用户名: 密码: 验证码:
五里湖湖滨带生态修复效果与水体富营养化评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对环境资源开发利用力度的日益增加,大量含氮、磷元素营养物质的污染物不断排入湖泊、水库和河流,增加了水体的营养物质负荷量,加速了水体富营养化的速度。虽然目前传统的水处理方法工艺流程已经很成熟,但对于湖泊,河流等开放性水体的治理确存在着极大的局限性。鉴于这种情况,近年来水体生物修复技术成为研究焦点,而在整套修复技术的研究之中又以水体微生物的研究最受关注。
     (1)经过2007年2月到2008年1月对蠡湖公园人工湿地系统9项水质指标的监测,通过对比修复中心区、修复水质区及湖滨水质区的指标监测结果发现蠡湖公园人工湿地系统作为人工生态修复系统,对五里湖湖滨带水体CODMn、TP、TN、NH4+-N等污染物去除有明显促进作用,同时还具有稳定水体DO的作用。对湖滨带水体有明显的修复效果。
     (2)通过分类将五里湖湖滨带分为湖滨修复区、湖滨水质区和湖滨景观区。经过2007年2月到2008年1月对其水质进行的采样分析,发现五里湖湖滨修复区TP、TN、CODMn、NH4+-N等主要水质指标较其它两个区域都有明显改善,体现出良好的生态修复效果。相关性统计分析表明五里湖水质指标中TP、CODMn、TN、NH4+-N四个指标互呈显著正相关关系,其中TP与TN和CODMn的相关性最显著;水体细菌总数与水温存在显著正相关关系。通过聚类统计分析将水质指标划分为三类:TP、CODMn、TN、NH4+-N;水体总菌数和水温;DO和SD,反映出五里湖水体污染主要来自于非点源污染,其水体富营养化处于发展阶段。
     (3)利用SPSS软件对9项水质指标进行主成分分析并进行重要度排序,得出TP、TN、CODMn、NH4+-N、DO五项指标能反映水质状况的绝大部分信息,因此选取它们作为聚类指标,参照中国湖泊富营养化评价标准,将富营养化分为4个级别作为4个灰类,将指标监测数据和灰类值进行无量纲化处理后,通过灰色聚类法对五里湖水体春、夏、秋、冬四季及年均的富营养化程度进行了评价。结果表明:2007年一年内,五里湖湖滨带水体都处于富营养(III)级状态。
With the increase exploitation of the natural resources, especially the water resources, more pollution containing nitrogen and phosphorus has been discharged into lakes, reservoirs and rivers continuously. It increases the quantity of nutriment substance and accelerates the speed of eutrophication in waterbody. The traditional process flow of water treatment is already mature. But for some open water area such as rivers and lakes, the process flow has large limitation. As to this condition, ecological remediation has been international research focus in resent years. And the microorganisms related to the removal of nitrogen and phosphorus from eutrophicated water have attracted more attention.
     (1) By contrast with the water quality indices in the Lihu Park from Feb. 2007 to Jan. 2008, such indices as TP, TN, CODMn and NH4+-N in the restoration center were much better than those in the restoration area and the lakeside zone. Artificial wetland system could promote elimination of pollutant in the water. It also stabilized the concentration of DO in the water and could obviously restore the lakeside zone.
     (2) The lakeside zone of Wuli Lake was separated into the three parts the restoration area, the water quality area and the tourism areas. Annual analysis of the lakeside zone shows that such indices as TP, TN, CODMn and NH4+-N in the restoration area were much better than those in the other two. It indicates that the lakeside zone of Wuli Lake was remediate evidently. The Person Correlation Analysis shows that there was the positive correlation among the four water quality indices including TP、CODMn、TN and NH4+-N. Of them, TP, TN and CODMn were the most distinct while the temperature and the total number of bacteria was obviously positive. By using the Cluster Analysis, the water indices were separated into the three sorts. The first was TP, CODMn, TN and NH4+-N, the second was temperature and the total number of bacteria; and the third was DO and SD. In a word, the most important pollution of Wuli Lake was the nonpoint sources and the eutrophication in Wuli Lake was developing.
