用户名: 密码: 验证码:
基于智能传感器阵列的大型风洞机组振动监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会生活节奏的加快和现代工程技术的发展,促使大型运动机械不断提速,带来了系统工作效率的大幅度提升,但由此产生的振动危害已越来越严重。因此,大型装备的状态监测和故障诊断越来越受到重视。而振动参数是装备运行中重要的特征参数,振动监测是装备状态监测和故障诊断的重要手段。研究表明,对于大型风洞机组的振动监测,现有的振动监测技术已不适应多参数监测的需要,传统的振动监测技术主要存在监测点参数单一、监测系统的动态范围小、通信方式不灵活等问题,影响了装备状态监测的可靠性。目前,对大型、复杂装备的振动状况监测,已成为装备状态监测和故障诊断技术领域的前沿课题。
     本文在深入研究现有振动监测技术和通信理论的基础上,结合大型风洞机组振动监测领域的具体应用环境,提出一种适用于大型风洞机组振动监测的“多点-多参数”远程监测方法,构建了基于多传感器管理的测振传感器阵列模型;研究了有线与无线并存的远程监测通信模式;研究了适用于风洞机组振动“多点-多参数”远程监测的多源信息融合模型;探索了解决大型风洞机组振动远程监测问题的新方法。本文的研究工作,有望改变大型风洞机组振动监测现状,以提高风洞机组振动监测的实时性、准确性和可靠性,为大型风洞机组的状态监测与故障诊断、以及工程设计提供科学依据。这对提升我国振动监测的理论水平和应用水平具有重要的理论价值和重大的现实意义。
     主要研究工作如下:
     ①为了全方位监测大型风洞机组的振动状态,研究了大型风洞机组的振动特征,提出一种“多点-多参数”监测方法。
     现有的振动监测技术,一般都选择振动体的某些具有代表性的部位作为监测点,安装测振传感器,以实施其振动监测。这对于简单装备的振动监测是可行的。但是,对于大型的、复杂的装备而言,不同部件、同一部件的不同部位,其振动特征都是不同的,其单点单参数监测结果不足以全面表征监测对象的振动状态。为此,提出一种在不同部件、同一部件的不同部位分别布置监测点的“多点-多参数监测”模式。
     ②为了确定“多点监测”的多个目标监测点,实现振动的多点-多参数监测,研究了基于有限元分析的振动特征提取与监测点布置方法,构建了一种由多个测振传感器组成的测振传感器阵列模型。
     大型风洞机组的振动情况复杂多变,必须全面考虑影响装备工作状况的各种因素,特别是模拟在极端条件下可能出现的振动状况,这就需要根据监测对象的几何参数和工作载荷等参数进行有限元分析,了解其基本振动特征,由此确定监测点布置模型。
     采用微型敏感元件作阵列元素,把若干具有不同功能的微型敏感元件构成“阵列”分布,并与共享的阵列管理器、信号处理电路以及智能芯片集成在一起,形成一种具有初级智能的多功能传感器组件——智能传感器阵列。
     ③为了尽可能提高系统的可靠传输问题,研究了一种基带传输与频带传输并存的冗余监测通信模式。
     基于有线连接的振动监测系统应用广泛,技术成熟,可靠性高,但可维护性和扩展性差;基于无线网络通信技术的振动监测系统,对于旋转机械,无线监测更具优越性,但这类系统的安全性、可靠性及通信距离和功率受限等问题都是有待克服的挑战。为此,采用了以无线传感器网络(Wireless Sensor Network, WSN)、通用分组无线服务技术(General Packet Radio Service, GPRS)、Internet、与电力线通信(Power Line Communication,PLC)融合的振动远程监测通信方法作为补充,使其监测系统既能采用基带传输,也可采用频带传输。
     ④为了提高监测系统运行效率、减小网络开销(特别是能量开销),采用适用于振动监测系统的分布式数据融合算法。
     一方面,振动监测所要求的采样频率通常在1kHz~10kHz范围内,高频采样将产生大量的振动数据;另一方面,由于采用“多点-多参数”监测布点模式,一个监测点处将有多种测振敏感元件,致使监测数据成海量增长。为了尽量减小网络开销、避免网络拥塞,确保信息可靠传输,必须采用多级数据融合技术,确保振动多点-多参数远程监测网络的高效运行。
     ⑤多点-多参数远程监测系统的设计。
     在完成上述研究工作的基础上,构建了多参数远程测振与预警系统模型,研制了基于该模型的振动远程监测实验平台,并对该实验平台的基本性能及实际应用进行了测试实验。实验结果表明了该振动监测系统的可行性和先进性。
     文章最后对研究工作进行了总结和未来的研究进行了展望。
With the development of pace of life and modern mechanical engineering technology, speed of large-scale moving machinery become faster and faster, and the efficiency of the mechanical system is improved a lot. But as a result, vibration hazards become a serious problem. Therefore, condition monitoring and fault diagnosis technology of large-scale mechanical equipment have gotten more and more attention. The mechanical vibration is an important characteristic parameter of the operation of mechanical equipment. Mechanical vibration monitoring is an important means of mechanical equipment condition monitoring and fault diagnosis. Studies have shown that: In some area of vibration monitoring to large-scale machinery and equipment (such as a large wind tunnel unit), existing mechanical vibration monitoring methods cannot meet the needs of large dynamic range monitoring of large-scale mechanical equipment. It mainly has the following shortcomings: single monitoring point, small dynamic range of the monitoring system, rigid communication mode and so on. These seriously affect the reliability of mechanical equipment condition monitoring and fault diagnosis. At present, vibration monitoring of large-scale and complex mechanical equipment has become the frontier of the field of mechanical equipment condition monitoring and fault diagnosis.
