146]Srivast R K, Gupta S K, Nigamk D P. Treatment of Chromium and Nickel in Waste Water by Using Aquatic Plants[J].Wat.Res.,1994,28(7):1631-1638.
    [157]吴伟明,宋祥甫,金千瑜,等.鱼塘水面无土栽培美人蕉研究[J].应用与环境生物学报,2000,6(3):206-210.
    [148]陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体[J].中国水利,2005,15(8):50-53.
    [149]唐林森,陈进,黄茁.人工生物浮岛在富营养化水体治理中的应用[J].长江科学院院报,2008,25(1):21-26.
    [150]卢进登,帅方敏,赵丽娅等.人工生物浮床技术治理富营养化水体的植物遴选[J].湖北大学学报:自然科学版,2005,27(4):402-404.
    [151]种云霄,胡洪营,钱易等.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-39.
    [152]唐静杰,周青.生态浮床在富营养化水体修复中的应用[J].环境与可持续发展,2009,2:24-28.
    [153]杨柳燕,张奕,肖琳,等.固体发酵提高水生植物发酵产物蛋白含量的研究[J].环境科学学 报,2007,27(1):35-39.
    [154]肖瑜,王艳丽,高士祥,等.生物修复植物黑藻资源化利用—化学成分研究.农业环境科学学报,2007,26(4):1253-1258.
    [155]张奕,杨柳燕,肖琳,等.水生植物压滤液厌氧发酵条件试验[J].农村生态环境,2005,21(3):54-57.
    [156]Annachhatre A P, Khanna P. Methane recovery from water hyacinth through whole-cell in mobilization technology[J].Biotecnol Bioeng 1987,29:805-818.
    [157]Abbasi S A, Ramasmy E V. Utilization of biowaste solids by extracting volatile fatty acids with subsequent conversion to methane and manure proceedings of the Twelfth International Conference on Solid Waste Technology and Management[C]. Philadelphia, 1996.
    [158]Abbasi S A, Ramasmy E V. Anaerobic digestion of high solid waste proceeding of Eight National Symposium on Environment IGCAR [C]. Kalpakkam,1999.
    [159]Kivaisi A K, Mtil A M. Chemical composition and in vitro degradeability of whole plants and shoots of the water hyacinth by rumen micro-organisms[J]. Tanzan Vet I, 1995,15:121-129.
    [160]Chanakya H N, Sushama R, Ralan M G, et al. Two-phase anaerobic digestion of water hyacinth or urban garbage[J]. Bioresource Tecnology,1992,43:123-131.
    [161]Sankar G P, Ramasamy E V, Gajalakshmis S A. Abbasi extraction of volatile fatty acids from water hyacinth using inexpensive contraptions, and the use of the VFAs as feed supplement in conventional biogas digesters with concomitant final disposal of water hyavinth as vermicompost[J]. Biochemical Engineering,2005,27:178-23.
    [162]周岳溪,孔欣,郝丽芳等.水葫芦两相厌氧生物处理技术研究[J].中国沼气,1996,14(3):8-12.
    [163]陈彬,赵由才,曹伟华等.水葫芦厌氧发酵工程化应用研究[J].环境污染与防治,2007,29(6):455-458.
    [164]Noike T, Endo G, Chang J E, etal. Characteristics of carbohydrate degradation and the rate limit step in anaerobic digestion[J], Biotechnol. Bioeng,1985,27:1482-1489.
    [165]MasayukiTaniguch,i Hiroyuki Suzuk,i DaisukeWatanabe, et al,Evaluation of Pretreatment with Pleurotus ostreatus for Enzymatic Hydrolysis of rice straw[J], Journal of Bioscience and BioEngineering,2005,100:637-643.
    [166]吕淑霞,陈祖杰.纤维素酶应用于酒精糟废水厌氧消化中的研究[J].中国沼气,1994,12(1):1-5.
    [167]沈昆根,姚俊杰.新型人工浮床在城市中小河道治理中的应用[J].水资源保护,2008(10):72-73.
    [168]艾丽皎,王红娟.优良的宿根地被植物—黄菖蒲[J].南方农业(园林花卉版),2007(8):28.
    [169]朱秀琴,姚永平.美丽的水景植物—黄菖蒲.农家致富,2008,(16):26.
    [170]沈德中编著.污染环境的生物修复.北京:化学工业山版社,2002.
    [171]王秀菊等.玉米芯厌氧消化产气试验研究[J].安徽农学通报,2006,12(10):55-57.
    [172]张无敌主编.沼气发酵与综合利用[M].昆明:云南科技出版社,2003:101-102.
    [173]查国君等.菠萝皮厌氧发酵产沼气的研究[J].新能源及工艺,2007,1:41-43.
    [174]兰吉武,陈彬.水葫芦厌氧发酵产气规律[J].黑龙江科技学院学报,2004,14(1):18-21.
    [175]Sharma A, Unni B G, Singh H D. A novel fed-batch digestion system for biomethanation of plant biomasses[J].Biosci Bioeng,1999,87:678-682.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700