     (3) Through the Principal Component Analysis by SPSS, TP, TN, CODMn, NH4+-N, DO were the five most important indices and could be clustering indices. Eutrophication degree is divided into four levels (four gray classifications) according to the eutrophication standard of lake. The measured data of those clustering indices and the value of gray classifications were disposed with non-dimension data to evaluate eutrophication of Wuli Lake in four seasons by use of grey clustering method. The results show that the trophic level of annual mean and four seasons in the lakeside zone of Wuli lake was at eutrophic level.
引文
[1] Qiu D R,Wu Z B,Liu B Y,et al. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China[J].Ecological Engineering,2001,18:147—156.
    [2]李洪远.生态学基础.北京:化学工业出版社,2006.
    [3] Bernard R Glick.Phytoremediation: Synergistic use of plants and bacteria to clean up the environment[J].Biotechnology Advances,2003(21):383—393.
    [4]顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境,2002,18(1):42—45.
    [5]金相灿,屠清瑛.湖泊富营养化调查规范[M].第二版.北京:中国环境科学出版社, 1990.
    [6]束良佐,朱育晓.Al3+和阳离子型表面活性剂复合污染对玉米幼苗的影响[J].农村生态环境,2001,17(2):50—52,65.
    [7]谢彦君.基础旅游学[M].北京:中国旅游出版社,2004:66,73.
    [8]张廷毅,黄观志.生态旅游及其可持续发展对策[J].经济地理,1997,17(2):108—112.
    [9]李东和,张结魁.论生态旅游的兴起及其概念实质[J].地理学与国土研究, 1999,15(2):77.
    [10]曹诗图,郑宇飞,黄蓉.旅游概念的哲学辨析[J].地理与地理信息科学.2006,22(4): 72—74.
    [11]张建萍.生态旅游—理论与实践[M].北京:中国旅游出版社,2001.
    [12] Madsen E L.Metermining in situ biodegradation: Facts and Challenges[J].Evrion Sci Technol,1991,25(10):1663—1672.
    [13] Rivas F J,et al.Joint aerobic biodegradation of wastewater from table olive manufacturing industries and urban wastewater[J]. Bioprocess Engineering,2000,23(3):283.
    [14] RanaldM. Atlas.Bioremediation of petroleum biodegradation[J].Bio Sci,1995,45(5):332—338.
    [15]赵生成,崔树生,王绍斌.污染水体原位就地修复技术研究与应用[J].水文水资源, 2004,(11);20—22.
    [16]杨红.灰色聚类法在湖泊水质富营养化评价中的应用[J].渔业机械仪器,1995(6): 36—39.
    [17]周林飞,谢立群,周林林,等.灰色聚类法在湿地水体富营养化评价中的应用[J].沈阳农业大学学报,2005,36(5):594—598.
    [18]谢骏.灰色系统理论在我国湖泊富营养化程度评价中的应用[J].水利渔业,1997, 16:9—12.
    [19]罗党.灰色决策问题分析方法[M].河南:黄河水利出版社,2005. [20 ]刘德钊,周海东,荣莉,等1CNNM(1,1)模型在城市用水量预测中的应用[J].山东建筑大学学报,2006,21(4):335—337.
    [21]李子君,陈淑芬.灰色系统理论在泰安市大气环评中的应用[J].山东建筑工程学院学报,2000,15(1):72—76.
    [22]赵全斌,谢剑,赵彤.CFRP加固钢筋混凝土柱抗剪承载力灰色关联分析[J].山东建筑工程学院学报,2005,20(3):7—10.
    [23]卢宏玮,曾光明,金相灿.湖滨生态带恢复与重建研究进展[J].湖南大学学报(自然科学版),2003,30(3):86—89.