     Based on intensive study of existing mechanical vibration monitoring technology and communication theory, combining with the specific application environments in the field of large-scale and complex mechanical vibration monitoring area, a“multi-point-multi-parameter”remote vibration monitoring program for large-scale mechanical has been proposed, and the vibration sensor array model based on multi-sensor management has been built in this paper. We studied on the communication model, which is combined wireless sensor network with mobile communication network, internet and low voltage power line communication network for mechanical vibration remote monitoring. And also we do the research on the application of suitable multi-source information fusion model in“multi-point-multi-parameter”remote monitoring for mechanical vibration. Then, a new method of vibration remote monitoring of large-scale and complex mechanical equipment has been explored. Based on our research works, it is expected to completely change the status of mechanical vibration monitoring, the real-time、accuracy and reliability of mechanical vibration monitoring can be improved and the provide the scientific basis for the mechanical engineering design and mechanical equipment fault diagnosis. It has important theoretical value and practical significance to the improvement of the theoretical level and application level of mechanical vibration monitoring in China.
     Main research works are listed as follows:
     (1)For the all-round vibration status monitoring of large-scale mechanical equipment, a“multi-point-multi-parameter”monitoring program has been proposed.
     Generally in the existing mechanical vibration monitoring technology, a representative part of the vibration body is chosen as a monitoring point that is installed with the vibration sensors to implement the vibration monitoring. But this is only suitable for the simple mechanical equipment. For the large-scale and complex mechanical equipment, the vibration status of different parts and different positions of the same part is different. And the result of single point monitoring cannot fully reflect the vibration status of the objects. So, this“single point of monitoring”mode is far from meeting the needs of vibration monitoring and fault diagnosis for large-scale and complex mechanical equipment. Hence, the“multi-point-multi-parameter”mode has been proposed in which the monitoring points are arranged respectively at different parts and different positions of the same part. Through the vibration sensors from multiple monitoring points, it will all-round monitor the vibration characteristics of mechanical equipment simultaneously, then multi-sensor management technology and information fusion technology have been used to integrate the measured information, and at last, the statistical vibration characteristics of monitoring objects can be obtained. It provides reliable statistical data for vibration monitoring and fault diagnosis for large-scale mechanical equipment.
     (2)To determine the multiple monitoring points of“multi-point monitoring”, a program of mechanical vibration features extraction and monitoring points layout based on finite element analysis has been proposed.
     Because of the complexity of vibration status of large-scale mechanical equipment, the determination of monitoring points is so important that it will brings serious consequence if there is something wrong with it. Therefore, the selection and arrangement of monitoring points is the key point of the issue. All kinds of factors that will affect working conditions of equipment should be considered, and especially in the case that simulate the vibration status under extreme conditions. The finite element analysis need to be applied based on the geometric parameters and working load parameters of monitoring objects to get the basic vibration characteristics and then determine the layout points.
     The performance of vibration sensor is the key issue should be considered firstly in mechanical vibration monitoring. Generally, traditional sensors can only fulfill the conversion between non-electricity and electricity, and there are many shortcomings and inconvenience, such as weak signals, low sensitivity and nonlinear error. Especially when we monitor multiple parameters simultaneously, multiple sensors will be needed, and the traditional collection system is too complex. For this, we used mini-sensors as the array elements, and made the lots of mini-sensors of different function to construct an“array”. Then we integrated the array with the shared array managers, signal processing circuit and intelligent chip to form the multifunctional sensor component with primary intelligent, and it is called intelligent sensor array.
     (3)To achieve the reliability transimission of the system, a redaunt monitoring communication model based on both the baseband transimission and the band transmission has been proposed.
     Wired mechanical vibration monitoring system has been widely used, but it has shortcomings such as: complex wiring, higher deployment costs, poor maintainability and scalability. Therefore, mechanical vibration monitoring system based on wireless sensor network has emerged, and it brings new vitality to the wireless monitoring mode for mechanical vibration. However, the security、reliability、communication distance and the power limited issues of these systems are challenging.For this, after we deeply studied on the existing communication technique and made full use of its network resource, a remote monitoring communication program integrated of Wireless Sensor Network, General Packet Radio Service, Internet and Power Line Communication has been proposed. It is used as a supplement so that both the baseband transimission and the band transimission can be used in the monitoring system.
     (4)In order to improve the monitoring efficiency and reduce network overhead (especially energy costs), the distributed data fusion algorithm for mechanical vibration network has been proposed.
     On the one hand, the sampling frequency required by mechanical vibration monitoring is usually among 1 kHz~10 kHz, and lots of vibration data will be generated by the high-frequency sampling. On the other hand, because of using“multi-point-multi-parameter”mode there will be multiple sensors at one monitoring point, and as a result, the monitoring data will be into a massive growth. To minimize network overhead, avoid congestion and ensure reliable transmission of information, the multi-grade data fusion technology need to be used, so that the efficient operation of multi-point-multi-parameter remote monitoring network for mechanical vibration can be achieved.
