用户名: 密码: 验证码:
煤矿充填复垦区土壤肥力质量变化与地下水重金属污染研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为我国重要的煤炭工业基地,淮南市为我国经济和社会发展提供了大量能源。建国以来近半个多世纪的煤炭开采,对矿区生态环境造成了严重影响,特别是由于煤炭开采引起地表沉陷,使地表变形,坡度加大,土壤侵蚀加重,造成了土地资源严重破坏,引起土壤质量下降。土地复垦是恢复矿区生态环境的重要途径,而复垦区土壤肥力质量的恢复状况以及地下水的安全性是矿区土地复垦成功与否的关键。本研究针对淮南矿业集团矿区生态环境建设的需求,以张集矿复垦区土壤和地下水为研究对象,通过相关资料收集、室外现场调查和室内分析,采用时空对比法,系统研究了张集矿复垦区土壤的理化性质变化规律和地下水重金属污染特征,对复垦土壤肥力质量、煤矸石对地下水重金属累积特征影响和地下水潜在生态风险进行了评价,主要研究结果如下: (1)复垦土壤物理特性变化特征
     不同层次土壤容重随复垦时间增加呈现下降趋势。0~20 cm土层容重降低幅度最大,20~40 cm次之,而40~60 cm土层最小;与对照土壤容重相比,各土层土壤容重偏高。0~20 cm土层团粒结构(0.25~2 mm)组成呈现增加趋势,与复垦初期相比提高27.73%;而20~40 cm和40~60 cm土层土壤则变化不大,各层土壤团粒结构组成低于对照水平。复垦土壤孔隙度变化规律与土壤容重相似。不同土层土壤含水量变化存在一个相似之处,即在复垦0.5 a、1.5 a和2.5 a时,土壤含水量较复垦1.0 a、2.0 a和3.0 a时要高,其变化趋势呈现波浪式变化。
     (2)复垦土壤化学特性变化特征
     复垦土壤有机质含量在复垦的3.0 a内有明显的改善,特别是0~20 cm土层土壤,较初期提高了148.00%,而20~40 cm和40~60 cm土层土壤增幅降低,分别为30.54%和25.05%,各层复垦土壤有机质含量低于对照水平。0~20 cm土层复垦土壤pH值在复垦的3.0 a内有明显的改善,与对照土壤pH值差异较小。而20~40 cm和40~60 cm土层土壤pH值则远高于对照农田土壤水平。
     复垦土壤全氮、全磷和全钾在复垦期内变化不一致,仅0~20 cm土层全氮、全磷和全钾含量均为提高,分别为28.29%,3.07%和7.63%。而20~40 cm土层和40~60 cm土层全氮、全磷和全钾则升降幅度不一。原因在于复垦土壤的全量养分水平主要受土壤母质影响,复垦后的耕作措施对其影响较小。复垦土壤速效N、速效P和速效K随复垦时间增加而递增。总体而言,速效养分随土壤深度增加增幅下降,0~20 cm土层提高幅度最大,复垦措施较好地提高土壤速效养分水平,同时各层复垦土壤含量低于对照相应层次农田土壤含量水平,今后应加强复垦土壤培肥措施,以提高土壤养分水平。
     复垦土壤微量元素有效态Cu, Zn, B和Mo的含量变化规律不一。总体而言,0~20 cm土层土壤微量元素随着复垦时间增加有所提高;而20~40 cm和40~60 cm土层微量元素则随复垦时间增加呈现一定的波动性变化。
     (3)复垦区土壤肥力质量变化综合评价
     主成分分析法和模糊数学法被引入复垦土壤肥力质量评价中,结果表明:复垦土壤肥力质量随深度增加而下降,与对照正常农田土壤肥力变化规律一致;此外,与对照相应土层土壤肥力质量相比,复垦土壤各层肥力质量略低,土层由上到下分别达到正常农田土壤肥力的92.68%,90.63%和88.33%,复垦土壤在耕作措施和人工施肥的作用下,土壤肥力质量已经达到正常农田肥力水平的90%左右,复垦取得了良好的效果。
     (4)煤矸石对复垦区地下水重金属累积特征影响评价
     复垦区地下水重金属含量在复垦期内有不同程度的提高,其中金属Cd, Hg,和Pb的含量超过了对照家用井水的重金属含量水平,而只有As的含量较对照含量水平低。尼梅罗综合污染评价指数表明:复垦的3.0 a内煤矸石对地下水重金属累积影响持续增强。复垦3.0 a时监测井Ⅰ和监测井Ⅱ的综合污染指数分别为3.044和3.109,这一结果表明煤矸石对地下水重金属的累积作用达到了“强烈影响”状态。而监测井Ⅲ的综合污染指数为2.779,煤矸石对地下水重金属的累积作用为“适度影响”状态。
     (5)复垦区地下水潜在生态风险评价
     复垦区Ⅰ和复垦区Ⅱ地下水重金属的潜在生态风险水平较高,达到了“强”的生态风险等级,而复垦区Ⅲ地下水生态风险等级略低,为“中等”生态风险等级。其原因在于煤矸石中的Cd和Hg的富集程度较大,分别达到了“很高”和“中等”富集水平;同时它们的毒性系数较大,从而引起了地下水重金属潜在生态风险水平较高。
     基于地下水质量标准(GBT14848-93),在复垦的3.0 a内,复垦区地下水重金属的含量全部优于Ⅱ级标准,因此,地下水符合各类用水标准。
Huainan, an important city of coal industrial base, provided lots of energy for the development of China's national economy and society. As one of the most important coal producing bases, Huainan coal mine area has been explored for more than 50 years since P. R. C. was founded, which led to some inevitable impacts on the ecological environment of coal mine area. Especially, large amounts of arable land are changed into non-agricultural land use. Ground subsidence not only induce surface deformation, slope steep and serious erosion, which made a damage to land resources, but also lower the soil quality. Land reclamation is an important way to rebuild the ecological environment of coal mine area, so soil fertility quality restoration and security of groundwater of reclamation area are the key for the success of land reclamation. In this dissertation, aimed at the requirement of eco-environment construction of coal mine area of Huainan Coal Group, the reclamation soil and groundwater of Zhangji reclamation mine area were collected as research objects and the field investigation and the indoor tests were introduced to analyze the reclaimed soil. With the application of space and time correlation method, the physical and chemical properties of reclamation soil in Zhangji reclamation area were studied systematically. The reclamation soil fertility quality,the impacts of coal gangue on the accumulation characteristics and the potential ecological risk of heavy metal in the groundwater were also evaluated. The main conclusions are showed as follows:
     (1)The change characteristics of physical properties of reclamation soil
     It shows a descending trend in soil bulk density of different layers with the reclamation time increasing. The layer of 0-20 cm reclaimed soil has a largest degree of decline in soil bulk density, secondly is layer of 20-40 cm reclaimed soil, which is 7.50%, and last is layer of 40-60 cm reclaimed soil. In addition, reclaimed soil bulk density of all layers is higher than control soil. The soil aggregate structure (0.25-2 mm) of layer 0-20 cm is increased by 27.73% after reclamation for 3 years; however, there are no significance change for layers of 20-40cm and 40-60cm. The law of reclaimed soil porosity is the same as the soil bulk density. There is a same place between different layers of reclaimed soil in content of water. That is higher content of water at reclamation time 0.5 a, 1.5 a and 2.5 a than those at 1.0 a, 2.0 a and 3.0 a, in other words, the content of water in reclaimed soil shows a“wave”change.