    [24]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [25]颜昌宙,金相灿,赵景柱.湖滨带的功能及其管理[J].生态环境,2005,14(2):294—298.
    [26]王玲玲,曾光明,黄国和.湖滨湿地生态系统稳定性评价[J].生态学报, 2005,5(12):3406—3410.
    [27]朱季文,季子修,蒋自巽.太湖湖滨带的生态建设[J].湖泊科学,2002,14(1):77—81.
    [28]杨桂山,王德建等.太湖流域经济发展.水环境.水灾害[M].北京:科学出版社, 2003,7:89.
    [29]秦伯强.大型浅水湖泊内源营养盐释放的概念性模式探讨[J].中国环境科学, 2002,211(2):150—153.
    [30]张路.模拟扰动条件下太湖表层沉积物磷行为的研究[J].湖泊科学, 2001,13(2):36—42.
    [31]范成新.太湖湖内综合治理技术探讨[J].上海环境科学,2001,201(12) :56—59.
    [32]黄满忠,陈晓星.浅谈五里湖水环境综合整治思路[J].江苏水利,2002,4:14.
    [33]杨麟,孙建.五里湖——梅梁湖磷污染调查[J].环境监测管理与技术, 2001,13(6):18—20.
    [34]顾刚,陆根法.太湖五里湖水环境综合整治的设想[J].湖泊科学,2004,16 (1):56—60.
    [35]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学, 2004,14(3):193—202.
    [36]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998,25—27.
    [37]崔理华,朱夕珍,骆世明.人工湿地基质磷吸附特性与其物理化学性质的关系[J].中国环境科学,2007,27(2):250—254.
    [38]张鸿,陈光荣,吴振斌,等.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究[J].华中师范大学学报,1999,33(4):575—578.
    [39]吴振斌,梁威,成水平,等.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):622—624.
    [40]付融冰,杨海真,顾国维,等.人工湿地基质微生物状况与净化效果相关分析[J].环境科学研究, 2005,18(6):44—49.
    [41]项学敏,唐皓.人工湿地在我国城市生态建设中的应用[J].环境科学与技术, 2005,28(6):91—92.
    [42]单孝全.土壤的植物修复与超积累植物研究[J].分析科学学报,2004,20(4):430—433.
    [43] Dore M H,Burton I.Environmental degradation and remediation: is economics part of the problem[J].Environ Monit Assess.,2003,86(1):47—61.
    [44]李继洲,程南宁,陈清锦.污染水体的生物修复技术研究进展[J].环境污染治理技术与设备,2005,6(1):25—30.
    [45] Bragg J R,Prince R C.Effectiveness of bioremediation for the Exxon Valdez oil spill[J]. Nature,1994,368:413—418.
    [46] Pritchard H P,Costa C F.EPA’S Alaska oil spill bioremediation report[J].Environ Sci Technol,1991,25(3):372—379
    [47]董光器.北京城市发展的制约因素与解决对策[J].北京规划建设,2000(6):48—51.
    [48]李江锋,李萍,孙保平.景观规划中水生态环境设计的途径[J].北京水务, 2006,(5):11—14.
    [49]吴彩芸,夏宜平.杭州园林水景的水生植物调查及其配置应用[J].中国园林, 2006,(1):83—88.
    [50]水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    [51]环境微生物检验方法[M].第一版.北京:中国环境科学出版社,1990.
    [52]刘超翔,董春宏,李峰民,等.潜流式人工湿地污水处理系统硝化能力研究[J].环境科学,2003,24(1):80—83.
    [53]李国良,付强,冯艳,等.嫩江水体溶解氧变化规律的混沌研究[J].安全与环境学报, 2007,7(6):65—68.
    [54] WU Qunhe,ZENG Xunyun,HUANG Yao,et al.Influence of DO and organic matter on nitrogen(NH4+-N, NO2--N and NO3--N) releasing in the sediment of river[J].Research of Environmental Sciences,2005,18(5):34—39.