     (5)Design and implementation of the multi-point-multi-parameter remote monitoring system for mechanical vibration.
     Based on completion of above research works, the "multi-point-multi-parameter remote monitoring system" model has been constructed and the remote monitoring experimental platform based on this model for mechanical vibration has been developed. Also, a lot experiments has been carried out to demonstrate the basic performance and practical application of the system. Experimental results have demonstrated the feasibility and advancement of the mechanical vibration monitoring system. The system can be widely used in the mechanical vibration monitoring of kinds of large-scale and complex machinery and equipment, and also can be applied to the area of monitoring health status of large-scale equipments.
     The end of the paper is the summary of research works and prospects for future research.
引文
[1]张灿.火车提速对道路客运业的影响及对策研究[J].经济研究导刊,2009,70(32):36-37.
    [2]徐鹤寿.既有线提速200Km/h的技术可行性和3次综合试验[J].铁道标准设计,2006(s):5-9.
    [3]南方.倾力打造数控机床精品为振兴装备制造业提速[J].机电新产品导报,2006,07:42-45.
    [4]王会永,毛成涛,满忠雷等.基于风险评价的高速车床机械安全设计研究[J].机床与液压,2010, 38(19): 147-149.
    [5]林国光. CDS6140B高速车床噪声分析及降噪[J].组合机床与自动化加工技术,2004,04:47-49.
    [6]郭万林,邵忍平,冯谦.结构损伤监测的研究现状与展望[J].振动、测试与诊断,2003, 23(2):79-84.
    [7]李平康,吕玲,杜秀霞等.火电机组旋转机械振动监测与故障诊断技术现状及发展[J].中国电力,2001, 34(11):54-55.
    [8]严骏,赵立强,凌海凤.基于DataSocket的工程机械液压系统远程故障监测与诊断系统研究[J].机床与液压,2006,19:48-49.
    [9]李大庆.旋转机械振动监测系统的设计和实现[D].北京:北京工业大学,2006.
    [10]张文雷.基于嵌入式系统的旋转机械状态数据采集系统的研究[D].杭州:浙江大学,2008.
    [11]陈新宇,周锋,王丽华,荀东升.设备远程实时监测系统的研究[J].电气传动,2005,35(2):130-132.
    [12]孙欣,丁香乾,石硕.BP神经网络在柴油机涡轮增压系统故障诊断中的应用[J].计算机应用研究,,2006(5):202-203.
    [13]胡婧,杨曙年.基于BP神经网络的滚动轴承故障诊断研究[J].机械与电子,2006(4):9-10.
    [14] Yan,T.Ota,J.etc.Concept design of remote fault diagnosis system for autonomous mobile robots[J].IEEE International Conference on Intelligent Robots and Systems,2000,(2):931-936.
    [15]潘宏侠,姚竹亭.车辆动力传动系统状态监测与故障诊断[J].华北工学院学报,2002,23(2):109~113.
    [16] Ryan Deering, James F.Kaiser. The use of a masking signal to improve empirical mode decomposition [J]. ICASSP 2005 IEEE.485-488.
    [17]刘红星,林京,屈梁生.信号时域平均处理中若干问题的讨论[J].振动工程学报,1997,10(4):446~450.
    [18] C.L Churms.etc. The remote control of nuclear microprobes over the Internet [J]. Nuclear instruments and methods in physics research, 1999, (158):124-128.
    [19] Caldwell, Nicholas H.M.Remote. Instrument diagnosis on the Internet [J]. IEEE Intelligent Systems&Their Applications, 1998, (13):70-76.
    [20]刘德勇,朱明富.基于Internet的远程协作故障诊断系统技术[J].现代电子技术,2001(12):23-27.
    [21]王文利,段宝岩等.基于网络的机械设备远程监测与故障诊断[J].制造业自动化,1999,21(4):32-33.
    [22]黄磊.基于Internet的远程机械故障诊断技术研究[J].计算机自动测量与控制,2000,8(4):13-15.
    [23] Yan,T.Ota,J.etc.Concept design of remote fault diagnosis system for autonomous mobile robots[C]..IEEE International Conference on Intelligent Robots and Systems,2000,(2):931-936.
    [24]丁康,陈健林,苏向荣.平稳和非平稳振动信号的若干处理方法及发展[J].振动工程学报,2003,16(1):1-10.
    [25]丁康,孔正国,何志达.振动调幅信号的循环平稳解调原理与应用[J].振动工程学报,2005,18(3):304-308.
    [26] R.B.Randall.The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals[J].Mechanical Systems and Signal Processing,2001,15(5):945~962
    [27] C.L Churms.etc. The remote control of nuclear microprobes over the Internet [J]. Nuclear instruments and methods in physics research, 1999, (158):124-128.
    [28]史挺进,缪思恩,邱忠字等.分布式网络化状态监测与故障诊断系统[J].发电设备,1999,(2):22-26.
    [29]严骏,赵立强,凌海凤.基于DataSocket的工程机械液压系统远程故障监测与诊断系统研究[J].机床与液压,2006,19:48-49.
