用户名: 密码: 验证码:
邻硝基苯甲醛高效降解菌株Pseudomonas putida ONBA-17分离、生物学特性及废水处理生物强化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国工业化进程的加快,有机工业合成废水的排放量越来越大,已对环境造成了严重的污染,威胁到人类生命健康。邻硝基苯甲醛(o-nitrobenzaldehyde,ONBA)作为一种重要的有机精细化工中间体,广泛用于医药、染料和有机合成,工业需求量十分大。但由于其生产过程伴随着大量污染物质的产生,发达国家已将其生产线转移到发展中国家(污染转移),这一点在我过东南部地区尤为明显。为揭示其对环境的危害,为今后实施的中试乃至工业化规模相匹配的(同类)废水的活性污泥法处理提供一定的设计和运行参考依据;并在研究实施生物强化可行性的同时,从活性污泥相的构成变化、区系变化及优势种群微生物的分离和特性研究等方面着手,试图探寻相关的评判依据、理化基础和科学指引,我开展了本项研究。
     本研究从邻硝基苯甲醛工业废水水质特征、组份及ONBA的毒性调查入手,证实其具有高COD_(Cr)、高悬浮物含量、高盐和着色(棕红)等特点;水相部份含有2-乙基辛醇、ONBA、邻硝基苯甲醇、邻苯二甲酸二丁酯和邻苯二甲酸二异辛酯等有机物,其中又以ONBA为主;经急性毒性试验分析,发现其半致死剂量(LD_(50))分别为291.84mg/kg(经灌胃给药途径)和172.98 mg/kg(经腹腔注射给药途径),依据急性毒性分级标准,将其毒性评定为中等毒性。
     在对其危害和污染特征有所了解之后,在实验室条件下构建起数套序批式反应器(Sequencing batch reactor,SBR),并分别以水力停留时间和污泥停留时间为变量研究了活性污泥量与COD_(Cr)及总氮去除率之间的关系。得到了能为实际工程设计提供重要参考依据的水处理模型——S_e=K_s(1+6·θc)/[θ_C(Y·K-b)-1]=996(1+0.197θc)/(0.73θ_c-1)和X=Y(S_0-S_e)·θ_C/θ_H(1+6·θ_C)=0.342(S_0-S_e)·θ_C/θ_H(1+0.197·θ_C)。在对处理前后反应器中活性污泥变化的研究中发现:与接种污泥相比,驯化污泥在沉降性能方面有所提升。进一步研究发现,沉降性能的提升与污泥多聚物中蛋白质/碳水化合物比值下降有关;活性污泥结构逐渐密实化,丝状菌比例有所下降;微生物区系结构发生显著变化。分别运用荧光原位杂交和变性梯度电泳(Denaturing gradient gel electrophoresis,DGGE)技术揭示了活性污泥中微生物区系的变化情况。证实当SBR系统取得预期处理效果后,活性污泥中的优势微生物种群为Beta和Alpha变形菌。而将基于原位分析和PCR扩增分析的上述两种方法用于同一区系变化的研究,其所得结果更具说服力和全面性。
     为实现ONBA的特异降解,并为后续生物强化的实施提供种源,我以活性污泥为初始接种物进行了降解菌的分离,得到多株具有ONBA降解能力的细菌菌株。经比较分析后,选取其中一株编号为ONBA-17的菌株进行后续研究.该菌株能在12 h内降解100 mg/mL的ONBA,并具备一定的芳香化合物降解谱;菌体最适生长温度为28℃;最适生长pH值为7.6;最适碳源为果糖,对果糖和甘露糖等简单碳源的利用要好于二糖碳源(如乳糖和蔗糖);最适氮源为酵母膏,单一组份氮源中氯化铵最易为菌体所利用;最适生长盐浓度在3.5%附近,属中度嗜盐菌;能耐多种重金属和抗生素。
     在对其培养特征、生理生化特性、16S rDNA序列、G+C mol%含量及DNA-DNA杂交研究和分析之后,将该菌株鉴定为恶臭假单胞菌(Pseudomonas putida),命名为Pseudomonas putida ONBA-17。随后,又对其粗酶提取物进行了研究,发现粗酶液最适作用温度和酸碱环境分别为30℃和pH7.4.构建了粗酶液反应体系;研究了金属离子、EDTA和表面活性剂对其活性的影响。结果表明,Li~+、Ni~(2+)和Co~(4+)对酶促反应有较强抑制作用,而Ca~(2+)、Mg~(2+)和Mn~(2+)则起激活作用。以吐温20、吐温80和SDS为代表的表面活性剂对粗酶液存在很强的抑制作用。其中SDS能够完全抑制其活性,EDTA也抑制了约一半左右的酶活;证实负责ONBA降解的酶(系)属胞内酶。此外,还对其降解途径和降解基因定位进行了研究,初步判断该降解基因存在于菌体染色体之上。
     通过三亲结合的方法,将外源gfp基因插入了P.putida ONBA-17的染色体中,并同过在固体和液体LB培养基中的连续传代,证实了插入片段的稳定性;在对SBR反应器中的活性污泥施行生物强化后发现,实行生物强化处理(接种标记菌株)能明显缩短系统启动期。但与对照相比,其在耐负荷冲击和运行稳定性方面略逊一筹。意味着在未经某一(或几)种污染物污染的环境系统中,蕴含有足够的基因种类(或遗传多样性)以应对类物质,前提是给系统以足够的适应驯化期。
     通过荧光和激光共聚焦(Confocal laser scanning microscopy,CLSM)显微镜观测,监测了标记菌株在反应器中的存活情况。再结合反应器的运行效果及标记菌株的平板计数情况,认为接种物环境适应和系统保留能力、与土著微生物的竞争能力及抗原生动物捕食能力与接种物存留和生物强化效果密切相关。
     为了研究施行生物强化对活性污泥中微生物区系造成的影响,并为后续优势菌群的分离提供一定的指导依据,我通过DGGE技术监测了反应装置中细菌区系的演替情况。发现生物强化较处理环境对污泥中微生物区系的影响远小。不同处理的反应器的DGGE图谱仅在初始阶段和末期有所区分,一部分α、β变形菌及未知菌(群)逐渐成为了运行系统中的优势菌群。
     通过直接平板涂布法获得了4株差异明显的细菌菌株,并对其进行了鉴定和特性研究。结果表明,编号依次为R,S,W和M的菌株其分类地位分别归属Exiguobacterium sp.,Pseudomonas sp.,Bacillus cereus和P.aeruginosa;这4株菌与DGGE图谱分析中的部分条带的16S rRNA基因v3区序列同源;有着良好的聚凝能力和疏水性能。聚凝指数分别为79.5%,83.1%,90.0%和81.2%,远较50%的界定标准高;上述菌株与降解菌株ONBA-17之间无显著ONBA降解能力、成膜能力及聚凝能力促增作用。但菌株R与ONBA-17和S之间有明显的生长促增作用。通过后续主要碳源利用实验及培养液的GC-MS分析,发现混合培养较单菌培养在物质代谢利用方面存在差异。
     在本研究之前,国际上未见ONBA降解菌及其生物强化研究的相关报道,国内也无此类废水的相关处理模型。因而,本研究具备一定的创新性和理论价值,能为后续研究提供一定的研究基础,起到抛砖引玉的作用。
Along with the industrialization advancement speeding up in China, the wastewater discharged by organic synthesis industry is more and more huge, which has caused serious pollution to the environment and threatened the life and health of human. O-nitrobenzaldehyde (ONBA) is used as an important intermediate for the synthesis of pharmaceuticals, dyes, agrochemicals, and other organic compounds. In the southeast of China, at least 730,000 tons of ONBA were produced per year. What's more, vast quantities of wastewaters containing ONBA were generated during the manufacturing process. Because of its toxic and recalcitrant nature, ONBA creates pollution hazards. In order to uncover its harmful nature, supply certain design and operation information and experience to relevant activated sludge mediated wastewater processing actions, meanwhile study the feasibility of its bioaugmentation and changes in sludge composition and microbial community, and isolation and characterization of predominant population, etc, I carried out this research.