     (2) The change characteristics of chemical properties of reclamation soil
     There is a significance improvement of organic matter of reclaimed soil after reclamation for 3 years. Organic matter of layer 0-20 cm is increased by 148%, and 30.54%, 25.05% for layers of 20-40 cm and 40-60 cm, respectively. Furthermore, the content of organic matter in reclaimed soil is lower than that of in control soil. The pH value of reclaimed soil layer 0-20 cm also improvs after 3 year’s reclamation, which is a little different while comparing to control soil. However, the pH values of reclaimed soil layer of 20-40 cm and 40-60 cm are much higher than control soil.
     The laws of TN, TP and TK of contents in reclaimed soil vary in different lays, there is an enhancement trend in TN, TP and TK contents after reclamation for 3 years for layer 0-20 cm, and the increasing rates are 28.29%、3.07% and 7.63%, respectively. However, the fluctuation scopes of TN, TP and TK contents in reclaimed soil of layer 20-40 cm and 40-60 cm are different. The main reason is that the total N、P and K mainly come from soil parent material, while there are a few impacts by the cultivation measures. The contents of available N, available P and available K in reclaimed soil show an increasing tread along with the reclamation time going up. The results indicate that all available nutrients have the same law, that is, increasing rate become lower with the depth increasing, in other words, the available nutrients in top layer soil improve more than those in subsoil. However, compared to the available nutrients in control soil, contents in reclaimed soil are much lower. As a result, it should be take some measures to improve the reclaimed soil in future.
     The laws of the trace elements of Cu, Zn, B and Mo in reclaimed soil are different. Overall, the contents of trace elements in layer 0-20 cm have an enhancement trend with the increasing of reclamation time, while there is a fluctuation change during the same period in layers of 20-40 cm and 40-60 cm.
     (3) Evaluation characteristics of fertility quality of reclaimed soil
     The principal component analysis and fuzzy mathematics method were introduced to evaluate the law of fertility quality of reclaimed soil. The results show that: The fertility quality of reclaimed soil decreased with depth, which is the same as control soil. Furthermore, compared with the control soil, the fertility quality of reclaimed soil is lower, which is up to 92.68%, 90.63% and 88.33% of control soil from top layer to subsoil. The fertility quality of reclaimed soil has been up to about 90% of normal farmland’s fertility quality level under the impact of cultivation measures and artificial fertilization for 3 years.
     (4) The evaluation of accumulation characteristics of heavy metal in groundwater of reclamation area
     The contents of heavy metal in groundwater of reclamation area increase to a different extent. Among the selected heavy metals, the Cd, Hg and Pb contents exceed the background values of water from individual well, while the content of As in groundwater of reclamation area is lower than background values of water from individual well. The Nemerow index values are 3.044 for Monitor wellⅠ, 3.109 for Monitor wellⅡand 2.779 for Monitor wellⅢafter reclamation for 3.0 years, respectively, which means that the acculumation of heavy metal in groundwater of reclamation areaⅡandⅢare strongly affected by coal gangue, while moderately affected by coal gangue for reclamation areaⅠ.
     (5) The evaluation of potential ecological risk of heavy metal in groundwater of reclamation area
     The degree of potential ecological risk of heavy metal in groundwater of reclamation areaⅠandⅡis so high and it is up to“strong”, while the degree of risk of reclamation areaⅢis lower, which is“moderate”. The reason for the higher potential ecological risk of heavy metal in groundwater of reclamation area is that it is so enrichment for Cd and Hg in coal gangue, which are up to“very high”and“moderate”, respectively. And the toxicity coeffifient of them are so big that resulted in a high degree of risk of potential ecological risk.
     Based on The Quality Standard of Groundwater (GBT14848-93), groundwater in reclamation area is not contaminated and could be of usage as agricultural irrigation and drinkable interests after reclamation for three years.
引文
[1]方创琳.采煤塌陷地的综合开发与协调发展——以淮北矿区为例[J].中国人口·资源与环境,1997, 7(2):66-70.
    [2]芮素生.煤炭工业的持续发展与环境[M].北京:煤炭工业出版社,1994.
    [3] Jiang J, Cheng J G. Establish of target system for resource exploitation and ecological protection in coal mine[J].Coal Mine Environmental Protection, 2002, 16(2):16-18.