    [30]陈新宇,周锋,王丽华等.设备远程实时监测系统的研究[J].电气传动,2005,35(2):130-132.
    [31] S.R.Qin, Y.M.Zhong. A new envelope algorithm of Hilbert-Huang transforms. Mechnical Systems and Signal Processing,2006,20(8):1941~1952.
    [32]孙欣,丁香乾,石硕. BP神经网络在柴油机涡轮增压系统故障诊断中的应用[J].计算机应用研究,2006(5):202-203.
    [33] Yu D J, Cheng J S, Yang Y. Application of EMD Method and Hilbert Spectrum to the FaultDiagnosis of Roller Bearings [J]. Mechanical Systems and Signal Processing, 2005, 19 (2):259-270.
    [34] Caldwell, Nicholas H.M.Remote. Instrument diagnosis on the Internet [J]. IEEE Intelligent Systems&Their Applications, 1998, (13):70-76.
    [35] B.Mirela, A.Isar. The reduction of interference terms in the time-frequency plane Signals [J]. Circuits and Systems, 2003, (2):461~464.
    [36]杨江天,徐金梧,陈家骥.旋转机械故障的双相干谱特征及其识别[J].机械工程学报,,2000,36(9) : 103-106.
    [37] J.M.Aller, T.G.Habetler, R.G.Harley, R.M.Tallam and S.B.Lee. Sensor less speed measurement of AC machines using Analytic Wavelet Transform [J]. IEEE Trans on Industry Applications,2002,38(5):1344-1350
    [38] J.M.Aller, T.G.Habetler, R.G.Harley, R.M.Tallam and S.B.Lee. Sensor less speed measurement of AC machines using Analytic Wavelet Transform [J]. IEEE Trans on Industry Applications,2002,38(5):1344-1350
    [39]叶伟松,袁慎芳.无线传感网络在结构健康监测中的应用[J].传感技术学报,2006,19(3):890-894.
    [40]喻,,欧进萍.海洋平台结构振动监测的无线传感实验研究[J].哈尔滨工业大学学报,2007,39(2): 187-190.
    [41] Grosse C U,Kruger M,D.Glasser S. Wireless acoustic emission sensor networks for structural health monitoring in civil engineering. ECNDT 2006 Tu.1.7.3: l-8.
    [42]张维衡,熊志民,杜润生.振动测试技术[M].武汉:华中理工大学出版社,1993.
    [43] R.H.Lyon. Machinery noise and diagnostics, Boston: Butterworths, 1987.
    [44]严济宽,振动隔离技术[M].上海:上海科学技术文献出版社,1985.
    [45] GB10084-88振动、冲击数据分析和表示方法[M].1988.
    [46] GB/T 11349.1-89机械导纳的试验确定基本定义与传感器[M].1989.
    [47]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [48]滕召胜,罗隆福.智能检测系统与数据融合(第一版) [M].北京:机械工业出版社,2002.
    [49]黄文虎,夏松波,刘瑞岩等著.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [50]屈梁生,何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986.
    [51]赵犁丰,周晨赓,仲京臣.基于EMD与神经网络的机械故障诊断技术[J].中国海洋大学学报,2004,34(2):297-302.
    [52]杨世锡,焦卫东,吴昭同.基于独立分量分析特征提取的复合神经网络故障诊断法[J].振动工程学报,2004,17(4):438~442.
    [53]刘小峰,秦树人,柏林.基于小波包的经验模态分解法的研究及应用[J].中国机械工程,2007,18(10):1201-1204.
    [54]刘刚,屈梁生.应用连续小波变换提取机械故障的特征[J].西安交通大学学报,2000,34(11):74~77.
    [55] A.Azzalini, M.Farge, K.Schneider. Nonlinear wavelet thresholding: A recursive method to determine the optimal denoising threshold [J]. Appl.Comput.Harmon.Anal, 2005, (18):177~185.
    [56]袁海英,陈光,谢永乐.故障诊断中基于神经网络的特征提取方法研究[J].仪器仪表学报,2007,28(1):90~94.
    [57] F.Liu, X.E.Ruan. Wavelet-based diffusion approaches for signal denoising [J]. Signal Processing,2007,(87):1138~1146.
    [58]程发斌.面向机械故障特征提取的混合时频分析方法研究[D].重庆:重庆大学,2009.
    [59]孟庆丰.信号特征提取方法与应用研究[D].西安.西安电子科技大学, 2006.
    [60] D.Lutfiye, A.Orhan. Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation [J]. IEEE Trans on Signal processing, 2003, 51(5):1231~1242.
    [61]傅勤毅,章易程,应力军等.滚动轴承故障特征的小波提取方法[J]..机械工程学报,2001,37(2):30~33.
    [62]梁霖,徐光华,刘弹等.小波—奇异值分解在异步电机转子故障特征提取中的应用[J].中国电机工程学报,2005,25(19):111~115.
    [63]赵均海,汪梦甫.弹性力学及有限元[M].武汉:武汉理工大学出版社, 2006.
    [64]胡玉梅.车辆结构强度基本理论与CAE分析技术[M].重庆:重庆大学出版社, 2009.
    [65]陈孝珍.弹性力学与有限元[M].郑州:郑州大学出版社, 2006.
    [66]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用[M].北京:电子工业出版社, 2006.