     I initially studied the characteristics and components of the wastewater, the high CODcr value, suspension solids content and salinity was confirmed; 2-ethylhexanol, ONBA, o-nitrobenzenemethanol, dibutyl phthalate and diisooctyl phthalate was indeed presented in the aqueous phase through GC-MS analysis. Besides, through the acute toxicity test analysis, the LD_(50) value of ONBA is in the range of medium toxicity.
     Then, sets of sequencing batch reactors (SBR) were built up in our laboratory. Hydraulic retention time and sludge retention time were respectively studied as variables, and the relationship between biomass of activated sludge and the removal rates of COD_(Cr) and total nitrogen was examined. The model of wastewater treatment under such conditions was built up as S_e = K_s (1 + b·θc) / [θ_c(Y·K - b) - 1] = 996(1 + 0.1970c) / (0.730c - 1) and X = r (S_0-S_e)·θc/θ_H (1+b·θc) = 0.342(S_0 - S_e)·θ_c /θ_H (1 + 0.197·θ_c). Through the investigation around changes in activated sludges, I found that the settling ability of the adapted sludge was improved as compared with the seeding sludge. Further study revealed that this improvement was relevant with the drop in protein/carbohydrate ratio of sludge extracellular polymeric substances; the sludge structure gradually became compact and the microorganism community also changed remarkably. Combined with the methods of fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE), changes in bacterial community of sludge were thoroughly studied, and predominant bacterial populations in adapted sludge were identified as populations which belong to the a- andβ-Proteobacteria. Microbial ecology study carried out in this way might overcome some bias and be more comprehensive and persuasive as compared with the single-method studied one.
     In order to realize the specific biodegradation of ONBA and supply proper strain candidates for bioaugmentaion, I initiated the screen and isolation of ONBA-degrading strain which used activated sludge sampled form a domestic wastewater treatment plant as innoculum. Several bacterial strains which could utilize ONBA were obtained. A strain, designated as ONBA-17, was used for further study, because it could completely degrade 100 mg/mL ONBA in 12 h and owns some other aromatic compounds degrading ability. The optimum growth conditions were 28"C and pH 7.6; fructose and yeast extract were its optimum carbon and nitrogen sources, respectively. The isolate was a moderately halophilic bacterium due to its optimal growth salinity was 3.5%, and multiresistant to some heavy metals and antibiotics.
     Through detailed study on the incubation, physiological and biochemical characteristics of the strain, and analyses of its 16S rDNA sequence, G+C mol% content and DNA-DNA hybridization, this strain was identified as Pseudornonas putida species and named Pseudornonas putida ONBA-17. Afterwards, the optimal effect conditions of crude enzymatic extract were 30℃and pH 7.4. Besides, the effects of some metal ions, EDTA and surfacants on the extract were evaluated. The result indicates that Li~+, Ni~(2+) and Co~(4+) have inhibitory effect on it, but Ca~(2+), Mg~(2+) and Mn~(2+) could activated it. Tween 20, Tween 80 and especially SDS also inhibit the enzyme(s) very much. The fact that EDTA could reduce approximately half of the enzyme activity implied that the enzyme(s) might belong to one kind(s) of the metalloenzyme; In addition, I studied ONBA-degrading metabolism pathway and localization of the relevant gene(s). These genes might be existed on the chromosome of the strain.
     Through tri-parental mating, a fragment of extraneous source gfp gene was inserted into the chromosome of P. putida ONBA-17. The stability of it was confirmed by successive culture either on solid or in liquid LB medium. During the process of evaluating the effect of bioaugmentation, I found that bioaugmentation not only enhanced the removal effect of the target compound, but also significantly shortened the system start-up time; however, it was ephemeral. Our study supported the idea that natural uncontaminated environmental systems contain sufficient genetic diversity to make them valid choices for the removal of xenobiotics after an adequate exposure time, either by metabolism or co-metabolism.
     Through confocal laser scanning microscopy (CLSM) observation, I on-line tracked the strain. Our observations suggested that predation by protozoa is a major cause for the disappearance of the introduced bacteria. Further, we considered that the fate of the inoculum species mainly depends on three factors, which are, the adaptation and retention capabilities of the strains, the competition between the allochthonous bacteria and the indigenes, and the capability against predatory protozoa.
     In order to study the influence caused by bioaugmentation on microbial community and supply some guidance for later isolation of functional dominant population, we applied DGGE technique to monitor changes in reactor systems. Then, we found that bioaugmentation itself as compared with the operating conditions and environment exerted less influence on microbial community structure. A part of a- andβ-Proteobacteria, and certain unknown groups gradually became the dominant populations.
     Through plate spreading I obtain four bacterial strains, and then identified and characterized them. The result shows that these strains, designated as R, S, W and M respectively, were identified as Exiguobacterium sp., Pseudomonas sp., Bacillus cereus and P. aeruginosa. A systematic study has been conducted to identify the ONBA-degrading pairs among isolates and strain ONBA-17, but no positive combination was found. I further checked their surface hydrophobicities and aggregation abilities; interestingly all of them are good floc formers. However, none of them could utilize ONBA. Combine with the operation characteristics of SBR system, why bacteria own such traits could be kept and screened out could be explained to some extent. What's more, the partial 16S rDNA sequences of them were compared with the sequences of the dominant populations in the activated sludge that were detected by the DGGE analysis. This comparison revealed that strain M and S are very closely related to some DGGE bands indicating bacteria. Finally, through comparing main carbon source utilization degree and GC-MS analysis, the phenomenon of growth promotion could be explained to some extent.
     Best to our known, it's the first systematic research on aspects of ONBA-degrading strain isolation and relevant bioaugmentation, etc. what's more, there was no such wastewater treatment model in domestic published studies. Therefore, it owns certain originalities, and could laid scientific foundations and gave some hints, such as better understanding of the distribution of metabolic functions within multi-species communities and how these microhabitats in turn affect community architecture, for future researches.
