用户名: 密码: 验证码:
γ-氧化铝和尖晶石型偏铝酸锌纳米结构的离子液体辅助水热法可控合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属氧化物纳米材料因其优异的光、电、热、磁性能,成为化学、材料、物理等领域的重要研究方向之一。科学研究表明,材料的性能和应用取决于其晶型、形貌、尺寸和组成等,因此,金属氧化物纳米材料结构和形貌的控制合成不仅具有重要的理论意义,而且在很多方面还有很大的应用价值。其中氧化铝和尖晶石型偏铝酸锌均为廉价而有用的工业材料,引起人们广泛的关注。本论文在γ-氧化铝和尖晶石型偏铝酸锌ZnAl2O4纳米材料的离子液体辅助水热合成新途径及调控合成新方法等方面进行了探索性研究。
     离子液体是在室温下完全由离子组成的有机溶剂,由于其特殊的物理和化学性能在无机纳米材料合成方面引起人们广泛的关注。在离子液体辅助下,开发新的合成方法,同时对γ-氧化铝和尖晶石型偏铝酸锌ZnAl2O4纳米结构形貌进行控制合成是本论文的重点。具体的研究内容包括:
     (1)碱式醋酸铝为前驱物离子液体辅助水热法合成Y-氢氧化氧铝和Y-氧化铝纳米结构研究。首先,以乙酸钾和氯化铝为反应物,以离子液体氯代1-丁基-2,3-二甲基咪唑([Bdmim][Cl)])为模板剂,通过水热法制备了不同形貌的碱式醋酸铝(CH3COO)2Al(OH)纳米晶,包括树叶状、纤维状、花状、多面体和纳米棒。在制备过程中,以离子液体为模板剂,通过调节离子液体浓度,反应物浓度和反应温度即可有效地对产物的形貌进行调控。研究发现,离子液体浓度对具有不同形貌的前驱物碱式醋酸铝纳米结构的形成起到了关键的作用。吸附在前驱物晶体表面的离子液体阳离子使纳米结构稳定,随着离子液体量增加可以制备一、二、三维纳米结构。通过前驱物在高温下煅烧,即可得到形貌保持不变的γ-氢氧化氧铝和γ-氧化铝纳米结构。表面性能研究表明所得γ-氧化铝纳米结构显示良好的表面和气孔性能,得到的γ-氧化铝纳米结构具有250-380m2/g的比表面积和大约3.5nm的孔径。
     (2)以碱式醋酸铝为前驱物,通过前驱物分解与络合物生成反应的耦合反应,一步合成γ-氢氧化氧铝纳米结构的新途径研究。在一样的反应体系中,通过加一定量的Zn(NO3)2,即可直接得到花状γ-氢氧化氧铝钠米结构。添加的Zn2+离子为一种耦合反应驱动剂,对γ-氢氧化氧铝的形成起到关键的作用。另外,离子液体作为模板剂,对产物的形貌起到非常重要的作用,随着离子液体量增大,花状结构的尺寸变小,而构成花儿的纳米叶的长宽比变大了。最后得到的花状γ-氧化铝纳米结构具有150m2/g左右的比表面积和3.6nm的孔径。
     (3)离子液体辅助水热法制备碱式碳酸铝钠NaAl(OH)2CO3 (Na-Dowsonite)纳米棒以及高能电子束辐射制备纳米管。首先以氯化铝和碳酸氢钠为反应物,以离子液体氯代1-丁基-2,3-二甲基咪唑([Bdmim][Cl)])为模板剂,在水热体系中制备出直径为25nm,长度为200nm的碱式碳酸铝钠纳米棒,产物不仅大小均匀而且分散性良好。然后以碱式碳酸铝钠为前驱物,通过高能电子束辐射制备出纳米管。在电子束分解过程当中,前驱物碱式碳酸铝钠的分解过程与普通热分解过程完全不一样。在热分解过程,分解产物为偏铝酸钠(NaA102),而电子束分解产物是表面为氢氧化氧铝(AlOOH)和内部为碳酸钠(Na2CO3)的两层结构。
     (4)以碱式碳酸铝钠为前驱物在低温下Zn2+离子交换制备偏铝酸锌ZnAl2O4纳米结构的新途径。首先通过Zn2+离子交换反应得到中间体Al2O3·H20和Zn6Al2(OH)16·CO3·4H2O混合晶体的纳米片,然后在700℃煅烧2h所得偏铝酸锌(ZnAl2O4)纳米片。其纳米片由直径为约20nm的纳米颗粒组成,颗粒之间存在有气孔。这些气孔是在煅烧过程当中因中间体分解脱水而形成的。研究结果表明ZnAl2O4纳米片产物具有245m2/g的比较高的比表面积。离子液体在纳米片的生长过程中起到模板剂的作用。
     (5)以碳酸铵为碱源离子液体辅助水热法γ-氧化铝纳米结构调控合成。在相同的反应体系当中,随着温度变化得到不同物相和形貌的产物。在75℃下得到竹叶状碱式碳酸铝铵纳米结构,而在120℃下得到γ-AlOOH纳米棒或者纳米线。当温度为150℃时,产物的形貌六角形纳米片。在不同合成条件下,离子液体对产物形貌的影响明显。
     总之,本文主要研究了关于氧化铝和偏铝酸锌纳米材料的简便且环境友好的离子液体辅助水热合成法,证明了离子液体的使用使制备的材料具有新颖的形貌和优化的性能,并且可能为更多无机纳米材料的可控合成提供一个新的思路。
Most recently, metal oxides nanomaterials have become one of the most important research directions of chemistry, materials, and physics because of their excellent optical, electrical, thermal, and magnetic properties. Moreover, several researches indicated that the performance and application of the nanomaterials are decided by their phases, morphologies, sizes, and compositions. Thus, structure and shape controlled synthesis of nanoscale metal oxides will not only bring the theoretically progresses, but also extend the corresponding application field. Among them aluminum oxide, aluminum oxide hydroxide and zinc aluminate spinel compound are low cost materials widely used in industries, therefore have attracted interest. In this dissertation, a valuable research has been carried out to explore the new ionic liquid-assisted hydrothermal routes to y-aluminum oxide and ZnAl2O4 spinel nanostructures.