    [67]任永.基于CAN总线的智能振动检测仪的研究与设计[D].北京:北京化工大学,2009.
    [68]康海燕.精密高速轴系振动和动平衡检测设备的设计[D].成都:电子科技大学,2008.
    [69]魏博峰.数控铣床工作台动态特性分析与试验研究[D].沈阳:沈阳工业大学,2009.
    [70]郝方涛.基于有限元的接触网弹性及其不均匀系数计算[D].成都:西南交通大学,2010.
    [71]原春晖.机械设备振动源特性测试方法研究[D].武汉:华中科技大学,2006.
    [72] http://www.esmchina.com
    [73] http://www.18show.cn
    [74]曲国福,刘宏昭.基于微型技术的复合型智能传感器设计[J].传感器与微系统,2006, 25(3):86-88.
    [75] Hartzell A L, Woodilla D J. MEM’s reliability, characterization, and test [J]. In: Proceedings of SPIE, 2001, 4558:1-5.
    [76] Blackshire J L, Sathish S. Characterization of MEMS Transducer Performance Using Near-Field Scanning Interferometry [J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, 49(5):669-674.
    [77] Balan N N, Rodin V G, Starikov S N. Measurement of MEMS structures microshiftings by holographic interferometry with increased sensitivity. In: Proeedings of SPIE, 2005, 5851:319~326.
    [78] Hedley J, Burdess J S, Harris A J, et al. An optical workstation for characterizationand modification of MEMS [J]. In: Proceedings of SPIE, 2004, 5458:244~252.
    [79] Rembe C, Kant R, Muller R S. Optical Measurement Methods to Study Dynamic behavior in MEMS [J]. In: Proceedings of SPIE, 2001, 4400:127~137.
    [80] Rembe C, Muller R S. Measurement System for Full Three-Dimensional Motion Characterization of MEMS [J]. Journal of Micro electro Mechanical System,2002,5(11):479~488.
    [81]张威,张大成,王阳元.微型传感器概况及发展趋势[J].微纳电子技术,2002,(1):22-27.
    [82]郭明良,郭松林,付家才.基于微分电路的频率/直流电压转换原理的频率测量计[J].电测与仪表,2008,45(511):61-64.
    [83]孙玉国,周晓红.基于微型的结构振动无线传感器研究[J].噪声与振动控制,2006,(6):100-101.
    [84]孙玉声.振动传感器[M].西安:西安交通大学出版社,1991.
    [85]仲元昌,汤宝平,谭春禄,丁漩.用于大气环境监测的智能传感器阵列研究[J].通信学报,2008,29(6):137-140
    [86]胡海岩.振动基础[M].北京:北京航空航天大学出版社,2005.
    [87]李得葆,张元润.振动测量与试验分析[M].北京:机械工业出版社,1992.
    [88]张岩,胡秀芳.传感器应用技术[M].福建:福建科学技术出版社,2005.
    [89]王雪文,张志勇.传感器原理及应用[M].北京:北京航空航天大学出版社,2003.
    [90]张如一,沈观林,李朝弟.应变电测与传感器[M].北京:清华大学出版社,1998.
    [91]仲元昌,王军强,陈启健,周田.基于ATmega128的无线传感器网络节点设计[J].电子工程师,2008,34(12):68-71.
    [92]喻言,李宏伟,欧进萍.结构监测的无线加速度传感器设计与制作[J].传感技术学报,2004,17(3): 463-467.
    [93] S.W. Kwon, J.Y. Kim, H.S. Yoo, etc. Development of wireless vibration sensor using MEMS for tunnel construction and maintenance [J]. Tunnelling and Underground Space Technology, 2006, 21(3): 318-331.
    [94] CC2420 2.4GHz IEEE 802.15.4/Zigbee RF Transceiver. Chipcon Product Data Sheet.http://www.chipcon.com/files/cc2420_Data_Sheet_1_0.pdf.
    [95]樊勇,徐金悟,杨德斌等.一种用于设备监测的高效无线传感器网络多跳同步时分协议[J].北京科技大学学报,2007,29(7): 750-754.
    [96] Ian F. Akyildiz, Erich P. Stuntebeck, Wireless underground sensor networks: Research challenges [J]. Ad Hoc Networks, 2006, 4 (6): 669-686.
    [97] 21 Ideas for the 21st Century [J]. Business Week,1999,30(08):78-167.
    [98] D Koller. 10 Emerging Technologies that Will Change the World [J]. Technol, 2003, 106(01):33-49.
    [99] University of California at Berkeley. TinyOS. http://webs.cs.berkeley.edu/tos.
    [100] http://nesl.ee.ucla.edu/projects/sensorsim.
    [101] Ferentinos KP, Tsiligiridis TA. Adaptive design optimization of wireless sensor networks using genetic algorithms [J]. Computers Networks, 2007, 51 (4): 1031-1051.
    [102] Li JB, Li JZ, Guo LJ, et al.. Power-efficient node localization algorithm in wireless sensor networks [J]. Lecture Notes in Computer Science, 2006, 3842: 420-430.
    [103] Barbancho J, Leon C, Molina J, et al.. Using artificial intelligence in wireless sensor routing protocols [J]. Lecture Notes in Artificial Intelligence, 2006, 4251: 475-482.