引文
1.杨立冰.关于我国水资源可持续利用的若干思考[J].亚太经济,2004,3:94-96
    2.高廷耀,陈洪斌,夏四清,等.我国水污染控制的思考[J].长江流域资源与环境,2006,32(15):29-32
    3.吴舜泽,夏青,刘鸿亮.中国流域水污染分析[J].环境科学与技术,2000,(2):1-6
    4.辛琨,陈涛.水污染损失估算与治理水污染生态效益实例分析[J].应用生态学报,1998,9(5):529-532
    5.胡晓寒,党志良,阮仕平,等.水污染造成的湖泊水环境价值损失研究[J].水资源与水利工程学报,2004,15(1):78-80
    6.秦伯强,吴庆农,高俊峰,等.太湖地区的水资源与水环境—问题、原因与管理[J].自然资源学报,2005,17(2):221-228
    7.刘兴盛,张防修,陈丹枫.太湖流域污染物总量控制研究[J].中国水利,2004,15:54-56
    8.靳晓莉,高俊峰,赵广举.太湖流域近20年社会经济发展对水环境影响及发展趋势[J].长江流域资源与环境,2006,15(3):29-32
    9.李长兴.城市河流污染治理的辨证思考[J].中国农村水利水电,2005,11:40-42
    10.徐琦.“十五”环保取得明显进展[EB/OL].(2005.10-28)[2007-03-01].http://www.h2o-china.com/news/viewnews.asp?id=33583
    11.戴传杰.国家环保总局:国家十五重点治污工程完成无望[EB/OL].(2005-09-23)[2007-03-01].http://www.h2o-china.com/news/viewnews.asp?id=32826
    12.杨磊.13750亿:“十一五”环保投资路线图[EB/OL].(2005-11-04)[2007-03-01]http://www.h2o-china.com/news/viewnews.asp?id=33820
    13.中国水网.钱易:中国水处理新技术进展[EB/OL].(2006-09-14)[2007-03-05].http://www.h2o-china.com/news/viewnews.asp?id=44361
    14.杨柳,马克明,郭青海,等.城市化对水体非点源污染的影响[J].环境科学,2004,25(6):32-39
    15.唐莲,白丹.农业活动非点源污染与水环境恶化[J].环境保护,2003,3:18-20
    16.金树权,吕军.水环境非点源污染模型的研究进展和展望[J].土壤通报,2006,37(5):1022-1026
    17.郑一,王学军.非点源研究的进展与展望[J].水科学进展,2002,13(1):105-110
    18.许书军,魏世强,谢德体.非点源污染影响因素及区域差异[J].长江流域资源与环境,2004,13(4):389-393
    19.张杰,曹相生,孟雪征.水环境恢复原理及我国的工程时间[J].北京工业大学学报,2006,32(2):161-166
    20.高廷耀,陈洪斌,夏四清,等.我国水污染控制的思考[J].给水排水,2006,32(5):9-13
    21.袁文卿.水环境污染治理的税收政策[J].环境保护,2004,2:41-43
    22.中华人民共和国国家统计局.2006中国统计年鉴:环境保护卷[M].北京:中国统计出版社,2006
    23.杨柳燕,肖琳.环境微生物技术[M].北京:科学出版社,2003,213-256
    24.周少奇.环境生物技术[M].北京:科学出版社,2003,111-188
    25.汪大翠,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001
    26. Kim W H, Nishijima W, Shoto E, et al. Competitive removal of dissolved organic carbon by adsorption and biodegradation on biological activated carbon [J]. Water Science and Technology, 1997, 35(7): 147-153
    27. Duan Huiqi, Yan Rong, Koe L C C, et al. Combined effect of adsorption and biodegradation of biological activated carbon on H_2S biotrickling filtration [J]. Chemosphere, 2007, 66:1684-1691
    28.米克尔G M,布鲁斯A B.污水处理的氧化沟技术[M].北京:中国建筑工业出版社,1988
    29.闫新萍,滕红文.Carrousel氧化沟工艺处理造纸中段废水[J].环境工程,2006,24(5):7-10
    30.吴海龙,贾立华,周兰英.一体化氧化沟新工艺在油田污水处理中的应用[J].油气田地面工程, 2003,22(3):26-32
    31.曹贤水,张安龙,刘英政.改良型氧化沟工艺处理箱纸板制浆废水[J].中国造纸,2006,25(1):41-43
    32.王贵华,李纪亮,易志强.CASST艺处理啤酒废水的研究[J].酿酒,2006,33(5):73-77
    33.祁佩时,李欣,刘云芝.UNITANK工艺处理制药废水中试[J].中国给水排水,2004,20(10):43-45
    34.严晨敏,张代钧,唐然,等.一种改进的MSBR工艺脱氮除磷性能的仿真模拟与试验研究[J].环境科学学报,2005,25(3):391-395
    35.马建勇,杨凤林,张兴文,等.低浓度废水厌氧处理的研究进展[J].环境污染治理技术与设备,2002,3(8):63-66
    36.刘军,郭茜,瞿永彬.厌氧水解生物法处理城市污水的研究[J].中国给水排水,2000,126(17):10-14
    37.刘锋,吴建华,马三剑.组合式厌氧滤池(UBF)处理柠檬酸生产废水[J].中国给水排水,2006,22(8):63-65
    38.王新华,管锡珺,徐世杰,等.水力循环UASB反应器处理柠檬酸废水[J].水处理技术,2006,32(11):61-65
    39.石宪奎,倪文,王凯军.EGSB处理玉米淀粉生产废水中试研究[J].环境工程,2005,23(1):17-20
    40. Lee J G, Hut J M. Performance characterization of anaerobic sequencing batch reactor process for digestion of night soil [J]. Water Science and Technology, 2001, 43(1): 27-34
    41. Ndon U J, Dagne R R. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater [J]. Water Research, 1997, 31(10): 2455-2466
    42.王治军,王伟,夏洲,等.厌氧序批式反应器(ASBR)的研究进展[J].中国给水排水,2003,19(13):28-32
    43. van der Steen P, Brenner A, Oron G. An integrated duckweed and algae pond system for nitrogen removal and renovation [J]. Water Science and Technology, 1998, 38 (1): 335-343
    44. Smith M D, Moelyowati I. Duckweed based wastewater treatment (DWWT): design guidelines for hot climates [J]. Water Science and Technology, 2001, 43 (11): 291-299
    45. Alaerts G J, Mahhnbar M D R, Kelderman P. Performance analysis of a full-scale duckweed-covered sewage lagoon [J]. Water Research, 1996, 30 (4): 843-852
    46.李寒娥.人工湿地系统在我国污水处理中的应用[J].环境污染治理技术与设备,2004,5(7):9-12
    47.张显龙,周力.人工湿地处理城市污水在北方的应用[J].环境工程,2005,23(4):23-26
    48.何江涛,钟佐,汤鸣皋,等.污水土地处理技术与污水资源化[J].地学前缘,2001,8(1):155·162
    49. Stephenson R J, M, PATOINE A, Guiot S R. Effects of oxygenation and upflow liquid velocity on a coupled anaerobic/aerobic reactor system [J]. Water Research, 1999, 33(12): 2855-2863
    50. van der Steen P, Brenner A, van Buuren J, et al. Posttreatment of UASB reactor effluent in an integrated duckweed and stabilization pond system [J]. Water Research, 1999, 33 (3): 615 - 620
    1. Brock T D. The study of microorganisms in situ: progress and problems [J]. Symposia of the Society for General Microbiology, 1987, 41:1-17
    2. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews, 1995, 59 (1): 143-169
    3. Schramm A, Larsen L H, Revsbech, et al. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes [J]. Applied and Environmental Microbiology, 1996, 62(12): 4641-4647
    4.张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展[J].生态学报,2003,23(5):988-995
    5.王莹,万欢,吴根福.环境微生态研究中的分子生物学新技术[J].环境污染与防治,2006,28(6): 457-460
    6.彭永臻,高守有.分子生物学技术在污水处理微生物检测中的应用[J].环境科学学报,2005,25(9):1143-1147
    7. Leff L G. Dana J R, MacArthur J V, et al. Comparison of methods of DNA extraction from stream sediments [J]. Applied and Environmental Microbiology, 1995, 61(3): 1141-1143
    8. Bourrain M, Achouak W, Urbain V, et al. DNA extraction from activated sludges [J]. Current Microbiology, 1999, 38(6): 315-319
    9. Muyzer G, de Wall E C, Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993(3), 59:695-700
    10. Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems [J]. Current Opinion in Microbiology, 1999, 2(3): 317-322
    11. Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacterium in activated sludge [J]. Applied and Environmental Microbiology, 1998, 64(11): 4396-4402
    12. Marsh T L, Lin W T, Forney LJ. Beginning a molecular analysis of the eukaryal community in activated sludge [J]. Water Science and Technology, 1998, 37(4): 455-460
    13. Wang F, Fu Y G. Characteristics of municipal sewage chembiofiocculation treatment process by using PCR-DGGE technology [J]. Environmental Science, 2004, 25(6):74-80
    14. Zhuang W-Q, Tay J-H, Yi S, et al. Microbial adaptation to biodegradation of tert-butyl alcohol in a sequencing batch reactor [J]. Journal of Biotechnology, 2005, 118(11): 45-53
    15. Head I M, Saunders J R, Pickup R W. Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms [J]. Microbial Ecology, 1998, 35(1):1-21