    [4]胡振琪,魏忠义,秦萍.矿山复垦土壤重构的概念与方法[J].土壤,2005,37(1):8-12.
    [5]彭建,蒋一军,吴健生等.我国矿山开采的生态环境效应及土地复垦典型技术[J].地理科学进展,2005,4(2):38-48.
    [6]胡振琪.露天煤矿土地复垦研究[M].北京:煤炭工业出版社,1995.
    [7]胡振琪.矿山复垦土壤剖面重构的基本原理与方法[J].煤炭学报,1997,22(6):617-622.
    [8]李戎凤.马家塔复垦区土壤质量评价及生态效益研究[D].呼和浩特:内蒙古农业大学,2007.
    [9]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):131-134.
    [10]徐良骥,严家平,高永梅.煤矿塌陷水域水环境现状分析及综合利用[J].煤炭学报,2009,34(7):933-937.
    [11] Potter K N, Carter F S, Doll E C. Physical Properties of Constructed and Undisturbed Soils [J]. Soil Sci. Soc. Am. J.,1988, 52(5): 1435-1438.
    [12] Roberts J A, Daniels W L, Bell J C. Early stages of mine soil genesis in Southwest Virginia spoil lithosequence[J]. Soil Sci. Soc. Am. J.,1987, 52(3):716–723.
    [13] Indorante S J, Jansen I J,Boast C W. Surface mining and reclamation: initial changes in soil character[J]. J. Soil Water Conserv.,1981, 36(6):347–351.
    [14] Seybold C A, Grossman R B, Sinclair H R. Evaluating soil quality on reclaimed coal mine soils in Indiana. Proceedings of the 2004 National Meeting of the American Society of Mining and Reclamation and The 25th West Virginia Surface Mine Drainage Task Force[R]. American Society of Mining and Reclamation, Lexington, KY, 2004, 1644–1663.
    [15] Chong S K, Cowsert P T. Infiltration in reclaimed mine land ameliorated with deep tillage treatments[J]. Soil Tillage Res., 1997, 44(3-4):255–264.
    [16] Guebert M D, Gardner T W. Macropore flow on a reclaimed surface mine:infiltration and hillslope hydrology[J]. Geomorphology, 2001, 39(3-4):151–169.
    [17] Sinnett D, Poole J, Hutchings T R. A comparison of cultivation techniques for successful tree establishment on compacted soil[J]. Forestry, 2008, 81(5): 663–679.
    [18] Stahl P D, Perryman B L, Sharmasarkar S, Munn L C. Topsoil stockpiling versus exposure to traffic: a case study on in situ uranium wellfields[J]. Restor. Ecol., 2002, 10(1):129-137.
    [19] Malik A, Scullion J. Soil development on restored opencast coal sites with particular reference to organic matter and aggregate stability[J]. Soil Use & Management, 1998,14(4):234–239.
    [20] Six J, Elliott E T, Paustian K. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal, 1998,62(5):1367–1376.
    [21] Essington M E. Soil and Water Chemistry: An Integrative Approach[M]. CRC Press, Boca Raton,2004.
    [22] Lyle E S. Surface Mine Reclamation Manual[M]. Elsevier, New York, 1987.
    [23]师学义,杨玉敏,孟繁华.五阳矿区采煤塌陷地混堆和剥离复垦比较研究[J].煤炭学报,2003,28(4):385-388.
    [24]张雷娜,冯永军.采煤塌陷区复垦土地的肥力状况研究[J].福建水土保持,2001,13(1):57-60.
    [25]张学礼,胡振琪,初士力.矿山复垦土壤压实问题分析[J].能源环境保护,2004,18(3):1-4.
    [26]焦晓燕,王立革,卢朝东等.采煤塌陷地复垦方式对土壤理化特性影响研究[J].水土保持学报,2009,23(4):123-125,145.
    [27]胡振琪,戚家忠,司继涛.粉煤灰充填复垦土壤理化性状研究[J].煤炭学报,2002,27(6):639-643.
    [28]陈龙乾,邓喀中,唐宏等.矿区泥浆泵复垦土壤物理特性的时空演化规律[J].土壤学报,2001,38(2):277-283.
    [29] Lorenz K, Lal R. Stabilization of organic carbon in chemically separated pools in reclaimed coal mine soils in Ohio[J]. Geoderma,2007,141(3-4):294–301.
    [30] Ussiri D, Lal R, Jacinthe P A. Soil properties and carbon sequestration of afforested pastures in reclaimed minesoils of Ohio[J]. Soil Sci. Soc. Am. J.,2006, 70(5):1797–1806.
    [31] Stahl P D, AndersonJ D, Ingram J. Accumulation of organic carbon in reclaimed coal mine soils of Wyoming[R]. In:Barnhisel, R.I. (Ed.), Proceedings of the2003 National Meeting of the American Society of Mining and Reclamation and the 9th Billings Land Reclamation Symposium, Billings MT, 2003, June 3–6.
    [32] Ingram L J, Schuman G E, Stahl P D. Microbial respiration and organic carbon indicate nutrient cycling recovery on reclaimed soils[J]. Soil Sci. Soc. Am. J., 2005, 69(6): 1737–1745.
    [33] Schladweiler, B K, Vance G F, Legg D E. Influence of variable topsoil replacement depths on soil chemical parameters within a coal mine in northeastern Wyoming, USA[J]. Arid Land Res. Manag., 2004.18: 347–358.
    [34] Jastrow J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biology & Biochemistry, 1998,30(7): 905–916.
    [35] Abbey W, Lachlan J I, Peter D S. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes[J]. Soil Biology &Biochemistry, 2009, 41(2): 201–209.
    [36] Shukla M K, Lal R, Underwood J. Physical and Hydrological Characteristics of Reclaimed Minesoils in Southeastern Ohio[J]. Soil Sci. Soc. Am. J., 2004, 68(4):1352-1358.