     Ionic liquids (ILs), which are liquid salts at room temperature, have attracted tremendous attention due to their unique properties. As a burgeoning field, ILs has been employed as solvents, reactants, or templates for the preparation of inorganic nanomaterials. In this paper, ILs was used to prepared y-aluminum oxide and ZnAl2O4 spinel nanostructures. The purposes are to develop new synthetic methods of y-aluminum oxide and ZnAl2O4 spinel and explore the new functions of ILs. The main points can be summarized as follows:
     (1) Morphology controllable synthesis of y-alumina nanostructures via two step ionic liquid-assisted hydrothermal route. Firstly, precursor aluminum acetate hydroxide (CH3COO)2A1(OH) crystals with different morphologies, including nanoleaves, nanofibers, flowerlike nanoarchtectures, polyhedrons, and nanorods, by using ionic liquid 1-buthyl-2,3-dimethyl imidazollium chloride [Bdmim][Cl)] as a template were successfully synthesized. The morphologies of the precursor aluminum acetate hydroxide (CH3COO)2A1(OH) crystal can be controlled by simply changing the amount of ionic liquid in the reaction system, the reactant concentrations and the reaction temperature. In particular, the ionic liquid [Bdmim][Cl] plays a key role on the morphology of the products as a soft template or a capping agent by the hydrogen bond-co-π-πstack mechanism. Secondly,γ-boehmite andγ-alumina nanostructures with the same morphologies were obtained by calcining at 300℃and 600℃, respectively. BET characterization of final productγ-alumina nanostructures display spesific area of 250-380m2/g and pore dimeter of 3.5nm, indicating their excellent surface property.
     (2) Noble direct synthesis of hierarchical flowerlikeγ-AlOOH nanostructures by addition of Zn salt in the same reaction system via ionic liquid-assisted hydrothermal method. We have demonstrated that Zn salt added in the reaction system plays an important role on the formation of AlOOH as a coupling agent. The ionic liquid [Bdmim][Cl] plays a key role on the morphology of the products as a soft template or a capping agent by the hydrogen bond-co-π-πstack mechanism. According to ionic liquid amount increased, the flowers of the product were decreased in size and the leaves of the flower were increased in length-to-width ratio. The hierarchical flowerlike y-Al2O3 nanostructures obtained by calcining at 600℃for 2 h display excellent surface and mesoporous properties. BET characterization of final product flowerlikeγ-alumina nanostructures display spesific area of 150m2/g and pore dimeter of 3.6nm, indicating their excellent surface property.
     (3) Ionic liquid-assisted hydrothermal synthesis of Dowsonite (denoted Na-Dw) nanorod and formation of nanotube by electron beam irradiation from Dowsonite-type nanorod precursor. Firstly, well-grown Na-Dw nano rod with length of about 200 nm and diameter of about 25nm was successfully synthesized by using NaHC03 and AICl3 as reactant, and ionic liquid [Bdmim][Cl] as a template, respectively. Secondly, uniform nanotubes whose surface consisted of AlOOH were obtained by high energy electron beam irradiation. The experimental results reveal that the decomposition of Na-Dw by electron beam irradiation is absolutely different with the thermal decomposition process. In general, Na-Dw is thermal-decomposed to form NaA102, however, in present case, Na-Dw is decomposed by high energy electron beam to form A100H surface membrane and NaCO3 internal wall. Moreover, inside formed gases, i.e, H2O and CO2 are difficult to leak out because of that membrane, leading to formation of more and more expanding nanorods. In the present reaction system, ionic liquid plays a key role on the formation of well-grown Na-Dw nanorod.
     (4) Preparation of ZnAl2O4 spinel nanoplate by Zn2+ ion exchange from Na-Dw parent in the ionic liquid-assisted system at low temperature. Firstly, mediate compound nanoplate consisted of Al2O3·H2O and Zn6Al2(OH)16·CO3·4H2O was successfully synthesized by ion exchange in the ionic liquid system. In this stage, ionic liquid [Bdmim][Cl] plays a key role on the formation of nanoplate. Secondly, ZnAl2O4 spinel nanoplate was obtained by clcined the mediate mixture crystal at 700℃for 2 h. TEM images exhibites that ZnAl2O4 spinel nanoplate composed of fine particles with diameter of about 20 nm. The product exhibites the specific area of about 245 m2/g, indicating its excellent surface property.
     (5) Ionic liquid-assisted hydrothermal synthsis of y-alumina nanostructures by using (NH4)2CO3 as a basic source. In the same reaction system, different products and different morphologies were obtained at different temperature. NH4Al(OH)2CO3 (NH4-DW) bamboo leavelike and fiberlike nanostructures were obtained at 75℃, they thereafter converted toγ-Al2O3 with the same morphologies by calcining 500℃for 2 h. However, bamboo leavelike and fiberlike y-AlOOH nanostructures were obtained at 120℃, hexagonalγ-AlOOH nanoplates was obtained at 150℃. In the every case, ionic liquid plays key role on the morphologies of the products.