    [55] HE Benmao,WEI Manxin.A study on self-purification ability of Beihai Bay[J]. Marine Environmental Science,2004,23(1):16—18.
    [56] TAPPE W.Cultivation of nitrifying bacteria in the retentostat, a simple fermenter with internal biomass retention[J].FEMS Microbiol,1996,19(1):47—52.
    [57]李谷,黄正,范玮,等.硝化细菌富集方法的研究[J].淡水渔业,2000,30(9):36—38
    [58] WANG N M,WILLIAM J M.A detailed ecosystem model of phosphorus dynamics in created riparian wetlands[J].Ecol Eng,2000,126:101—130.
    [59]水利部上海勘测设计研究院.五里湖综合整治工程可行性研究报告[R].上海:水利部上海勘测设计研究院,2002.
    [60]陈开宁,包先明,史龙新等.太湖五里湖生态重建示范工程—大型围隔试验.湖泊科学, 2006,18(2):43—53.
    [61]刘润幸.统计软件使用指南[M].广州:广东人民出版社,1999.
    [62]叶宗裕.关于多指标综合评价中指标正向化和无量纲化方法的选择[J].浙江统计, 2003(4).67—69.
    [63]谢雄飞,肖锦.水体富营养化评述[J].四川环境,2000 ,19(2) :22—25.
    [64]尹澄清,毛战坡.用生态工程技术控制农村非点源水污染[J].应用生态学报, 2002,13(2):229—232.
    [65]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002:262—277.
    [66]赵芯,朱义年,廖雷,等.温度对糖蜜酒精废液处理效果及微生物量的影响[J].桂林工学院学报,2006,26(3):395—399.
    [67]童昌华,杨肖娥,濮培民.富营养化水体的水生植物净化试验研究[J].应用生态学报,2004,15(8):1447—1450.
    [68]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水, 2003,19(10):28—31.
    [69]卢纹岱,朱一力,沙捷,等.SPSS for windows从入门到精通[M].北京:电子工业出版社, 1997.
    [70]袁淑均,孟庆茂.数据分析SPSS/PC+原理和应用[M].北京:航空工业出版社,1995.
    [71]柴世伟,裴晓梅,张亚雷,等.农业面源污染及其控制技术研究[J].水土保持学报, 2006,20(6):192—195.
    [72]张巍,王学军,江耀慈,等.太湖水质指标相关性与富营养化特征分析[J].环境污染与防治,2002,24(1):50—53.
    [73]吕耀,程序.太湖地区农田氮素非点源污染及环境经济分析[J].上海环境科学, 2000,19(4):143—148.
    [74]朱庆峰,廖秀丽,陈新庚,等.用灰色聚类法对荔湾湖水质富营养化程度的评价[J].中国环境监测,2004,20(2):47—50.
    [75] Qin B Q,Gao G,HuW P,et al.Reflections on the theory and practice of shallow lake ecosystem restoration[J].Journal of Lake Sciences, 2005,17(1):9—16.
    [76]赵光影,华德尊.灰色聚类法在地表水环境质量评价中的应用[J].北方环境, 2005,30(2):84—86.
    [77]王旭晨,王丽卿,彭自然.灰色聚类法评价淀山湖水质状况[J].上海水产大学学报,2006,15(4):497—502.
    [78]李炳南,张文鸽.基于灰色聚类决策的水环境质量评价[J].东北水利水电, 2004,24(9):51—54.
    [79]兰文辉.灰色聚类法在大气环境评价中的应用及与其它方法的比较[J].干旱环境监测,1995,9(3):14—151.
    [80]付利华,朱百鸣.用灰色聚类法评价大气环境质量[J].环境与开发,1994,9 (4):358—361.
    [81]水利部上海勘测设计研究院.五里湖综合整治工程可行性研究报告[R].上海:水利部上海勘测设计研究院,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700