    [37] Shukla M K, Lal R, Ebinger M H. Physical and chemical properties of amine spoil eight years after reclamation in Northeastern Ohio[J]. Soil Sci. Soc. Am. J.,2005, 69(4):1288–1297.
    [38] Ganjegunte G K, Wick A F , Stahl P D. Accumulation and composition of total organic carbon in reclaimed coal mine lands[J]. Land Degradation & Development 2009, 20(2): 156–175.
    [39] Akala V A, Lal R. Soil Organic Carbon Pools and Sequestration Rates in Reclaimed Minesoils in Ohio [J]. J. Environ. Qual., 2001, 30 (6): 2098-2104.
    [40] Shrestha R K, Lal R. Soil carbon and nitrogen in 28-year-old land uses in reclaimed coal mine soils of Ohio[J]. J. Environ. Qual., 2007, 36: 1775–1783.
    [41]胡振琪.煤矿区采动于复垦土壤存在的问题与对策[J].能源环境保护,2003,17(3):3-10.
    [42]李树志.矸石农业复垦的土壤特性及剖面结构分析[J].煤矿环境保护,1995,10(4):25-27.
    [43]丁青坡,王秋兵,韩春兰等.矿区不同复垦年限土壤养分及有机碳特性研究[J].安徽农业科学,2006,34(17):4360-4363.
    [44]张乃明,武雪萍,谷晓彬等.矿区复垦土壤养分变化趋势研究[J].土壤通报,2003,34(1):58-60.
    [45]孙泰森,师学义,杨玉敏.五阳矿区采煤塌陷地复垦土壤的质量变化研究[J].水土保持学报,2003,17(4):86-89.
    [46]陈龙乾,邓喀中,唐宏等.矿区泥浆泵复垦土壤化学特性的时空演化规律[J].中国矿业大学学报,2000,29(3):262-265.
    [47]李树志.塌陷地复垦土壤特性变异研究[J].辽宁工程技术大学学报,2006,25(5):792-794.
    [48]于君宝,王金达,刘景双等.矿山复垦土壤营养元素时空变化研究[J].土壤学报,2002,39(5):750-753.
    [49] Klingebiel L, Montgomery P H. Land Capability Classification[M]. Agricultural Department of Agriculture, U S A, Washington D C, 1961.
    [50] Doran J W, Parkin T B. Defining Soil Quality for a Sustainable Environment[M]. Soil Science Society of America, Inc Madison, Wisconsin USA, 1994:3-21.
    [51] Karlen D L, Scott D E. A framework for evaluating physical and chemical indicators of soil quality. In: Dorman J W et al. ed. Defining Soil Quality for a Sustainable Environment[M]. Soil Science Society of American Publication No35. Inc, Madison, Wisconsin, USA, 1994.
    [52] Warkentin B P. The changing concept of soil quality[J]. Journal of Soil and Water Conservation, 1995, 50(3):226-228.
    [53]李树彬.受干扰生态系统中土壤质量指示特性的评价明[J].水土保持科技情报,2003, (2):21-23.
    [54]曹志洪.解译土壤质量演变规律——确保土壤资源持续利用[J].世界科研究与进展,2001,23(3):28-32.
    [55]曹志洪.继承传统土壤学的成果促进现代土壤学的发展——论“土壤质量演变规律与可持续利用”研究[J].中国基础科学,2000,10:11-16.
    [56]胡春胜.土壤质量诊断与评价理化指征及其应用[J].生态农业研究,1999,7(3):16-18.
    [57] Smith J L, Halvorson J J, Papendick R I. Using multiple-variable indicators Kriging for evaluating soil quality[J]. Soil Sci Soc Am J, 1993, 57(3):743-749.
    [58] Jonathan J Halvomon, Jefrey L Smith, Robert I Papendiek.Integration of multiple soil parametersto evaluate soil quality: a field example [J]. Biology and Fertility of Soils, 1996, 2(3):207-214.
    [59] Nazzareno Diodato, Miehele Ceecarelli. Multivariate indicator Kriging approach using a G1S to classify soil degradation for Mediterranean agricultural lands[J]. Ecological Indicators, 2004, 4(3):177-187.
    [60] Julie A Cattle, Alex B McBratney, Budiman Minasny. Kriging Method Evaluation for Assessing the Spatial Distribution of Urban Soil Lead Contamination [J]. Journal of Environmental Quality, 2002, 31(5): 1576-1588.
    [61] Larson W E, Pierce F J. In Defining Soil Quality for a Sustainable Environment[J]. Soil Science Society of America, Iae, Madison, Wisconsin USA, 1994, 25: 37-52.
    [62] Hussain I, Olson K R, Wander M M. Adaptation of soil quality indices and application to three tillage systems in southern Illinois[J]. Soil and Tillage Research, 1999, 50(3-4):237-249.
    [63] Doran J W. Defining soil quality for a sustainable environment[J]. Soil Science, 1995, 159(1):77.
    [64] Wang X , Gong Z. Evaluation and analysis of soil quality changes after eleven years of reclamation in subtropical China[J].Geoderma, 1998, 81(3-4):339-355.
    [65] Govaerts P. Geostatistics in soil science: state-of-the art and perspectives[J]. Geoderma, 1999, 89(1-2):1-45.
    [66] Kwansoo Kim, Bradford L Barham, Lan Coxhead. Measuring soil quality dynamics: A role for economists, and implications for economic analysis[J]. Agncultural Economics, 2000, 25(1):13-26.
    [67] De Gruijter J J, Walvoort D J J, Van Gaans P F M. Continuous soil maps-a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models[J]. Geoderma, 1997, 77(2-4):169-195.
    [68]王效举,龚子同,张西森.地理信息系统辅助土壤质量变化图的编制[J].土壤,1997,29(1):37-42.