     In summary, we presented some facile and environmentally friendly methods for the controllable hydrothermal synthesis ofγ-Al2O3 and ZnAl2O4 spinel nanostructures by using ionic liquid as a template in this dissertation. It has been proved that the ionic liquid possessing the extraordinary potential is favorable for the fabrication of nanomaterials with novel morphologies and improved properties; moreover, these ionic liquids-assisted routes may offer a novel pathway towards the controllable synthesis of other inorganic nanomaterials.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京.科学出版社.2001.
    [2]王世敏,徐祖勋,傅晶.纳米材料制备技术.北京.化学工业出版社,2002.
    [3]Klabunde K J, Stark J, Koper O, et al. Nanocrystals as stoichiometric reagents with unique surface chemistry. J. Phys. Chem.,1996,100(30):12142-12153.
    [4]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.,1989,89 (8):1861-1873.
    [5]Ball P, Garwin L. Science at the atomic scale. Nature,1992,355 (63):761-766.
    [6]Halperin W. Quantum size effects in metal particles. Rev. of Modern Phys.,1986,58 (3): 533-606.
    [7]Tabagi H, Ogawa H, Nakagiri T. Quantum size effects on photoluminescence in ultrafine Si particles. Appl. Phys. Lett.,1990,56 (24):2379-2380.
    [8]Leon R, Petroff P M, Leonard D, et al. Spatially resolved visible luminescence of self-assembled semiconductor quantum dots. Science,1995,267 (5206):1966-1968.
    [9]Schmid G. Large clusters and colloids, metals in the embryonic state. Chem. Rev.,1992,92 (8):1709-1727.
    [10]Feldhein S L, Keating C D. Self-assembly of single electron transistors and related devices. Chem. Soc. Rev.,1998,27 (1):1-13.
    [11]Misra C. Industrial alumina chemicals. ACS Monograph 184, Washington D C:American Chemical Society,1986.
    [12]Euzen P, Raybaud P, Krokidis X, Toulhoat H, Le Loarer J L, Jolivet J P, Froidefond C. Other Oxides and alumina, in:Schuth F, Sing K, Weitkamp J. Handbook of porous materials. Weinheim: Wiley-VCH Verlag GmbH,2002,1591-1676.
    [13]Schuth F, Unger K. in:Ertl G, Knozinger H, Weitkamp J. Preparation of solid catalysts. Weinheim:Wiley-VCH,1999,77-80.
    [14]Huang Y, White A, Walpole A, Trimm D L. Control of porosity and surface area in alumina I. Effect of preparation conditions. Appl. Catal.,1989,56 (1):177-186.
    [15]White A, Walpole A, Huang Y, Trimm D L. Control of porosity and surface area in alumina: Ⅱ. Alcohol and glycol additives.ppl.Catal.,1989,56 (1):187-196.
    [16]Sing K S W, Everett D H, Haul R A W, Moscow L, Pierotti R A, Ronquerol J. IUPAC manual of symbols and terminology. Pure Appl.Chem.,1972,31:578.
    [17]Sing K S W, Everett D H, Haul R A W, Moscow L, Pierotti R A, Ronquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem.,1985,57:603-619.
    [18]李大东.控制氧化铝孔径的途径.石油化工,1989,18:488-494.
    [19]Trimm D L, Stanislaus A. The control of pore size in alumina catalyst supports:A review. Appl. Catal.,1986,21 (2):215-238.
    [20]魏坤霞,赵昆渝,魏伟等,低温燃烧合成制备非晶氧化铝及其晶型转变,兵器材料科学与工程,2005,28(2):41-44。
    [21]尹衍升,张景德,氧化铝陶瓷及其复合材料,化学工业出版社,2001。
    [22]温树林,材料结构科学(上册),科学出版社,1988。
    [23]Formenti M, Huillet F, Meraudeau P. Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles, J. Colloid Interf. Sci.,1972,39(l):79-89.
    [24]Chen Y J, Glumar N G, Skandan G. High rate production of nonagglomerated nanoparticle by flame synthesis, Chem. Phys. Nanostruct. Relat. Non-equlilb. Mater.,1997,143-148.
    [25]王志强,马铁城,蔡英骥等.超细a-A1203的低温燃烧合成及其烧结特性的研究,硅酸盐通报,2000,5:28-31.
    [26]李友风,周继承.氧化铝纳米材料的制备与应用,硬质合金,2003,20(4):242-245.
    [27]Kumagai M, Messiung G L. Contrlled transformation and sintering of boehmite sol-gel by a-alumina seeding, J. Am. Ceram. Soc.,1985,68(8):1225-1230.
    [28]Lippens B C, Deboer J H. Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffration, Acta Crystallogr.,1964,17:1151-1156.
    [29]廖树帜,张邦维,徐仲榆等.合成方法对超纯纳米Al2O3粉末的影响研究,湖南教育学院学报,1998,16(2):69-72.
    [30]李海波,王丽丽,华中.Al2O3纳米陶瓷粉末的制备及其表征,松辽学刊,1999,2:30-32.
    [31]周曦亚,欧阳世翕,程吉平.液相共沉淀法制Al2O3超细粉过程及防团聚措施,华南理工大学学报(自然科学版),1996,24(7):78-82.
    [32]张勤俭,张建华,李敏等.无机盐先驱体溶胶—凝胶法制备Al2O3薄膜的研究,机械工程材料,2002,26(3):17-19.
    [33]赵秦生,余忠清,张启修.凝胶法制备超细球形氧化铝粉未,无机材料学报,1994,9(4):475-479.
    [34]Felde B, Mehner A, Hoffmann F. Synthesis of ultrafine alumina powder by sol-gel techniques. Adv. Sci. Technol.,1999,14:49-56.
    [35]Pont hieu E, Payen E, Grimblot J. Ultrafine alumina powders via a sol-emulsion-gel method., J. Non-crystalline Solids,1992,147&148:598-605.