    [104] Gerhke J. COUGAR design and implementation. http://www.cs.cornell.edu/database/cougar
    [105] M.Kochhal, L.Schwiebert, and S.Gupta. Role-Based Hierarchical Self-Organization for Wireless Ad hoc Sensor Networks[C]. In Proceedings of the 2nd ACM International Workshop on Wireless Sensor Networks and Applications(WSNA), San Diego, CA September 2003.
    [106] J. Wu and H. Li. On Calculating Connected Dominating Set for Efficient Routing in Ad Hoc Wireless Networks[C]. In Proceedings of the 4nd ACM International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA, August 11, 2000.
    [107] P.D.McFadden, M.M.Toozhy.Application of synchronous averaging to vibration monitoring of rolling element bearing. Mechanical Systems and Signal Processing, 2000, 14(6):891~906.
    [108]贺超.振动无线传感器网络监测模式和网络传输协议研究[D].重庆:重庆大学,2009.
    [109]蔡烽.无线传感器网络分簇路由算法研究[D].上海:上海交通大学,2008.
    [110]曹亮.基于按需算法的Ad hoc网络路由协议研究与改进[D].上海:上海交通大学,2008
    [111]郭开林.三峡库区水环境监测网络的信息融合算法研究[D].重庆:重庆大学,2010.
    [112]陈启健.基于伪遗传算法的CDMA多用户检测研究[D].重庆:重庆大学,2009.
    [113]仲元昌,曾孝平.低压电力线扩谱通信系统及抗干扰性能分析[J].电工技术学报,2004,19(9):82-85.
    [114]仲元昌,李刚,曾孝平.低压电力线双路扩谱通信系统[J].电讯技术,2004,1:21-24.
    [115]李刚,仲元昌.低压电力线载波通信的耦合电路分析[J].重庆大学学报/自然版,2004,27(3):53-55.
    [116]仲元昌,刘勇,李飞,李秀珍.基于电力线载波通信的电力设备远程控制系统[J].重庆大学学报/自然版,2010,31(4):476-480.
    [117]肖东海.基于低压电力线载波通信的门禁系统研究[D].重庆:重庆大学,2009.
    [118]成小良,邓志东.基于ZigBee规范构建大型无线传感器网络[J].通信学报,2008,11:158~164.
    [119]胡柯,郭壮辉,汪镭.无线通信技术ZigBee研究[J].电脑知识与技术,2008,6:1049-1051.
    [120]王权平,王莉. ZigBee技术及其应用[J].现代电信科技,2004,1:33-37.
    [121]王军强.基于SimpliciTI的无线传感器网络关键技术研究[D].重庆:重庆大学,2009.
    [122] Wlleeler Andrew. Conunereial applications of wireless sensor networks using[J].ZigBee.IEEE Communications Magazine,2007,45(4):70-77.
    [123] EGAND.The Emergence of ZigBee in Building Automation and Industrial Control. [J].Computing & Control Engineering Journal,2005,16(2):14-19.
    [124] Baumann Chris. ZigBee or 802.15.4 network layer-is there room for both? [J].Electronic Design,2006,54(20):22.
    [125]刘衍晰,孙惠平,苑森森. GPRS中分组调度算法[J].通信学报.2002, 23(9):110, 113.
    [126]范锐,程时端.移动服务质量框架的研究与展望[J].电子学报,2003(31),3:419-425.
    [127]杨筱凡,曹鹏,蔡斌等. GPRS骨干网内移动终端间路由的优化方法[J].通信学报.2003(24),5:72-78.
    [128]齐淑清.电力线通信(PLC)技术在中国的应用现状[J].中国电信建设,2006,4:28-34.
    [129]徐志强,翟明岳,赵宇明.电力线通信正交频分复用系统中多用户协调资源分配[J].中国电机工程学报,2009,29(25):57-62.
    [130]罗文亮,柯熙政,马鸣.基于低压电力线通信信道的自适应估计研究[J].仪器仪表学报, 2009,30(8):1623-1639.
    [131]戚佳金,徐殿国,周岩,刘晓胜.低压电力线通信网络特性模型与组网算法[J].中国电机工程学报,2009,Vol.29 No.16:56-62
    [132] J.M.Kahn, R.H.Katz, and K.S.J.Pister. Emerging Chanllenges: Moblie Networking for“Smart Dust”[J]. Journal of Communications and Networks, 2000, 2(3): 188-196.
    [133] B.Krishnamachari, D.Estrin, and S.Wicker. The Impact of Data Aggregation in Wireless Sensor Networks[C]. In Proceedings of the International Conference on Communications, Anchorage, AK, May 2003.
    [134] COHEN O, EDAN Y. A sensor fusion framework for online sensor and algorithm selection[J]. Robotics and Autonomous Systems, 2008, 56(9):762-776.
    [135] YAN Zhiguo, WANG Zhihong, XIE Hongbo. Joint application of rough set-based feature reduction and fuzzy LS-SVM classifier in motion classification [J]. Medical and Biological Engineering and Computing, 2008, 46(6):519-527.
    [136]何又,关昕,王国宏.多传感器信息融合研究进展与展望[J].宇航学报,2005,26(4):524-529.
    [137]康耀红.数据融合理论与应用(第二版)[M].西安:西安电子科技大学出版社,2006:56-73.