    [69]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-148.
    [70]强虹,刘增文.生态环境质量评价研究[J].环境研究与监测,2004,17(1):13-16.
    [71] Waaland M E, Allen E B. Relationship between VA mycorrhizal fungi and plant cover following surface mining in Wyoming[J]. J. Range Manage., 1987,40(3): 271–276.
    [72] Carter C T, Ungar IA. Aboveground vegetation, seed bank and soil analysis of a 31-year-old forest restoration on coal mine spoil in southeastern Ohio[J]. Am. Midl.Nat., 2002, 147(1): 44–59.
    [73] Juwarkar A A, Mehrotraa K L, Nair R, Wanjari T, Singh S K, Chakrabarti T. Carbon sequestration in reclaimed manganese mine land at Gumgaon[J]. India.Environ.Monit. Assess., 2010, 160(1-4): 457–464.
    [74] Keskin T, Makineci E. Some soil properties on coal mine spoils reclaimed withblack locust and umbrella pine in Agacli-Istanbul[J]. Environ. Monit. Assess., 2009, 159(1-4): 407–414.
    [75] Nyamadzawo G, Shukla M K, Lal R. Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of Southeastern Ohio[J]. Land Degradation & Development, 2008, 19(3):275–288.
    [76] Shrestha R K, Lal R. Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio[J]. Plant Soil, 2008, 306(1-2): 249–260.
    [77] Daniel L. Mummeya, Peter D. Soil microbiological properties 20 years after surface mine reclamation: spatial analysis of reclaimed and undisturbed sites [J]. Soil Biology & Biochemistry,2002,34(11):1717–1725.
    [78] Ussiri D, Lal R, Jacinthe P A. Post-reclamation land use effects on properties and carbon sequestration in minesoils of southeastern Ohio[J]. Soil Sci., 2006 171(3): 261–271.
    [79] Shrestha R K, Lal R. Changes in physical and chemical properties of soil after surface mining and reclamation[J]. Geoderma, 2011, 161(3-4): 168–176.
    [80]魏忠义,胡振琪,司继涛等.采煤沉陷地粉煤灰充填复垦土壤元素淋溶特性实验研究[J].农业环境保护,2002,21(1):13-15.
    [81]卞正富.矿区土地复垦界面要素的演替规律及其调控研究[J].中国土地科学,1999,13(2):6-11.
    [82]卞正富,张国良.矿山复垦土壤生产力指数的修正模型[J].土壤学报,2000,37(1):124-130.
    [83]陈龙乾,邓喀中,徐黎华等.矿区复垦土壤质量评价方法[J].中国矿业大学报,1999,28(5):449-452.
    [84]胡振琪,赵艳玲,姜晶等.土地整理复垦项目验收方案研究[J].农业工程学报,2005,21(6):60-63.
    [85]秦俊梅,白中科,李俊杰等.矿区复垦土壤环境质量剖面变化特征研究——以平朔露天矿为例[J].山西农业大学学报,2006,26(1):101-105.
    [86]顾和和,胡振琪,秦延春等.泥浆泵复垦土壤生产力的评价及其土壤重构[J].资源科学,2000,22(5):37-40.
    [87] Peppas A, Komnitsas K, Halikial. Use of organic covers for acid mine drainage control[J]. Minerals Engineering, 2000,13(5):563-574.
    [88] Evvie Chockalingam, Subramanian S.Studies on removal of metal ions sulphate reduction using ricehusk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage[J].Chemosphere, 2006, 62(2): 699-708.
    [89] Gerhard, Stucki. Biological Sulfuric Acid Transformation Reactor Design and Process Optimization[J]. Biotech. Bioeng.,1993, 41(3): 303-315.
    [90] Choi, West. Application of MNTQA2 to the Evaluation of Apatite as a Precipitant for Acid Mine Drainage Treatment[J].Environment& Engineering Geosicience, 2002,3(2):128-132.
    [91] AtaAkcil, Soner Koldas, Acid Mine Drainage(AMD): causes, treatm ent and case studies[J]. Journal of Cleaner Production, 2006, 14(12-13): 1139-1145.
    [92] Kepler D A,McCleary E C.Successive alkalinity producing systems(SAPS)for the treatment of acidic mine drainage[R].Proceedings of the International Land Reclamation and Mine Drainage Conference and the 3rd International Conference on the Abatement of Acidic Drainage, 1994, 195-205.
    [93] Roger C, Viadero J, Aislinn E. Use of treated mine water for rainbow trout (Oncorhynchus mykiss) culture—a preliminary assessment[J]. Aquaculturral Engineering, 2003,29(1-2): 43-56.
    [94] Fanfani L. Heavy metals speeiation analysis as a tool for studying mine tailing weathering[J]. Journal of Geoehemieal Exploration,1997,58(2-3):241-248.
    [95] Komnitsas K, Paspaliaris L. Environmental impacts at coal gangue disposal site efficiency of desulphurization technologies[J]. Global Nestahe Int.2001, 3(2):109-116.
    [96] Szcepanska J, Twardowska I. Distribution and environmental impact of coal mining wastes in Upper Silesia[J]. Environmental Geology 1999 38(3):249-258.
    [97] Paul L, Christian W. Mining Impacts on the Fresh Water Environment:Technical and Managerial Guidelines for Catehment Scale Management[J]. Mine Water and the Environment,2004,23(5):52-58.
    [98] Bukowski P, Bromek T, Augustyniak. Using the DRASTIC System to Assess the Vulnerability of Groundwater to Pollution in Mined Areas of the Upper Silesian Coal Basin[J].Mine Water and the Environment,2006,25(1):15-22.
    [99]何春桂,刘辉,桂和荣.淮南市典型采煤塌陷区水域环境现状评价[J].煤炭学报,2005,3(6):754-758.