    [36]甘礼华,岳天仪,李光明.微乳液法制备γ-Al2O3超细粉及其表征,同济大学学报,1996,24(2):194-197.
    [37]施尔畏,夏长泰,王步国等.水热法的应用与发展,无机材料学报,1996,11:193-206.
    [38]Byrappa K, Yoshimura M. Handbook of Hydrothermal Technology:A Technology for Crystal Growth and Materials Processing, William Andrew Publishing, LLCNorwich. New York. 2001:1-43.
    [39]Yoshimura M. Importance of Soft Solution Processing for Advanced Inorganic Materials. T. Mater. Res.,1998,13 (5):1091-1098.
    [40]徐如人,庞文琴.无机合成与制备化学.北京.高等教育出版社.2001.
    [41]Chen N, Zhang W, Yu W, Qian Y. Synthesis of nanocrystalline NiS with different morphologies. Mater. Lett.,2002,55(4):230-233.
    [42]Wright C S, Walton R 1, Thompsett D, Fisher J. Investigation of Hydrothermal Routes to Mixed-Metal Cerium Titanium Oxides and Metal Oxidation State Assignment Using XANES. Inorg. Chem..2004,43(6):2189-2196.
    [43]Lu J, Wei S, Yu W, Zhang H, Qian Y. Hydrothermal Route to InAs Semiconductor Nanocrystals. Inorg. Chem.,2004,43(15):4543-4545.
    [44]Yu J C, Xu A, Zhang L, Song R, Wu L. Synthesis and Characterization of Porous Magnesium Hydroxide and Oxide Nanoplates. J. Phys. Chem. B 2004,108(1):64-70.
    [45]Sato Y, Ogawa T, Motomiya K, et al. Purification of MWNTs Combining Wet Grinding, Hydrothermal Treatment, and Oxidation. J. Phys. Chem. B 2001,105(17):3387-3392.
    [46]Yang H X, Qian J F, Chen Z X, et al. Multilayered Nanocrystalline SnO2 Hollow Microspheres Synthesized by Chemically Induced Self-Assembly in the Hydrothermal Environment. J. Phys. Chem. C 2007,111 (38):14067-14071.
    [47]Feng S, Xu R, New Materials in Hydrothermal Synthesis, Acc. Chem. Res.,2001,34(3): 239-247.
    [48]Chen X Y, Soon W. pH-Dependent formation of boehmite (γ-AlOOH)nanorods and nanoflakes, Chemical Physics Letters,2007,438:279-284.
    [49]Lee H C, Kim H J, Chung S H. Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents, J.Am.Chem.Soc.,2003,125:2882-2883.
    [50]Peng X S, Zhang L D, Meng G W. Photoluminescence and Infrared Properties of γ-Al2O3 Nanowires and Nanobelts, J. Phys. Chem. B 2002,106:11163-11167.
    [51]Buchold D H M, Feldmann C. Nanoscale γ-A1O(OH) Hollow Spheres:Synthesis and Container-Type Functionality, Nano Letters,2007,7(11):3489-3492.
    [52]Zhao Y Y, Frost R L, Wayde N M, Gallium-Doped Boehmite Nanotubes and Nanoribbons. A TEM, EDX, XRD, BET, and TG Study, J. Phys. Chem. C 2007,111:5313-5324.
    [53]Zhao Y Y, Frost R L, Wayde N M. Growth and Surface Properties of Boehmite Nanofibers and Nanotubes at Low Temperatures Using a Hydrothermal Synthesis Route, Langmuir,2007, 23:9850-9859.
    [54]Shen S C, Chen Q, Chow P S. Steam-Assisted Solid Wet-Gel Synthesis of High-Quality Nanorods of Boehmite and Alumina. J. Phys. Chem. C 2007,111:700-707.
    [55]Mathieu Y, Lebeau B, Valtchev V. Control of the Morphology and Particle Size of Boehmite Nanoparticles Synthesized under Hydrothermal Conditions, Langmuir,2007,23:9435-9442.
    [56]Zhu H Y, Gao X P, Song D Y. Growth of Boehmite Nanofibers by Assembling Nanoparticles with Surfactant Micelles. J. Phys. Chem. B 2004,108:4245-4247.
    [57]Zhu H Y, Riches J D, Barry J C. y-Alumina Nanofibers Prepared from Aluminum Hydrate with Poly (ethylene oxide) Surfactant, Chem. Mater.,2002,14:2086-2093.
    [58]Ogihara H, Sadakane M, Nodasaka Y, Ueda W. Shape-Controlled Synthesis of ZrO2, Al2O3, and SiO2 Nanotubes Using Carbon Nanofibers as Templates, Chem. Mater.,2006,18 (21).
    [59]Chen X Y, Huh H S, Soon W L. Hydrothermal synthesis of boehmite (y-AlOOH) nanoplatelets and nanowires:pH-controlled morphologies. Nanotechnology,2007,18:285608.
    [60]Liu Y, Ma D, Han X W, et al. Hydrothermal synthesis of microscale boehmite and gamma nanoleaves alumina, Materials Letters,2008,62:1297-1301.
    [61]Hou H W, Xie Y, Yang Q, GuoQ X, Tan C R. Preparation and characterization of γ-A1OOH nanotubes and nanorods, Nanotechnology,2005,16:741-745.
    [62]Farag H K, Endres F. Studies on the synthesis of nano-alumina in air and water stable ionic liquids, J. Mater. Chem.,2008,18:442-449.
    [63]Li Y Y, Liu J P, Jia Z J. Fabrication of boehmite A1OOH nanofibers by a simple hydrothermal process, Materials Letters,2006,60:3586-3590.