    16. Frank S, Christoph C T. A new approach to utilize PCR-Single-Strand-Conformation Polymorphism for 16S rKNA gene based microbial community analysis [J]. Applied and Environmental Microbiology, 1998, 64 (12): 4870-4876
    17.赵阳国,任南琪,王爱杰,等.SSCP技术解析硫酸盐还原反应器中微生物群落结构[J].环境科学,2005,26(4):171-176
    18. Delbes C, Moletta R, Godon J J. Bacterial and archeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem [J]. FEMS Microbiology Ecology, 2001, 35(1): 16-28
    19. Tiedje J M, Asuming-Brempong S, Nusslein K, et al. Opening the black box of soil microbial diversity [J]. Applied Soil Ecology, 1999, 13(1): 109-122
    20. Zhang Xueli, Gao Pingping, Chao Qunfang, et al. Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system [J]. FEMS Microbiology Letters, 2004,237(2): 369-375
    21. Marsh T L. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products [J]. Current Opinion in Microbiology, 1999,2(3): 323-327
    22. Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Applied and Environmental Microbiology, 1997,63(11): 4516-4522
    23. Williams J G, Kubelik A R, Livak K J. DNA polymer primers amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acid Research, 1990,18(22): 6531-6535
    24. Purohit H J, Kapley A, Moharikar AA, et al. A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants [J]. Journal of Microbiological Methods, 2003,52 (3): 315-323
    25. Barberio C, Fani R. Biodiversity of an Acinetobacter population isolated from activated sludge [J]. Research in Microbiology, 1998,149(9): 665-673
    26. Buchan A, Alber M, Hodson R E. Strain-specific differentiation of environmental Escherichia coli isolates via denaturing gradient gel electrophoresis (DGGE) analysis of 16S-23S intergenic spacer region [J]. FEMS Microbiology Ecology, 2001,35(3): 313-321
    27. Jensen M A, Webster J A, Straus N. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms [J]. Applied and Environmental Microbiology, 1993, 59(2): 945-952
    28. Nagpal M L, Fox K F, Fox A. Utility of 16S-23S rRNA spacer region methodology: how similar are interspace regions within a genome and between strains for closely related organisms? [J]. Journal of Microbiological Methods, 1998, 33(3): 211-219
    29. Cook K L, Laytona A C, Dionisi H M, et al. Evaluation of a plasmid-based 16S-23S rDNA intergenic spacer region array for analysis of microbial diversity in industrial wastewater [J]. Journal of Microbiological Methods, 2004,57(1): 79-93
    30. Moran M A, Torsvik V L, Torsvik T, et al. Direct extraction and purification of rRNA for ecological studies [J]. Applied and Environmental Microbiology, 1993(33), 59: 915-918
    31. Van Winzingerode F, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Letters, 1997, 21(3): 213-229
    32. Zheng D, Aim E W, Stahl D A, et al. Characterization of universal small subunit rRNA hybridization probes for quantitative molecular microbial ecology studies [J]. Applied and Environmental Microbiology, 1996, 62(12): 4504-4513
    33. Suzuki M T, Giovannoni S J. Bias caused by template annealing in the amplification mixtures of 165 rRNA genes by PCR [J]. Applied and Environmental Microbiology, 1996, 62(2): 625-630
    34. Manning J E, Hershey N D, Brooker T R, et al. A new method of/n situ hybridization [J]. Chromosoma, 1975, 53(2): 107-117
    35. Nath J, Johnson K L. A review of fluorescence in-situ hybridization (FISH): current status and future p respects [J]. Biotechnic & Histochemistry, 2000, 73(2): 54-78
    36. Sandaa R A, Torsvik V, Enger O, et al. Analysis of bacterial communities in heavy metal contaminated softs at different levels of resolution [J]. FEMS Microbiology Ecology, 1999, 30(33): 237-251
    37. Nielsen J L, Mikkelsen L H, Nielsen P H. In situ detection of cell surface hydrophobicity of probe-defined bacteria in activated sludge [J]. Water Science and Technology, 2001, 43(6): 97-103
    38. Hug T, Gujer W, Siegdst H. Rapid quantification of bacteria in activated sludge using fluorescence in situ hybridization and epifluorescence microscopy [J]. Water Research, 2005, 39(16): 3837-3848
    39. Pathak B K, Kazama F, Saiki Y, et al. Presence and activity of anammox and denitdfication process in low ammonium-fed bioreactors [J]. Bioresource Technology, in press
    40. Jang C C, Kyung J P, Hyuk S I, et al. A novel continuous toxicity test system using a luminously modified freshwater bacterium [J]. Biosensors and Bioelectronics, 2004, 20(2): 338-344
    41. Cambours M A, Nejad P, Granhall U, et al. Frost related dieback of willows: comparison of epiphytically and endophytically isolated bacteria from different Salix clones with emphasis on ice nucleation activity, pathogenic properties and seasonal variation [J]. Biomass and Bioenergy, 2005, 28(1): 15-27
    42. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as marker for gene expression [J]. Science, 1994, 263 (5148): 802-805
    43. Fan Yang, L arry G, Moss, et al. The molecular structure of green fluorescent protein [J]. Nature Biotechnology, 1996, 14(10): 1246-1251
    44. Prashar D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein [J]. Gene, 1992, 111(2): 229-233
    45. Eberl L Schulze R, Ammendola A, et al. Use of green fluorescent protein as a marker for ecological studies of activated sludge communities [J]. FEMS Microbiology Letters, 1997, 149(1): 77-83
    46. Skillman L C, Suthedand I W, Jones M V, et al. Green fluorescent protein as novel species-specific marker in enteric dual species biofilms [J]. Microbiology, 1998, 144(10): 2095-2101
    47. Olofsson A C, Zita A, Hermannsson M. Floc stability and adhesion of green fluorescent protein marked bacteria to flocs in activated sludge. Microbiology, 1998, 144:519-528
    48. Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology, 1959(8), 37:911-917
    49. Werker A G, Hall E R. Quantifying population dynamics based on community structure fingerprints extracted from biosolids samples [J]. Microbial Ecology, 2001, 41(3): 195-209
    50. Hilla G T, Mitkowskia N A, Aldrich-Wolfeb L, et al. Methods for assessing the composition and diversity of soft microbial communities [J]. Applied Soil Ecology, 2000(1), 15:25-36
    51. Hu H Y, Lim B R, Goto N, et al. Analytical precision and respiratory quinones for quantitative study of microbial community structure in environmental samples [J]. Journal of Microbiological Methods, 2001, 47:17-241