    [100]姚恩亲,桂和荣.应用蚕豆微核技术对煤矿塌陷塘水质的监测[J].环境工程,2006,24(4):57-59.
    [101]虞登梅.潘集新矿区浅层地下水水环境质量评价[J].矿业安全与环保,2006,33(1):49-51.
    [102]倪传钧.淮南潘集矿区地下水水化学特征分析[J].安徽科技,2006,(2):44-46.
    [103] Yao E Q, Gui H R. Characteristics of the main polluting trace elements in the water environment of mining subsidence pools[J]. Journal of China University of Mining & Technology, 2008, 18(4):362–367.
    [104] Dong D L, Li H J, Zhang J, Sun L K. Removal of heavy metals from mine water by cyanobacterial calcification[J]. Mining Science and Technology, 2010, 20(4): 566–570.
    [105]刘桂建,杨萍钥,彭子成等.煤矸石中潜在有害微量元素淋溶析出研究[J].高校地质学报,2001,7(4):449-457.
    [106]刘桂建.煤中微量元素的环境地球化学研究[M].徐州:中国矿业大学出版社,1999.
    [107]王运泉,任德贻.煤及其燃烧产物中微量元素的淋滤试验研究[[J].环境科学,1996,17(1):16-19.
    [108]余运波,沈照理.煤矸石堆放对水环境的影响-以山东省一些煤矸石堆为例[[J].地学前缘,2001,8(1):163-169.
    [109]杨正全,韩万东,王而力.露天煤矿排土场淋溶水对地下水环境影响分析[[J].辽宁工程技术大学学报,2002,22(6):830-832.
    [110]袁家柱.煤矿塌陷型水域水质控制因素研究[D].淮南:安徽理工大学,2009.
    [111]束学叁.淮南矿区农业可持续发展[D].合肥:安徽农业大学,2007.
    [112]徐良骥,严家平.煤矿塌陷区地表水系综合治理[J].煤炭学报,2007,32(5):469-472.
    [113]张辉.土壤环境学实验教程[M].上海:上海交通大学出版社,2009:4-6.
    [114]中国科学院南京土壤研究所土壤物理研究室编.土壤物理性质测定法[M].北京:科学出版社,1978.
    [115] Jiang Y, Dou S. The effect of application of organic materials on the properties of humic substances in rgano-mineral complexes of soils I [J]. Effect on organ-mineral complication and humus combined forms[J]. Acta Pedol Sin, 1987, 24(2):97-104.
    [116] Dou S, Jiang Y. The effect of application of organic materials on the properties of humic substances in organo-mineral complexes of soils II: Effect on humus composition and optical proporties of humic acid[J]. Acta Pedol Sin, 1988, 25(3):252-261.
    [117]卢奇.荒漠生态系统观测方法[M].北京:中国环境科学出版社,2004.
    [118] Vance ED. An extraction method for measuring soil microbial biomass[J]. Soil Biol Biochem, 19(6):703-707.
    [119]全国农业技术推广服务中心.土壤分析技术规范(第二版)[M].北京:中国农业出版社,2006.
    [120]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [121]付中英,谈干军.塌陷土地时空变异性动态监测方法[J].江苏煤炭,1999,(1):10-11.
    [122]刘光崧.土壤理化性质测定与剖面描述[M].北京:中国标准出版社,1996.
    [123]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [124]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [125]中国科学院南京土壤研究所编.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [126]地下水环境监测规范[M].(HJ/164-2004).
    [127]潘树荣,伍光和.自然地理学[M].北京:高等教育出版社,1998.
    [128]李新举,胡振琪,李晶等.采煤塌陷地复垦土壤质量研究进展[J].农业工程学报,2007,23(6):276-280.
    [129]杨学云,张桂兰.有机-无机肥配施增产效应及土壤剖面NO-3-N累积定位研究[J].西北农业学报,1998,7(2):63-66.
    [130]朱鹤健,何宜庚.土壤地理学[M].北京:高等教育出版社,1992.
    [131]陈立新.人工林土壤质量演变与调控[M].北京:科学出版社,2004.
    [132]左大康.现代地理学辞典[M].北京:商务印书馆,1990.
    [133]陈恩凤,关连珠,汪景宽等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    [134]李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤团聚体及其有机碳的变化[J].土壤通报,2000,31(5):193-195.
    [135] Vania S F, Salcedo I H. Declines of organic nutrient pools intropical semi-arid soils under subsistence farming[J]. Soil Science Society of America Journal, 2004, 68(1):215-224.
    [136]董柏林.陕西农业土壤环境质量状况调查与评价[J].农业环境保护,1994,13(4):173-176.
    [137]刘畅,云丽丽等.辽东山区不同森林类型土壤改良效益分析[J].防护林科技,2005,(64):21-22.
    [138]沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998.
    [139]闫德仁,王晶莹.落叶松人工林土壤养分含量变化的研究[J].内蒙古林业科技,1999,(34):99-102.
    [140]闫德仁,王晶莹,杨茂仁.落叶松人工林土壤衰退趋势[J].生态学杂志,1996,1(2):63-66.
    [141]徐明岗,于荣,王伯人.土壤活性有机质的研究进展[J].土壤肥料,2000,(6):3-7.
    [142]单秀枝.土壤有机质含量对土壤水动力参数的影响[J].土壤学报,1998,35(1):1-10.
    [143]黄宇,王华,冯宗炜.南方红壤地区种植龙须草对土壤质量的影响[J].生态学报,2003,23(12):2599~2606.
    [144]吴蔚东,张桃林,孙波等.人工杉木林地有机物和养分库的退化与调控[J].土壤学报,2000,37(1):41-47.
    [145]刘更另,黄新江,冯云峰.红壤丘陵自然植被恢复及其对某些土壤条件的影响[J].中国农业科学,1990,23(3):60-69.
    [146]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报,1997,17(4):377-385.