    [64]Wei S Y, Zhang J, Elsanousi A, Lin J. From Al4B2O9 nanorods to A1OOH (boehmite) hierarchical nanoarchitectures, Nanotechnology,2007,18:255605.
    [65]Ren T Z, Yuan Z Y, Su B L. Microwave-Assisted Preparation of Hierarchical Mesoporous-Macroporous Boehmite A1OOH and y-Al2O3, Langmuir,2004,20:1531-1534.
    [66]Mousavand T, Ohara S, Umetsu M, et al. Hydrothermal synthesis and in situ surface modification of boehmite nanoparticles in supercritical water, J. Supercritical Fluids,2007, 40:397-401.
    [67]Shen S C, Ng W K, Chen Q, et al. Novel synthesis of lace-like nanoribbons of boehmite and y-alumina by dry gel conversion method. Materials Letters,2007,61:4280-4282.
    [68]Zhao Y Y. Martens W N, Bostrom T E, et al. Synthesis, Characterization, and Surface Properties of Iron-Doped Boehmite Nanofibers, Langmuir,2007,23:2110-2116.
    [69]Ding X X, Gao J M, Qi S, et al. Template-Free Preparation of Bunches of Aligned Boehmite Nanowires. J. Phys. Chem. B 2006,110:21680-21683.
    [70]Ma M G, Zhu Y J, Xu Z L. A new route to synthesis of γ-alumina nanorods, Materials Letters, 2007,61:1812-1815.
    [71]Zhong Q Y, Chong X W, Xiao T G, Cun L. Photoluminescent properties of boehmite whisker prepared by sol-gel process, Journal of Luminescence,2004,106:153-157.
    [72]Kuang D B, Fang Y P, Liu H Q, et al. Fabrication of boehmite AlOOH and γ-Al2O3 nanotubes via a soft solution route, J. Mater. Chem.,2003,13:660-662.
    [73]Chadradass J, Balasubramanian M. Sol-gel processing of alumina fibers, J. Mater. Processing Technology,2006,173:275-280.
    [74]Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. From Sheet to fibers:a novel approach to γ-AlOOH and γ-Al2O3 1D nanostructures, J. Nanoscience and Nanotechnology,2006,6:1437-1440.
    [75]Naskar M K, Chatterjee M. Boehmite nanoparticles by the two-reverse emulsion technique, J. Am. Cream. Soc.,2005,88 (12):3322-3326.
    [76]Park J H, Lee M K, Rhee C K, Kim W W. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers, Materials Science and Engineering A,2004,375-377:1263-1268.
    [77]Zhang L, Zhu Y J. Microwave-Assisted Solvothermal Synthesis of AlOOH Hierarchically Nanostructured Microspheres and Their Transformation to γ-Al2O3 with Similar Morphologies, J. Phys. Chem. C 2008,112,16764-16768.
    [78]Feng Y L, Lu W C, Zhang L M, et al. One-Step Synthesis of Hierarchical Cantaloupe-like AlOOH Superstructures via a Hydrothermal Route, Cryst. Growth & Des.,2008,8(4):1426-1429.
    [79]Sickafus K E, Wills J M, Structure of spinel, J. Am. Ceram. Soc.,1999,82:3279-3292.
    [80]向勇,谢道华.尖晶石结构功能材料的新进展.磁性材料及器件,2001,3:21-25.
    [81]Evans R C. A introduction to crystal chemistry. Cambridge University Press,1976.
    [82]周志刚.铁氧体磁性材料.北京:科学出版社,1981.
    [83]Adriana D B, Sonia A B, Alberto A C, Sergio R de Miguel, Osvaldo A S. Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt, Catal Lett.,2009, 129:293-302.
    [84]Alison A S, Agnaldo de Souza G, Marian R D. Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, J. Sol-Gel Sci. Technol.,2009,49:101-105.
    [85]Zou L, Xiang X, Wei M, Yang L, Li F, Evans D G. A Facile and Green Synthesis Route to Mesoporous Spinel-type Zn-Al Complex Oxide, Ind. Eng. Chem. Res.,2008,47,1495-1500.
    [86]Wang Y, Wu K. As a Whole:Crystalline Zinc Aluminate Nanotube Array-Nanonet, J. Am. Chem. Soc.,2005,127,9686-9687.
    [87]Kurajica S, Tkalcec E, Sipusic J, Matijasic G, Brnardic I, Simcic I. Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol-gel technique using modified alkoxide precursor, J. Sol-Gel Sci. Technol.,2008,46:152-160.
    [88]Miroslaw Zawadzki. Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave-hydrothermal synthesis of ZnAl2O4), Solid State Sciences,2006,8,14-18.
    [89]Chen X Y, Zhong C M, Zhang J, Wang B N. Ultrafine gahnite (ZnAl2O4) nanocrystals: Hydrothermal synthesis and photoluminescent properties, Materials Science and Engineering B. 2008,151,224-230.
    [90]王秀丽,曾永匕,卜显和.模板法合成纳米结构材料.化学通报,2005,10:723-730.
    [91]Yang Y, Kim D S, Knez M, Scholz R, Berger A, Pippel E, Hesse D, Golsele U, Zacharias M. Influence of Temperature on Evolution of Coaxial ZnO/Al2O3 One-Dimensional Heterostructures: From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires, J. Phys. Chem. C 2008, 112,4068-4074.
    [92]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis, Angew. Chem. Int. Ed.,2000,39 (21):3772-3789.
    [93]刘大鹏.离子液体修饰的ZnO纳米晶的制备及表征:[博士学位论文].吉林:吉林大学,2008.
    [94]Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures, Angew. Chem. Int. Ed.,2004,43 (38): 4988-4992.