    [138] Zhu X, Kalata P. Sensor fusion for mobile robot navigation [J].Proceedings of the IEEE Special Issue on Sensor Fusion, 1997, 85(1):108-119.
    [139]叶宁,王汝传.无线传感器网络数据融合模型研究[D].南京:南京邮电大学,2006.
    [140]王壮. C4ISR系统目标综合识别理论与技术研究[D].长沙:国防科技大学,2001.
    [141]徐毓.雷达网数据融合问题研究[D].北京:清华大学,2003.
    [142]王明辉.多传感器数据融合跟踪算法研究[D].北京:清华大学,2003.
    [143] Llinas.J, Nagi.R, Hall.D. A Multi-Disciplinary University Research Initiative in Hard and Soft information fusion: Overview, research strategies and initial results[C]. Information Fusion (FUSION), 2010 13th Conference , Page(s): 1-7.
    [144] Shivappa.S.T, Trivedi.M. M, Rao.B.D. Audiovisual Information Fusion in Human–Computer Interfaces and Intelligent Environments: A Survey [J]. Proceedings of the IEEE. 2010, 98(10):1692-1715.
    [145] S.Lindsey, C.S.Raghavenda, K.M.Sivalingam.Data Gathering in Sensor networks using the Energy Delay Metric [C].Proceedings 15th International Parallel and Distributed Processing Symposium, 2001, 2001-2008.
    [146] Bedworth M, O’Brien J.The Omnibus model: a new of data fusion [J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(4):30-36.
    [147]彭冬亮,文成林等.随机理论及其在信息融合理论中的应用[J].电子信息学报,2006,28(11):2199-2204.
    [148] Guo Y F, Xue A K, Peng D L.A recursive algorithm for bearings-only tracking with signal time delay [J].Processing, 2008, 88(6):1539-1552.
    [149] Chong C-Y, Kumar S P. Sensor networks: Evolution, opportunities, and challenges [J]. Proceedings of the IEEE.2003,91(8):1247-1256.
    [150]仲元昌,汤宝平,谭春禄,丁漩.用于大气环境监测的智能传感器阵列研究[J].通信学报,2008,6:137-140.
    [151]李嘉,刘文江,胡军等.基于信息融合的阵列式触觉传感器信号处理方法研究[J].传感技术学报,2003,6(2):147-149.
    [152] Chen Xiao-Hong, Zhao Ke, Wireless Communications, Networking and Mobile Computing[C], 2008. WiCOM '08. 4th International Conference on12-14 Oct. 2008:1-4.
    [153] Yu Guo, Wenlong Chen, Shouyu Chen, Intelligent Control and Automation[C]. 2008. WCICA 2008. 7th World Congress on 25-27 June 2008 Page(s):7108-7112.
    [154]陶文华,叶志锋.关系矩阵法在发动机执行机构故障检测中的应用[J].航空动力学报,2009,24(8):1872-1877.
    [155]陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,2:11-16.
    [156]尹慧琳,王磊,冯占军.无线传感器网络节点分布式信息融合算法研究[J].计算机工程与应用,2007,43(17):18-20.
    [157] Wendi R H, Anantha C, Hari B. Energy-efficient communication protocol for wireless micro2sensor networks[C].IEEE Proceedings of the 33rd Hawaii International Conference on System Sciences. Hawaii: IEEE, 2000:46 -57.
    [158] Manjeshwar A., Agrawal D.P.APTEEN:A Hybrid Protocol for Efficient Routing and Comprehensive Information Retrieval in Wireless Sensor Networks[C].Paralled and Distributed Processing Symposium.2002:195-202.
    [159] De S., Caruso A., etc.Bounds on hop distance in greedy routing approach in wireless ad hoe networks [J].Wireless and Mobile.2006, 1(2):131-140.
    [160] Amit Sinha, Anantha Chandrakasan. Dynamic Power Management in Wireless Sensor Networks [J].IEEE Design and Test of computer, 2001, 5:62-74.
    [161]仲元昌.多目标大气监测及采样远程无线测控系统[D].重庆:重庆大学,2004.
    [162] XIAO Dong-hai, TAN Chuan-lu, WANG Jun-qiang, ZHONG Yuan-chang. Optimized two-level placement of test points for multi-objective air monitoring of the Three Gorges Reservoir area [J]. JOURNAL OF CHONGQING UNIVERSITY ( ENGLISH EDITION),2007,6(4):232-237.
    [163]仲元昌,郭开林,徐保桂.面向三峡库区水环境监测的混合网络构建[J].世界科技研究与发展,2010,32(6):737-740
    [164] G.J.Pottie, W.J.Kaiser. Wireless Integrated Network Sensors[C]. Comm.ACM, 2000,43(05):51-58.
    [165] IROA GA E, MURMANN B. A 122Bit 752MS/ s pipe2lined ADC using incomplete settling [J]. IEEE J Solid2State Circuits, 2007, 42 (4): 748-756.
    [166] SHEN D L, L EE T C. A 62bit 8002MS/ s pipelined A/D converter with open2loop amplifiers [J]. IEEE JSolid2State Circuit s, 2007, 42 (2): 258-268.