    52.温沁雪,施汉昌,周延俊,等.1TFB强化除氨及醌指纹生物群落结构分析[J].环境科学,2006,27(7):1434-1438
    53.李红岩,张昱,高峰,等.水力停留时间对活性污泥系统的硝化性能及其生物结构的影响[J].环境科学,2006,27(9):1862-1865
    54. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization [J]. Applied and Environmental Microbiology, 1991, 57(88): 2351-2359
    55. Konopka A, Oliver L, Turco R F J. The use of carbon substrate utilization patterns in environmental and ecological microbiology [J]. Microbial Ecology, 1998, 35(22): 103-115
    56. Guckert J B, Carr G J, Johnson T D, et al. Community analysis by Biolog: curve integration for statistical analysis of activated sludge microbial habitats [J]. Journal of Microbiological Methods, 1996, 27(3): 183-197
    57. Mascini M L. Affinity electrochemical biosensors for pollution control [J]. Pure and Applied Chemistry, 2004, 73(1): 23-30
    58. Wang J, Chicharro M, Rivas G, et al. DNA biosensor for the detection of hydrazines [J]. Analytical chemistry, 1996, 68 (13): 2251-2254
    59.葛源,贺纪正,郑袁明,等.稳定性同位素探测技术在微生物生态学研究中的应用[J].生态等报,2006,26(5):1574-1582
    60. Dumont M G, Murrell J C. Stable isotope probing-linking microbial identity to function [J]. Nature Reviews Microbiology, 2005, 3 (6): 499-504
    61. Ginige M P, Hugenholtz P, Daims H, et al. Use of stable isotope probing, furl-cycle rRNA analysis, and fluorescence in situ hybridization microautoradiography to study a methanol-fed denitrifying microbial community [J]. Applied and Environmental Microbiology, 2004, 70 (1): 588-596
    62. Van Limbergen H, Top E M, Verstraete W. Bioaugmentation in activated sludge: current features and future perspectives [J]. Applied Microbiology and Biotechnology, 1998, 50(1): 16-23
    63. Selvaratnam C, Schoedel B A, McFarland B L, et al. Application of the polymerase chain reaction (PCR) and the reverse transcriptase PCR for determining the fate of phenol-degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor [J]. Applied Microbiology and Biotechnology, 1997, 47(3): 236-240
    64. Nüβlein K, Maris D, Timmis K, et al. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms [J]. Applied and Environmental Microbiology, 1992, 58(10): 3380-3386
    65. McClure N C, Weightman A J, Fry J C. Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated sludge unit [J]. Applied and Environmental Microbiology, 1989, 55(10): 2627-2634
    66. Boon N, Goris J, de vos P, et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, 12gfp [J]. Applied and Environmental Microbiology, 2000, 66(7): 2906-2913
    67.朱永光,冯栩,廖银章,等.活性污泥系统处理苯酚废水的生物强化效果[J].应用与环境生物学报,2006,12(4):559-561
    68.刘春,黄霞,孙炜,等.基因工程菌生物强化MBR工艺处理阿特拉津试验研究[J].环境科学,2007,28(2):417-421
    69. Ahring B K, Christiansen N, Mathrani 1, et al. Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei [J]. Applied and Environmental Microbiology, 1992, 58(11): 3677-3682
    70. Quan Xiangchun, Shi Hanchang, Hong Liu, et al. Removal of 2,4-dichlorophenol in a conventional activated sludge system through bioaugmentation [J]. Process Biochemistry, 2004, 39:1701-1707
    71. Mohan S V, Rao N C, Prasad K K, et al. Bioaugmentation of an anaerobic sequencing batch biofilm reactor (AnSBBR) with immobilized sulphate reducing bacteria (SRB) for the treatment of sulphate bearing chemical wastewater [J]. Process Biochemistry, 2005, 40:2849-2857
    72. Tchelet R, Meckenstock R, Steinle P, et al. Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge [J]. Biodegradation, 1999, 10(2): 113-125
    73. McClure N C, Fry J C, Weightman A J. Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated sludge unit [J]. Applied and Environmental Microbiology, 1991(2), 57:366-373
    74. Vestraete W, van Vaerenbergh E. Aerobic activatedsludge [M]. In: Rehm H J, Reed G (eds) Biotechnology, 1986, vol 8. VCH, Weinheim, pp 44-102
    75. Berthouex P M, Fan R. Evaluation of treatment plant performance: causes, frequency, and deviation of upsets [J]. Journal-Water Pollution Control Federation, 1986, 58(5): 368-375
    76. Bossier P, Verstraete W. Triggers for microbial aggregation in activated sludge? [J]. Applied Microbiology and Biotechnology, 1996, 45(1-2): 1-6
    77. Fugua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the luxR-luxl family of cell density-responsive transcriptional regulators [J]. Journal of Bacteriol, 1994, 176(2): 269-275
    78. Salmond G P C, Bycroft B W, Stewart G S A B, et al. The bacterial "enigma" cracking the code of cell-cell communication [J]. Molecular Microbiology, 1995, 16(4): 615-624
    79. Ramadan M A, EI-Tayeb O M, Alexander M. Inoculum size as a factor limiting success of inoculation for biodegradation [J]. Applied and Environmental Microbiology, 1990, 56(5): 1392-1396
    80. Barlett D H, Wright M E, Silverman M. Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement [J]. Proceedings of the National Academy of Sciences, 1988, 85(11): 3923-3927
    81. Warne S R, Varley J M, Boulnois G J, et al. Identification and characterisation of a gene that controls colony morphology and auto-aggregation in Escherichia coli K12 [J]. Journal of general microbiology, 1990, 136(3): 455-462
    82. Blasco R, Mallavarapu M, Wittivh R-M, et al. Evidence that formation of protoanemonin from metabolites of 4-chlorobiphenyl-cometabolizing microorganisms [J]. Applied and Environmental Microbiology, 1997, 63(2): 427-434
    83. Barcina J, Lebaron P, Vivis-Rego J. Survival of aliochthonous bacteria in aquatic system: a biological approach [J]. FEMS Microbiology Letters, 1997, 23(1): 1-9
    1. Ohkubo K, Fukuzumi S. 100% selective oxygenation of p-xylene to p-tolualdehyde via photoinduced electron transfer [J]. Organic Letters, 2000, 2(23): 3647-3650
    2. Yu Fang-Bo, Shen Biao, Li Shun-Peng. Isolation and characterization of Pseudomonas sp. strain ONBA-17 degrading o-Nitriobenzaldehyde [J]. Current Microbiology, 2006, 53(6): 457-461
    3.国家环境保护总局《水和废水检测分析方法》编委会.水和废水检测分析方法[M].第四版.北京:中国环境科学出版社,2002
    4.马俊.化学品毒性鉴定技术规范[M].北京:中国协和医科大学出版社,2005
    5. Frilund B, Palmgren R, Keiding K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30(8):1749-1758
    6. Wilén B-M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties [J]. Water Research, 2003, 37(9):2127-2139
    7. Gaudy A F. Colorimetric determination of protein and carbohydrate [J]. Indust Water Wastes, 1962, 7:17-22