    [95]Hussey C L, Barnard P A, Sun L W. An electrochemical study of the ruthenium (Ⅲ) and (Ⅳ) hexachlorometallates in a basic room temperature chloroaluminate molten salt, J. Electrochem. Soc.,1991,138 (9):2590-2594.
    [96]Cinzia C, Daniela P, Paola S. Nucleophilic displacement reactions in ionic liquids, J. Org. Chem.,2003,68 (17):6710-6715.
    [97]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal Catalysis, Angew. Chem. Int. Ed.,2000,39 (10):3772-3789.
    [98]Thomas W. Room-temperature ionic liquids solvents for synthesis and catalysis, Chem. Rev., 1999,99 (8):2071-2083.
    [99]Armstrong D W, He L, Liu Y S. Examination of ionic liquids and their interaction with molecules, when used as stationary phases in gas chromatography, Anal. Chem.,1999,71 (17): 3873-3876.
    [100]Fei Z, Geldbach T J, Zhao D, et al. From dysfunction to bis-function:on the design and applications of functionalized ionic liquids, Chem. Eur. J.,2006,12 (8):2122-2130.
    [101]Parker S T, Slinker J D, Lowry M S, et al. Improved turn-on times of iridium electrolum-inescent devices by use of ionic liquid, J. Chem. Mater.,2005,17 (12):3187-3190.
    [102]Wang P, Zakeeruddin S M, Comte P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for Quasi-Solid-State dye-sensitized solar cells, J. Am. Chem. Soc.,2003,125 (5):1166-1167.
    [103]Wilkes J S. A short history of ionic liquids-from molten salts to neoteric solvents, Green Chem.,2002,4 (2):73-80.
    [104]Yu N, Gong L M, Song H J, et al. Ionic liquid of [Bmim]+Cl- for the preparation of hierarchical nanostructured rutile titania, J. Solid State Chem.,2007,180 (2):799-803.
    [105]Zhou Y, Antonietti M. Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates, J. Am. Chem. Soc., 2003,125(49):14960-14961.
    [106]Zhou Y, Antonietti M. Preparation of highly ordered monolithie super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique, Adv. Mater., 2003,15(17):1452-1455.
    [107]Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure, Chem. Commun.,2003,20: 2564-2565.
    [108]Zhou Y, Jan H, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique, Nano Lett.,2004,4 (3):477-481.
    [109]Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature, Langmuir,2003,19 (6):1951-1953.
    [110]Endres F, Zein El Abedin S, Saad A Y, et al. On the electrodeposition of titanium in ionic liquids, Phys. Chem. Chem. Phys.,2008,10 (16):2189-2199
    [111]Zein El Abedin S, Saad A Y, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures, Electrochim. Acta,2007, 52 (8):2746-2754.
    [112]Gao H X, Li J C, Han B X, et al. Microemulsions with ionic liquid polar domains, Phys. Chem. Chem. Phys.,2004,6:2914-2916.
    [113]Eastoe J, Gold S, Rogers S E, et al. Ionic liquid-in-oil microemulsions, J. Am. Chem. Soc., 2005,127 (20):7302-7303.
    [114]Qi L, Ma J, Cheng H, et al. Reverse micelle based formation of BaCO3 nanowires, J. Phys. Chem. B 1997,101 (18):3460-3463.
    [115]Wang L, Chang L X, Zhao B, Yuan Z Y, Shao G S, Zheng W J. Systematic Investigation on Morphologies, Forming Mechanism, Photocatalytic and Photoluminescent Properties of ZnO Nanostructures Constructed in Ionic Liquids. Inorganic Chemistry, Vol.47, No.5,2008 1443-1452.
    [116]Peng P, Sun C S, Zheng W J. Morphology evolution of rutile particles from nanorods to microcones, again microspheres via self-assembly in Ionic Liquids (ILs) solution. Materials Letters 2009,63,66-68.
    [117]Wu L Y, Lian J B, Sun G X, Kong X R, Zheng W J. Synthesis of Zinc Hydroxyfluoride Nanofibers through an Ionic Liquid Assisted Microwave Irradiation Method Eur. J. Inorg. Chem. 2009,2897-2900.
    [118]Ma J M, Wang Y P, Wang Y J, Chen Q, Lian J B, Zheng W J. Controlled Synthesis of One-Dimensional Sb2Se3 Nanostructures and Their Electrochemical Properties. J. Phys. Chem. C 2009,113,13588-13592.
    [119]Zheng W J, Liu X D, Yan Z Y, Zhu L J. Ionic Liquid-Assisted Synthesis of Large-Scale TiO2 Nanoparticles with Controllable Phase by Hydrolysis of TiCl4. ACS NANO.2009,3(1), 115-122.
    [120]Sun Y, Li, C S, Zheng W J. Ionic Liquid-Assisted Hydrothermal Synthesis of Monoclinic Structured LaVO4 Nanowires through Topotactic Transformation from Hexagonal La(OH)3 Nanowires. Crystal Growth & Design,2010,10 (1) 262-267
    [121]Kuang D B, Fang Y P, Liu H Q, Frommenb C, Fenskeb D. Fabrication of boehmite A1OOH and γ-A12O3 nanotubes via a soft solution route, J. Mater. Chem.,2003,13,660-662.
    [122]Park, H. S.; Yang, S. H.; Jun, Y. S.; Hong, W. H.; Kang, J. K. Facile Route to Synthesize Large-Mesoporous y-Alumina by Room Temperature Ionic Liquids, Chem. Mater.,2007,19,535.
    [1]Zhong Q Y, Chong X W, Xiao T G, Cun L. Photoluminescent properties of boehmite whisker prepared by sol-gel process, Journal of Luminescence,2004,106:153-157.