    [167]仲元昌.基于计算机PCI总线的虚拟信号源设计[J].计算机科学,2005,32(6):230-232
    [168] Tsao Shiao-Li. Scalable gateway GPRS support node for GPRS/UMTS networks[C]//Proceedings of 56th IEEE Vehicular Technology Conference. Vancouver,Canada,2002,4:2239-2243.
    [169]仲元昌,范群群,李秀珍等.热丝法炉渣分析仪的智能温度测控系统[J].传感技术学报,2010,23(1):34-37.
    [170] Meyer M. TCP performance over GPRS[C]//IEEE Wireless Communications and Networking Conference. NewOrleans,USA,1999,3:1248-1252.
    [171]仲元昌,李秀珍,刘勇,汤宝平.降低室内无线网络电磁辐射的能量优化算法[J].通信学报,2009,30(12):132-136.
    [172] Qijian Chen, Yuanchang Zhong, Xiaohong Zhang. A pseudo genetic algorithm [J]. Neural Computing & Applications,2010, 19(1):77-83.
    [173]仲元昌,徐保桂,郭开林到.面向三峡库区水环境监测的分区多跳LEACH算法[J].世界科技研究与发展,2011,33(1):89-92.
    [174] Barbancho J, Leon C, Molina J, et al. Using artificial intelligence in wireless sensor routing protocols [J]. Lecture Notes in Artificial Intelligence, 2006, 4251: 475-482.
    [175] H.Zhang and J.C.Hou.Maintaining Sensing Coverage and Connectivity in Large Sensor Networks [J]. Wireless Ad Hoc and Sensor Networks, 2005, 1: 89-123.
    [176]仲元昌,胡江坤,郭开林等.一种基于软件再生的无线传感器网络族头节点管理策略[J].世界科技研究与发展,2011,33(2):262-264.
    [177]北京福星晓城电子科技股份有限公司. PL3106芯片数据手册[ Z].2008.
    [178]张博.基于PL3105的电力线载波终端的设计[ D].南京:南京理工大学, 2005.
    [179]陈克力.设备实时监控系统的设计[ J] .计算机工程与设计,,2008(16): 4150- 4151.
    [180] Kung HY, Hua JS, Chen CT. Drought forecast model and framework using wireless sensor networks [J]. Journal of Information Science and Engineering, 2006, 22 (4): 751-769.
    [181]仲元昌,郭开林,陈辉.分布式天线UHF RFID系统读取率的评估方法[J].世界科技研究与发展,2011,33(3):451-453.
    [182] WONG H, MAK K M, LUK K M. Wideband shorted bowtie patch antenna with electric dipole [J]. IEEE Trans Antennas and Propagation, 2008,56(7): 2098-2101.
    [183] Yuan SF, Lai XS, Zhao X, et al.. Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology [J]. Smart Materials & Structures, 2006, 15 (1): 1-8.
    [184] HUA R C, MA T G. A printed dipole antenna for ultra high frequency(UHF) radio frequency identification (RFID) handheld reader[J]. IEEETrans Antennas and Propagation, 2007, 55(12): 3742-3745.
    [185]谭春禄,刘勇,李秀珍,仲元昌.无线网络节点的太阳能最优利用效率[J].重庆大学学报/自然版,2008,31(4):476-480
    [186] Li JB, Li JZ, Guo LJ, et al.. Power-efficient node localization algorithm in wireless sensor networks [J]. Lecture Notes in Computer Science, 2006, 3842: 420-430.
    [187] F. Salvadori, M. de Campos, R. de Figueiredo, etc. Monitoring and Diagnosis in Industrial Systems Using Wireless Sensor Networks [J]. Intelligent Signal Processing, 2007, 10,3:1-6.
    [188] Hande A, Polk T, Walker W, etc. Self-powered wireless sensor networks for remote patient monitoring in hospital [J]. Sensors, 2006, 6 (9): 1102-1117.
    [189] Ivan Howitt, Wayne W. Manges, Phani Teja Kuruganti, etc. Wireless industrial sensor networks: Framework for QoS assessment and QoS management [J]. ISA Transactions, 2006, 45(3): 347-359.
    [190] Lee RG, Chen KC, Lai CC, et al.A backup routing with wireless sensor network for bridge monitoring system[J],Measurement, 2007, 40 (1): 55-63.
    [191] Ferentinos KP, Tsiligiridis TA. Adaptive design optimization of wireless sensor networks using genetic algorithms [J]. Computers Networks, 2007, 51 (4): 1031-1051.
    [192] C.Schurgers, V.Raghunathan, and M.B.Srivastava. Power Management for Energy-Aware Communication Systerms [J]. Transactions on Embedded Computing Systems, 2003,2(3): 431-447.
    [193]孙佩刚,赵海,罗玎玎.无线传感器网络链路通信质量测量研究[J].通信学报,2007,28(10):14-22.
    [194] Jeongyeup Paek,Ramesh Govindan.RCRT: Rate-Controlled Reliable Transport for Wireless Sensor Networks[C].In Proceedings of the ACM Conference on Embedded Networked Sensor Systems (Sensys07), November 2007.
    [195] Tang, Baoping; Zhong, Yuanchang; Qiu, Jianwei. Design of onboard instrument based on virtual instrument technology [J]. Wuhan Ligong Daxue Xuebao/Journal of Wuhan University of Technology, 2006,28(S1):412-416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700