    [147]朱祖祥.土壤学(上、下册)[M].北京:农业出版社,1985.
    [148]谷思玉.红松人工林土壤肥力的研究[D].哈尔滨:东北林业大学,2001.
    [149]齐艳领,郭立稳,李富平等.采煤塌陷区生态安全评价研究[J].矿山测量,2005,(1):56-59.
    [150]周厚诚,任海,向言词等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104-107.
    [151]韩兴国,李凌浩,黄建辉.生物地球化学概论[M].北京:高等教育出版社,1999:197-244.
    [152]李菊梅,王朝辉.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):233-457.
    [153]盛积贵.枣庄地区土壤养分状况调查分析[J].内蒙古农业科技,2007,(2):38-39.
    [154] Mooney H A, Vitovsek P V, Matson P A. Exchange of materials between terrestrials ecosystems and the atmosphere[J]. Science, 1987, 238(4829):926-932.
    [155] Vitovsek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur[J].Biogeochemistry, 1991, 13(2):87-115.
    [156] Blinkley D, Harts C. The components of nitrogen availability Evaluations in forest soils[J]. Advance in soil science, 1989, 10:57-112.
    [157]陈刚才,甘露.土壤氮素及其环境效应[J].地质地球化学,2001,29(1):63-67.
    [158]鲁如坤,时正元,钱承梁.磷在土壤中有效性的衰减[J].土壤学报,2000,37(3):323-328.
    [159]蒋柏藩.中国土壤P素养分潜力概图及其说明[J].土壤学报,1979,16(1):17-20.
    [160]贾平,郝伟,李广凡.落叶松人工林土壤中磷的研究[J].东北林业大学学报,1998,26(1):36-39.
    [161]向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性[J].植物营养与肥料学报,2004,10(6):663-670.
    [162]崔德杰,刘永辉,隋方功等.长期定位施肥对土壤钾素形态的影响[J].莱阳农学院学报,2005,22(3):165-167.
    [163]张会民,吕家珑,李菊梅等.长期定位施肥条件下土壤钾素化学研究进展[J].西北农林科技大学学报,2007,35(1):155-160.
    [164]刘铮,庚立华,朱其清等.我国主要土壤中微量元素的含量与分布初步总结[J].土壤学报,1978,15(2):138-150.
    [165]林心雄.中国土壤有机质状况及管理——土壤科学与农业持续发展[M].北京:中国科学技术出版社,1994.
    [166]张永娥,王瑞良,靳绍菊等.土壤微量元素含量及其影响因素的研究[J].土壤肥料,2005(5):35-37.
    [167]李志洪,赵兰坡,窦森.土壤学[M].北京:化学工业出版社,2005.
    [168]胡振琪.露天煤矿土地复垦研究[M].北京:煤炭工业出版社,1995.
    [169] Moffat A J, Mcneill J D. Reclaiming disturbed land for forestry[M]. London:HMSO, 1994.
    [170] Tisdale S L,Nelson W L(金继运等译).土壤肥力与肥料[M].北京:中国农业科技出版社, 1984.
    [171]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988:11-27.
    [172]朱祖祥.土壤学[M].北京:农业出版社,1983:42-49.
    [173]刘隆超.土壤数量化分级初探I.黔东地区水稻土的肥力分级与理化性质[J].贵州农院学报,1992,11(1):94-97.
    [174]周勇,李学垣,贺纪正等.ARC/INFO信息系统在农地分等定级中的应用[J].土壤学报,1998,35(4):450-460.
    [175] Damanski J. Concept objectives and structure of the Canada soil information system Canadian[J]. Soil Sci, 1975, 55:181-187.
    [176] Lohk D, Edward J, Rykiel J R. Integrated resource management systems: coupling expert systems with date-base management and geographic information systems[J]. Environ Man, 1992, 16(2):167-177.
    [177]王军艳,张凤荣,王茹等.应用指数和法对潮土农田土壤肥力变化评价研究[J].农村生态环境,2001,17(3):13-16.
    [178]吕晓男,陆允甫,王人潮.土壤肥力综合评价初步研究[J].浙江大学学报(农业与生命科学版),1999,25(4):378-282.
    [179]曹承绵,严长生,张志明等.关于土壤肥力数值化综合评价的探讨[J].土壤通报,1983,14(4):13-1.
    [180]何文寿,毕红.应用灰色关联分析对银南灌区土壤肥力的综合评价[J].宁夏农林科技,1997,2:7-10.
    [181]唐晓平,陈健飞.Fuzzy综合评判法在紫色土肥力评价中的应用[J].福建师范大学学报(自然科学版),1996,12(2):107-113.
    [182]张发旺,候新伟,韩占涛等.采煤沉陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,19(3):67-70.
    [183]胡春胜.土壤质量诊断与评价理化指征及其应用[J].生态农业研究,1999,7(3):16-18.
    [184]郑昭佩,刘作新.土壤质量及其评价[J].应用生态学报,2003,14(1):1-4.
    [185]刘创民,李昌哲,史敏华等.多元统计分析在森林土壤肥力类型分辨中的应用[J].生态学报,1996,16(4):444-447.
    [186]刘寿波.黑龙江南部次生林区森林土壤肥力的研究[J].土壤通报,1964,(2):13-16.
    [187]杨玉盛,李振问,刘爱琴等.人工阔叶林取代格氏拷天然林后土壤肥力变化的研究[J].东北林业大学学报,1993,21(5):14-21.
    [188]陈留美.新垦淡灰钙土土壤肥力质量演变及土壤磷素形态转化的研究[D].杨凌:西北农林科技大学,2006.
    [189]崔玉顺,章熙谷.南方红壤地区水稻土的肥力评价[J].自然资源学报,1994,9(4):341-349.
    [190]王力宾.多元统计分析:模型、案例及SPSS应用[M].北京:经济科学出版社,2010.