    [2]Kuang D B, Fang Y P, Liu H Q, et al. Fabrication of boehmite A1OOH and γ-A12O3 nanotubes via a soft solution route, J. Mater. Chem.,2003,13:660-662.
    [3]Chadradass J, Balasubramanian M. Sol-gel processing of alumina fibers, J. Mater. Processing Technology,2006,173:275-280.
    [4]Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. From Sheet to fibers:a novel approach to y-AlOOH and γ-Al2O3 1D nanostructures, J. Nanoscience and Nanotechnology,2006,6:1437-1440.
    [5]Naskar M K, Chatterjee M. Boehmite nanoparticles by the two-reverse emulsion technique, J. Am. Cream. Soc.,2005,88 (12):3322-3326.
    [6]Park J H, Lee M K, Rhee C K, Kim W W. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers, Materials Science and Engineering A,2004,375-377:1263-1268.
    [7]Zhang L, Zhu Y J. Microwave-Assisted Solvothermal Synthesis of A1OOH Hierarchically Nanostructured Microspheres and Their Transformation to y-Al2O3 with Similar Morphologies, J. Phys. Chem. C 2008,112,16764-16768.
    [8]Feng Y L, Lu W C, Zhang L M, et al. One-Step Synthesis of Hierarchical Cantaloupe-like A1OOH Superstructures via a Hydrothermal Route, Cryst. Growth & Des.,2008,8(4):1426-1429.
    [9]Suresh C K, Ed M, Swanand D P, Sameer A D, Sudipta S. Solution-Based Chemical Synthesis of Boehmite Nanofibers and Alumina Nanorods, J. Phys. Chem. B 2005,109,3868-3872.
    [10]藏希文,汤卡罗等.无机化学丛书,2,北京,科学出版社,1990.
    [11]Antonietti M, Kuang D B, Smarsly B, et al. Ionic liquids for the convenient synthesis of funct-ional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed.,2004,43 (38):4988-4992.
    [12]Wang L, Xu C, Zhang X C, et al. Ionic liquid-mediated synthetic strategy for CuCl nanocrystal. Chem. Lett.,2007,36 (5):642-643.
    [13]Zou D B, Xu C, Luo H, et al. Synthesis of Co3O4 nanoparticles via an ionic liquid-assisted methodology at room temperature. Mater. Lett.,2008,62 (12-13): 1976-1978.
    [14]Malham I B, Letellier P, Turmine M. J. Phys. Chem. B 2006,110,14212.
    [15]Wickersheim K A, Korpi G K. Interpretation of the Infrared Spectrum of Boehmite. J. Chem. Phys,1965,42:579-583.
    [16]Ram S. Infrared spectral study of molecular vibrations in amorphous, nanocrystalline and A1O(OH)·αH2O bulk crystals. Infrared Phys. Technol,2001,42:547-560.
    [17]Colomban Ph. Raman study of the formation of transition alumina single crystal from protonic β/β" aluminas. J. Mater. Sci. Lett.1988,7:1324-1326.
    [18]Priya G K, Padmaja P, Warrier K G K, et al. Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy. J. Mater. Sci. Lett.1997,16:1584-1587.
    [19]张长拴,赵峰,张继军等.纳米尺寸氧化铝的红外光谱研究.化学学报.1999,57:275-280.
    [20]Zhou Y, Antonietti M. A novel tailored bimodal porous silica with well-defined inverse opal microstructure and super-microporous lamellar nanostructure, Chem. Commun.,2003,20:2564-2565.
    [21]Zhou Y. Jan H, Antonietti M. Room-temperature ionic liquids as template to monolithic mesoporous silica with wormlike pores via a sol-gel nanocasting technique, Nano Lett.,2004,4 (3):477-481.
    [22]Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature, Langmuir,2003,19 (6):1951-1953.
    [23]Endres F, Zein El Abedin S, Saad A Y, et al. On the electrodeposition of titanium in ionic liquids, Phys. Chem. Chem. Phys.,2008,10 (16):2189-2199
    [24]Zein El Abedin S, Saad A Y, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air-and water-stable ionic liquid at variable temperatures, Electrochim. Acta,2007, 52 (8):2746-2754.
    [25]Feng Y L, Lu W C, Zhang L M, et al. One-Step Synthesis of Hierarchical Cantaloupe-like A1OOH Superstructures via a Hydrothermal Route, Cryst. Growth & Des.,2008,8(4):1426-1429.
    [26]刘小娣.金属氧化物和硒化物半导体纳米材料的可控合成与性能研究,2009(博士学位论文).
    [27]Comminges C, Barhdadi R, Laurent M, Troupel M. Determination of Viscosity, Ionic Conductivity, and Diffusion Coefficients in Some Binary Systems:Ionic Liquids + Molecular Solvents. J. Chem. Eng. Data 2006,51,680-685.
    [28]Wang J J, Tian Y, Zhao Y, Zhuo K L. A Volumetric and Viscosity Study for the Mixtures of 1-n-Butyl-3-Methylimidazolium Tetrafluoroborate Ionic Liquid with Acetonitrile, Dichloromethane,2-Butanone and N, N-dimethylformamide. Green Chem.2003,5,618-622.
    [29]Zhu Y J, Wang W W, Qi R J, Hu X L. Microwave-Assisted Synthesis of Single-Crystalline Tellurium Nanorods and Nanowires in Ionic Liquids, Angew. Chem. Int. Edu.2004,43,1410.
    [30]Antonietti M, Kuang D B, Smarsly B, Zhou Y. Ionic Liquids for the Convenient Synthesis of Functional Nanoparticles and Other Inorganic Nanostructures, Angew. Chem. Int. Edu.2004,43, 4988.
    [31]Diaz N, Suarez D, Merz Jr K M. J. Am. Chem. Soc.2000,122,4197.