    8. Raunkjar K, Hvitved-Jacobsen T, Nielsen P H. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater [J]. Water Research, 1994,28(2): 251-262
    9. Fr(?)lund B, Griebe T, Nielse P H. Enzymatic activity in the activated-sludge floc matrix [J]. Applied Microbiology and Biotechnology, 1995,43(4): 755-761
    10. Amann R I, Krumholz L, Stahl D A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology [J]. Journal of Bacteriology, 1990,172(2): 762-770
    11. Wagner M, Amann R, Lemmer H. Probing activated sludge with oligonucleotides specific for Proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure [J]. Applied and Environmental Microbiology, 1993,59(5): 1520-1525
    12. Amann R I, Binder B J, Olson R J, et al. Combination of 16S ribosomal RNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations [J]. Applied and Environmental Microbiology, 1990,56(6): 1919-1925
    13. Manz W, Amann R I, et al. Phylogenetic oligodeoxynucleotide probes for the major subclass of proteobacteria: problems and solutions [J]. System Applied Microbiology, 1990,15:593-600
    14. Hicks R E, Amann R I, Stahl D A. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences [J]. Applied and Environmental Microbiology, 1992,58(7): 2158-2163
    15. Johnson G D, Araujo G M. A simple method of reducing the fading of immunofluorescence during microbiology [J]. Journal of Immunological Methods, 1981,43(5): 349-350
    16. Yu Fang-Bo, Xu Jing-Liang, Zhao Zi-Ru, et al. A rapid method for extraction of genomic DNA from nitrobenzene containing wastewater bio-treatment system, and its ERIC-PCR fingerprint analysis [J]. 9th National Congress of Microbiology, The National Society for Microbiology, Hangzhou, China
    17. Zhou J Z, Bruns M A, Tiedje J M. DNA Recovery from soils of diverse composition [J]. Applied and Environmental Microbiology, 1996,62(2): 316-322
    18. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews, 1995,59(1): 143-169
    19. Muyzer G, de Waal G C, Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993,59(3): 695-700
    20. Zhang X L, Yan X, Gao P P, et al. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system [J]. Journal of Microbiological Methods, 2005, 60(1): 1-11
    21. McCaig A E, Glover L A, and Prosser J I. Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal DNA sequence data and denaturing gradient gel electrophoresis banding patterns [J]. Applied and Environmental Microbiology, 2001, 67(10): 4554-4559
    22. Watanabe K, Teramoto M, Futamata, H., et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge [J]. Applied and Environmental Microbiology, 1998, 64(11): 4396-4402
    23.萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南[M].2版.金冬雁,黎孟枫,译.北京:科学出版社,2002
    24. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symp Set, 1999, 41:95-98
    25. Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research 31(1): 442-443. [WWW document]. URL http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=LSU
    26. Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool [J]. Journal of Molecular Biology, 1990, 215:403-410
    27.孙荣权,郭易,汪海良,等.油田含油废水处理工艺及设备[J].给水排水,2001,27(12):4145
    28.杨维本,李爱民,张全兴,等.含油废水处理技术研究进展[J].离子交换与吸附,2004,20(5):475-480
    29.国家环境保护总局.《污水综合排放标准》(GB8978—1996)[S].北京:中国标准出版社,1998
    30. Liu Yu, Tay J-H. Strategy for minimization of excess sludge production from the activated sludge process [J]. Biotechnology Advances, 2001, 19(2): 97-107
    31. Zhao Q L, Kugel G. Thermophfliy mesophilic digestion of sewage sludge and organic waste [J]. Journal of Environmental Science and Health, 1997, 31:2211-2231
    32. Dincer A R, Kargi F. Characterization and biological treatment of ceramic industry wastewater [J]. Bioprocess Engineering, 2000, 23:209-212
    33. Kargi F, Dincer A R, Pala A. Characterization and bioogical treatment of pickling industry wastewater [J]. Bioprocess Engineering, 2000, 23:371-374
    34. Sutherland I W. Exopolysaccharides in biofilms flocs and related structures [J]. Water Science and Technology, 2001, 43:77-86
    35. Müller E, Kriebitzsch K, Wilderer P A, et al. Community structure of micro- and marcoflocs in pin-point sludge and the influence of sludge age and potassium addition on microfloc formation [J]. Water Science and Technology, 2002, 46(1): 405-412
    36. Bochner B R. Sleuthing out bacterial identities [J]. Nature, 1989, 339:157-158
    37. Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon=source utilization [J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359
    38. Ogram A, Sayler G S, Barkey T, et al. The extraction and purification of microbial DNA from sediments [J]. Journal of Microbiological Methods, 1987, 7:57-66
    39. Bourrain M, Achouak W, Urbain V, et al. DNA extraction from activated sludges [J]. Current Microbiology, 1999, 38:315-319
    40.高平平,赵立平.可用于微生物群落分子生态学研究的活性污泥总DNA提取方法研究[J].生态学报,2002,22(11):2015-2019
    41. Ogram A, Sayler G S, Gustin D M, et al. Sorption of DNAto soils and sediments [J]. Environmental Science and Technology, 1987, 4:37-43
    42. Vainio E J, Moilanen A, Koivula T T, et al. Comparison of partial 16S rRNA gene sequences obtained from activated sludge bacteria [J]. Applied Microbiology and Biotechnology, 1997, 48(1): 73-79
    43. Bramucci M, Kane H, Chen M, et al. Bacterial diversity in an industrial wastewater bioreactor [J]. Applied Microbiology and Biotechnology, 2003, 62(5-6): 594-600
    1.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    2. Buchanan R E, Gibbons N E. Bergey's Manual of Determinative Bacteriology [M]. 9th edition. USA: The Williams & Wilkins Company, 1994
    3. Malik A, Sakamoto M, Hanazaki S, et al. Coaggregation among nonflocculating bacteria isolated from activated sludge [J]. Applied and Environmental Microbiology, 2003, 69(10): 6056-6063
    4.萨姆布鲁克J,弗里奇E E曼尼阿蒂斯T.分子克隆实验指南[M].2版.金冬雁,黎孟枫,译.北京:科学出版社,2002
    5. Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction [J]. Journal of Clinical Microbiology, 1999, 28(9): 1942-1946
    6. Ribosomal Database Project (RDP-Ⅱ): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acid Research, 2003, 31: 442-443. [WWW document]. URL http://rdp8.cme.msu.edu/cgis/chimera.cgi?su=LSU
    7. Thompson J S, Higgins D G, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence weighing, position-specific gap penalties and weight matrix choice [J]. Nucleic Acid Research, 1994, 22(22): 4673-4680