    [191]杨崇瑞.模糊数学及其应用[M].北京:农业出版社,1994.
    [192]孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价[J].土壤学报,1995,32(4):362-369.
    [193]肖连刚,张建明.基于GIS宁夏引黄灌区农地土壤综合养分状况评价[J].水土保持研究,2010,17(5):273-276.
    [194]李梅,张学雷.基于GIS的农田土壤肥力评价及其与土体构型的关系[J].应用生态学报,2011,22(1):129-136.
    [195]周勇,张海涛,汪善勤等.江汉平原后湖地区土壤肥力综合评价方法及其应用[J].水土保持学报,2001,15(4):70-74.
    [196]陈转兰.浅论在保护中开发利用浅层地下水[J].江苏水利,2008,3:40-43.
    [197]李光德,张成.煤矸石模拟淋溶水重金属污染的研究[J].山东环境,1998, (5):10-12.
    [198]吴代赦,郑宝山.煤矸石的淋溶行为与环境影响的研究—以淮南潘谢矿区为例[J].地球与环境,2004,1(32):55-59.
    [199]白建峰,崔龙鹏.煤矸石释放重金属环境效应研究—淮南煤矿塌陷区水体实验场实例调查[J].煤田地质与勘探,2004,4(32):7-9.
    [200]王国强,赵华宏,吴道祥等.两淮矿区煤矸石的卫生填埋与生态恢复[J].煤炭学报,2001,26(4):428-431.
    [201] M.A.H. Bhuiyan, L. Parvez, M.A. Islam, S.B. Dampare, S. Suzuki. Heavy metalpollution of coal mine-affected agricultural soils in the northern part of Bangladesh[J]. J. Hazard. Mater. 2010,173(1-3): 384–392.
    [202] R. Sakurovs, D. French, M. Grigore, Quantification of mineral matter in commercial cokes and their parent coals[J]. Int. J. Coal Geol. 2007,72 (2): 81–88.
    [203]党志.煤矸石-水相互作用的溶解动力学及其环境地球化学效应研究[J].矿物岩石地球化学通报, 1997,16(4):259-261.
    [204]姚焕玫.基于Gis技术的湖泊水质污染综合评价的研究[D].武汉:武汉大学,2005.
    [205]谷朝君,潘颖,潘明杰.内梅罗指数法在地下水水质评价中的应用及存在问题[J].环境保护科学,2002,28(1):45-47.
    [206]厉艳君,杨木壮.地下水水质评价方法综述[J].地下水,2007,29(5):19-24.
    [207]张晓宇,张永吉,陈刚.基于灰色聚类法的矿区地下水环境质量评价[J].有色矿冶,2004,20(4):62-64.
    [208]沃飞,陈效民,吴华山等.灰色聚类法对太湖地区农村地下水水质的评价[J].安全与环境学报,2006,6(4):38-41.
    [209]倪深海,白玉慧.BP神经网络模型在地下水水质评价中的应用[J].系统工程理论与实践,2000,21(8):124-127.
    [210]孙涛,潘世兵,李永军.人工神经网络模型在地下水水质评价分类中的应用[J].水文地质工程地质,2004,25(3):58-61.
    [211]汤洁,李艳梅,卞建民等.物元可拓法在地下水水质评价中的应用[J].水文地质工程地质,2005,32(5):1-5.
    [212]叶勇,迟宝明,施枫芝等.物元可拓法在地下水环境质量评价中的应用[J].水土保持研究,2007,14(2):52-54.
    [213]侯珺,黄川友.可拓分析法在区域地下水质量评价中的应用[J].水资源与水工程学报,2005,16(3):72-74.
    [214] He M C, Wang Z J, Tang H X. The chemical, toxicological and ecological studies in assessing the heavy metal pollution in Le An River, China[J]. Water Research. 1998, 32(2): 510-518.
    [215] Loska K, Wiechula D. Application ofprincipal component analysis for the estimation of source of heavymetal contamination in surface sediments from the Rybnik Reservoir[J].Chemosphere, 2003, 51(8): 723-733.
    [216] Long E R, Mcdonald D, Smith S I,et al. Incidence of adverse biological effectswithin ranges of chemical concentrations in marine and estuarine sediments and biota[J].Marine EnvironmentalResidues, 1995, 19(1): 81-87.
    [217] Cao H C, Luan Z Q, Wang J D,et al. Potential ecological risk of cadmium, lead and arsenic in agriculturalblack soil in Jilin Province, China[J].Stoch Environ Res Risk Assess, 2009, 23(1): 57-64.
    [218] Wang L P, Zhou XW, Zheng B H,etal. Sediments eco-environmental quality assessment in the Changjiang Estuary and its adjacentwaters[J]. Acta Ecologica Sinica, 2008, 28 (5): 2191-2198.
    [219] Ren H L,Cui B S, Bai J H. Distribution of heavymetal in paddy soil of Hani Terrace core zone and assessment on its potential ecological risk[J]. Acta Ecologica Sinica, 2008, 28 (4): 1625-1634.
    [220] Zhang J,Wang S Q, Xie Y,et al. Distribution and Pollution Character of HeavyMetals in the Surface Sediments ofLiao River[J]. Environmental Science, 2008, 29 (9): 2413-2418.
    [221] Li L F, ZengX B, LiG X,et al. Heavy metalpollution ofWenyuRiver sedimentand its risk assessment[J].Acta Scientiae Circumstantiae, 2007, 27(2):289-297.
    [222]刘文新,栾兆坤,汤鸿霄.乐安江沉积物中金属污染的潜在生态风险评价[J].生态学报, 1999, 19(2): 206~211.
    [223]葛元英,崔旭,白中科.露天煤矿复垦土壤重金属污染及生态风险评价[J].山西农业大学学报, 2008, 28 (1): 85-88.
    [224]樊文华,白中科,李慧峰,等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,27(1):348-354.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700