    8. Kumar S, Tamura K, Nei M. MEGA 3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Brief Bioinformatics, 2004, 5(2): 150-163
    9. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic tree [J]. Molecular Biology and Evolution, 1987, 4(4): 406-425
    10. De Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates [J]. European Journal of Biochemistry, 1970, 12:133-142
    11.许敬亮.高效多菌灵降解菌的分离、筛选及其降解特性研究[D].南京:南京农业大学,2006
    12. Sehgal S N, Gibbons N E. Effect of metal ions on the growth of Halobacterium cutirubrum [J]. Canadian Journal of Microbiology, 1960, 6:165-169
    13. Yu Fang-Bo, Shen Biao, Li Shun-Peng. Isolation and characterization of Pseudomonas sp. strain ONBA-17 degrading o-Nitriobenzaldehyde [J]. Current Microbiology, 2006, 53(6): 457-461
    14. Filali B K, Taoufik J, Zeroual Y, et al. Waste water bacterial isolates resistant to heavy metals and antibiotics [J]. Current Microbiology, 2000, 41(3): 151-156
    15. Kiyohara H, Nagao K, Yana K. Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates [J]. Applied and Environmental Microbiology, 1982, 43(2): 454-457
    16.汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000,42-47
    17. Neu H C, Heppe LA. The release of enzymes from Escherichia coli by osmoic shock and during the formation of spheroplasts [J]. Journal of Biological Chemistry, 1965, 240(9): 3685-3692
    18.戴树桂,庄源益,陈勇生,等.两种假单胞菌中二氯酚降解酶活性及其定域研究[J].环境科学学报,1996,16(2):173-178
    19.刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京科学出版社,2004
    20. Palleroni N J. Family I. Pseudomonadaceae. Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1917, 555AL In: Krieg N R, Holt J G (eds) Bergeys manual of systematic bacteriology [M]. vol. 1. Baltimore: Williams & Wilkins, 1984, p 146
    21. Miguelez E, Gilmour D J. Regulation of cell volume in the salt tolerant bacterium Halomonas elongata [J]. Letters in Applied Microbiology, 1994, 19(5): 363-365
    22. Kushner D J. The halobacteriaceae. In: Sokatch J R, Ornston L N (eds) The bacteria, a treatise on structure and function [M], vol. Ⅷ. San Diego: Academic Press, 1985, pp 171-206
    23. Booth J E, Williams J W. The isolation of a mercuric ionreducing flavoprotein from Thiobacillus ferroxidans [J]. Journal of General Microbiology, 1984, 130(3): 725-730
    24. Nakahara H, Ishikawa T, Sarai Y, et al. Linkage of mercury, cadmium and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa [J]. Applied and Environmental Microbiology, 1977, 33(4): 975-976
    25. Blaghen M, Vidon D J-M, El Kabbaj M S. Purification and properties of mercuric reductase from Yersinia enterocolitica 138A14 [J]. Canadian Journal of Microbiology, 1993, 39(2): 193-200
    26. Silver S, Mistra T K. Plasmid mediated metals resistance [J]. Annual Review of Microbiology, 1988, 42:717-743
    27.许育新.氯氰菊酯降解菌株CDT3、PBM11的分离、降解特性及协同代谢研究[D].南京:南京农业大学,2005
    1. Figurski D, Helinski D. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided/n trans [J]. Proceedings of the National Academy of Sciences USA, 1979, 76(4): 1648-1652
    2. Hoang T T, Karkhoff-Schweizer R R, Kutchma A J, et al. A broad-host-range FIp-FRT recombination system for site-specific excision of chromosomaliy-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants [J]. Gene, 1998, 212(1): 77-86
    3. Miller V L, Mekalanos J J. A novel suicide vector and its use in construction of insertion mutations: osmoregnlation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR [J]. Journal of Bacteriology, 1988, 170(6): 2575-2583
    4.邱珊莲.甲基对硫磷降解菌GFP标记菌株的构建及其在土壤和植物中的定殖研究[D].南京:南京农业大学,2004
    5.萨姆布鲁克J,弗里奇E F,曼尼阿蒂斯T.分子克隆实验指南[M].2版.金冬雁,黎孟枫,译.北京:科学出版社,2002
    6. Wilson K H, Blitchington R B, Greene R C. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction [J]. Journal of Clinical Microbiology, 1999, 28(9): 1942-1946
    7. Boon N, Goris J, de Vos P, et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp [J]. Applied and Environmental Microbiology, 2000, 66(7): 2906-2913
    8. Kuroda A, Takiguchi N, Gotanda T, et al. A simple method to release polyphosphate from activated sludge for phosphorus reuse and recycling [J]. Biotechnology and Bioengineering, 2002, 78(3): 333-338
    9. Wagner M, Amann R, Lemme H, et al. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure [J]. Applied and Environmental Microbiology, 1993, 59(5): 1520-1525
    10.陈芳,陈策实,李越,等.欧文氏菌22酮基醛糖还原酶基因敲除的研究[J].微生物学报,40(5):475-481
    11.姚震声,陈中义,陈志谊,等.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究[J].生物工程学报,19(5):551-556
    12.张庆华,陈营,陆承平.绿色荧光蛋白标记的嗜水气单胞菌在温暖水体的存活及稳定性[J].水生生物学报,25(3):251-256
    13.邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,46(2):331-335
    14. Zhang X L, Yah X, Gao P P, et al. Optimized sequence retrieval from single bands of temperature gradient gel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system [J]. Journal of Microbiological Methods, 2005, 60(1): 1-11
    15. Gentry T J, Rensing C, Pepper I L. New approaches for bioaugmentation as a remediation technology [J]. Critical Reviews in Environmental Science and Technology, 2004, 34:447-494
    16. McClure N C, Weightman A J, FryJ C. Survival ofPseudomonasputida UWC1 containing cloned catabolic genes in a model activated sludge unit [J]. Applied and Environmental Microbiology, 1989, 55(10): 2627-2634
    17. Van Limbergen H, Top E M, Verstraete W. Bioaugmentation in activated sludge: current features and future perspectives [J]. Applied Microbiology and Biotechnology, 1998, 50(1): 16-23
    18. Tchelet R, Meckenstock R, Steinle P, et al. Population dynamics of an introduced bacterium degrading chlorinated benzenes in a soil column and in sewage sludge [J]. Biodegradation, 1999, 10(2): 113-125
    19. Watanabe K, Teramoto M, Harayama S. Stable bioaugmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium [J]. Environmental Microbiology, 2002, 4:577-583
    20. Fuqua W C, Winans S C, Greenberg E P. Quorum sensing in bacteria: the LuxR-Luxl family of cell density-responsive transcriptional regulators [J]. Journal of Bacteriology, 1994, 176(2): 269-275
    21. Miller M B, Bassler B L. Quorum sensing in bacteria [J]. Annu Rev Microbiol, 2001, 55:165-199
    22. Nüβlein K, Marls D, Timmis K, et al. Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms [J]. Applied and Environmental Microbiology, 1992, 58(10): 3380-3386
    23. Weber W J J, Corseuil H X. Inoculation of contaminated subsurface soils with enriched indigenous microbes to enhance bioremediation rates [J]. Water Research, 1994, 28(6): 1407-1414
    24. van der Meer J R, Weflen J R, Nishino C S F, et al. Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater [J]. Applied and Environmental Microbiology, 1998, 64(11): 4185-4193
    25. Eberl L, Schulze R, Ammendola A, et al. Use of green fluorescent protein as a marker for ecological studies of activated sludge communities [J]. FEMS Microbiology Letters, 1997, 149(2): 77-83
    26. Bossier P, and Verstraete W. Comamonas testosterone colony phenotype influences exopolysaccharide production and coaggregation with yeast cells [J]. Applied and Environmental Microbiology, 1996, 62(8): 2687-2691
    27. von Wintzingerode F V, Gobel U B, Stackebrandt E. Determination of microbial diversity in environmental samples; pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Reviews, 1997, 21(3): 213-229
    28. Qiu X, Wu L, Huang H, et al. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning [J]. Applied and Environmental Microbiology, 2001, 67(2): 880-887
    29. Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology [J]. Antonie Van Leeuwenhoek, 1998, 73(1): 127-141
    30. Lee N, Nielsen P H, Andreasen K H, et al. Combination of fluorescence/n situ hybridization and microautoradiography - a new tool for structure-function analyses in microbial ecology [J]. Applied and Environmental Microbiology, 1999, 65(3): 1289-1297
    31. Manefield M, Whiteley AS, Gfiffiths R I, et al. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny [J]. Applied and Environmental Microbiology, 2002, 68(11): 5367-5373
    32. Ginige M P, Hugenholtz P, Daims H, et al. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community [J]. Applied and Environmental Microbiology, 2004, 70(1): 588-596
    33. Mahmood S, Paton G I, Prosser J I. Cultivation-independent/n situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil [J]. Environmental Microbiology, 2005, 7(9): 1349-1360
    34. Bucheli-Witschel M, Egli T. Environmental fate and microbial degradation of aminopolycarboxylic acids [J]. FEMS Microbiology Reviews, 2001, 25(1): 69-106
    35. Dejonghe W, Goris J, Diefickx A, et al. Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation [J]. FEMS Microbiology Ecology, 2002, 42(2): 315-325
    36. Pruden A, Sedran M, Suidan M, et al. Biodegradation of MTBE and BTEX in an aerobic fluidized bed reactor [J]. Water Science and Technology, 2003, 47(9): 123-128
    37. Lozada M, Itda R F, Figuerola E L M, et al. Bacterial community shifts in nonylphenol polyethoxylates-enriched activated sludge [J]. Water Research, 2004, 38(8): 2077-2086
    38. Liu B B, Zhang F, Feng X X, et al. Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison [J]. FEMS Microbiology Ecology, 2006, 55(2): 274-286
    1. Olsen G J, Lane D L, Giovannoni S J, et al. Microbial ecology and evolution: a ribosomal RNA approach [J]. Annual Review of Microbiology, 1986, 40:337-365
    2. Pace N R, Stahl D A, Lane D L, et al. The analysis of natural microbial populations by rRNA sequences [J]. Advance in Microbial Ecology, 1986, 9:1-55
    3. Bond P L, Hugenholtz P, Keller J, et al. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludge from sequencing batch reactors [J]. Applied and Environmental Microbiology, 1995, 61(5): 1910-1916
    4. Delong E. Archaea in coastal marine environments [J]. Proceedings of the National Academy of Sciences USA, 1992, 89(12): 5685-5689
    5. Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695-700
    6. Shmidt T M, Delong E H, Pace N R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing [J]. Journal of Bacteriology, 1991, 173(14): 4371-4378
    7. Snaidr J, Amann R, Huber I, et al. Phylogenetic analysis and in situ identification of bacteria in activated sludge [J]. Applied and Environmental Microbiology, 1993, 63(7): 2884-2896
    8. Wagner M, Amann R, Lemme H, et al. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure [J]. Applied and Environmental Microbiology, 1993, 59(5): 1520-1525
    9. Watanabe K, Teramoto M, Futamata H, et al. Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge [J]. Applied and Environmental Microbiology, 1998, 64(11): 4396-4402
    10. Liu B B, Zhang F, Feng X X, etal. Thauera andAzoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison [J]. FEMS Microbiology Ecology, 2006, 55(2): 274-286
    11.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    12. Buchanan R E, Gibbons N E. Bergey's Manual of Determinative Bacteriology [M]. 9th edition. USA: The Williams & Wilkins Company, 1994
    13. Malik A, Sakamoto M, Hanazaki S, et al. Coaggregation among nonflocculating bacteria isolated from activated sludge [J]. Applied and Environmental Microbiology, 1993, 69(10): 6056-6063
    14. Rosenberg M, Gutnick D, Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity [J]. FEMS Microbiology Letters, 1980, 9(1): 29-33
    15. O'Toole G A, Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis [J]. Molecular Microbiology, 1998, 28(3): 449-461
    16. Burmfille M, Webb J S, Rao D, et al. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms [J]. Applied and Environmental Microbiology, 2006, 72(6): 3916-3923
    17. Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT [J]. Nucleic Acids Symposium Series, 1999, 41:95-98
    18. von Wintzingerode F V, Gobel U B, E. Stackebrandt. Determination of microbial diversity in environmental samples; pitfalls of PCR-based rRNA analysis [J]. FEMS Microbiology Reviews, 1997, 21(3): 213-229
    19. Qiu X, Wu L, Huang H, et al. Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning [J]. Applied and Environmental Microbiology, 2001, 67(2): 880-887
    20. Brock T D. The study of microorganisms in situ: progress and problems [J]. Symposia of the Society for General Microbiology, 1987, 41:1-17
    21. Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews, 1995, 59 (1): 143-169
    22. Bossier P, Verstraete W. Triggers for microbial aggregation in activated sludge [J]. Applied Microbiology and Biotechnology, 1996, 45(1): 1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700