    [32]Rulisek L, Bondrasek J. J. Inorg. Biochem.1999,71,115.
    [33]Robert C W et al. Handbook of Chemistry and Physics. CRC Press. Inc. U. S. A. 1985.
    [34]Harju M, Halme J, Jam M, Rosenholm Jarl B, Mantyla T. Influence of aqueous aging on surface properties of plasma sprayed oxide coatings. Journal of Colloid and Interface Science, 2007,313,194-201.
    [35]Marek Kosmulski. pH-dependent surface charging and points of zero charge III. Update. Journal of Colloid and Interface Science,2006,298,730-741.
    [36]Valange S, Guth J L, Kolenda F, Lacombe S, Gabelica Z. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media. Microporous and Mesoporous Materials,2000,35-36,597-607.
    [37]Batista J, Pintar A, Mandrino D, Jenko M, Martin V. XPS and TPR examinations of g-alumina-supported Pd-Cu catalysts. Applied Catalysis A:General,2001,206,113-124.
    [38]Hlavay J, Polyak K. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. Journal of Colloid and Interface Science,2005,284,71-77.
    [39]Marek Kosmulski. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Advances in Colloid and Interface Science,2009,152,14-25.
    [40]姚超,高国生,林西平,汪信.氢氧化铝对纳米TiO2的表面包覆,2005,22(7),759-763.
    [1]Zhang X F, Wen Z Y, Gu Z H, Xu X H, Lin Z X. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds, Journal of Solid State Chemistry 2004,177,849-855.
    [2]Ali A A, Hasan M A, Zaki M I. Dawsonite-Type Precursors for Catalytic Al, Cr, and Fe Oxides, Synthesis and Characterization, Chem. Mater.2005,17,6797-6804.
    [3]Ali A A, Hasan M A, Zaki M I. Hydrothermal synthesis attempts of dawsonite-type hydroxymetalocarbonate precursor compounds for catalytic Ho, Sm, and La oxides, Materials Research Bulletin,2008,43,16-29.
    [4]Fernandez-Carrascoa L, Puertasb F, Blanco-Varelab M T, Vazquezb T, Rius J. Synthesis and crystal structure solution of potassium dawsonite:An intermediate compound in the alkaline hydrolysis of calcium aluminate cements Cement and Concrete Research,2005,35,641-646.
    [5]Frost R L, Bouzaid J M. Raman spectroscopy of dawsonite NaAl(CO3)(OH)2, J. Raman Spectrosc.2007,38,873-879.
    [6]Alvarez-Ayuso E, Nugteren H W. Synthesis of dawsonite:A method to treat the etchingwaste streams of the aluminium anodisingindustry, Water Research,2005,39,2096-2104.
    [7]Zhang X F, Wen Z Y, Gu Z H, Xu X H, Lin Z X. Synthesis and thermal behavior of the dawsonite-type solid solution K1-x(NH4)xAl(OH)2CO3, Thermochimica Acta,2005,433, 116-120.
    [8]Stoica G, Perez-Ramirez J. Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chem. Mater.2007,19,4783-4790.
    [9]Stoica G, Groen J C, Abello S, Manchanda R, Perez-Ramirez J. Reconstruction of Dawsonite by Alumina Carbonation in (NH4)2CO3:Requisites and Mechanism, Chem. Mater.2008,20, 3973-3982.
    [10]童彬,曹玉,谢发之,徐玲.室温固相反应合成纳米材料碱式碳酸铝钠,安徽教育学院学报,2006,5,(1).24;61-63.
    [11]张文昭,应尧聪,杨志刚.陈必凤.左量林.新型阻燃剂碱式碳酸钠铝,江苏化工,1993, 21(1)46-49.
    [12]潘为明.新型阻燃剂碱式碳酸钠铝合成工艺的研究,助燃材料与技术,1998,1,4-5.
    [13]柴多里,何建波,韩效钊,陈敏.硫酸铝法合成碱式碳酸钠铝的研究,合肥工业大学学报(自然科学版),1997(6),20,70-73.
    [14]吴洪特,宋宝玲,孙雅博,黄中央,韦一萍,廖森.低热固相合成碱式碳酸钠铝纳米晶及其数据挖掘,化工学报,2006,57(5),1236-1241.
    [15]Adriana D, Ballarini S A, Bocanegra A A, Castro S R, de Miguel Osvaldo A S. Characterization of ZnAl2O4 Obtained by Different Methods and Used as Catalytic Support of Pt, Catal. Lett.2009,129:293-302.
    [16]Zou L, Xiang X, Wei M, Yang L, Li F, Evans D G. A Facile and Green Synthesis Route to Mesoporous Spinel-type Zn-Al Complex Oxide, Ind. Eng. Chem. Res.2008,47,1495-1500.
    [17]Miroslaw Zawadzki. Synthesis of nanosized and microporous zinc aluminate spinel bymicrowave assisted hydrothermal method(microwave-hydrothermal synthesis of ZnAl2O4), Solid State Sciences,2006,8,14-18.
    [18]Alison A S, Agnaldo de Souza G, Marian R D. Characterization of nanosized ZnAl2O4 spinel synthesized by the sol-gel method, J. Sol-Gel Sci. Technol.,2009,49:101-105.
    [19]Wang Y, Wu K. As a Whole:Crystalline Zinc Aluminate Nanotube Array-Nanonet, J. Am. Chem. Soc.,2005,127,9686-9687.
    [20]Kurajica S, Tkalcec E, Sipusic J, Matijasic G, Brnardic I, Simcic I. Synthesis and characterization of nanocrystalline zinc aluminate spinel by sol-gel technique using modified alkoxide precursor, J. Sol-Gel Sci. Technol.,2008,46:152-160.
    [21]Chen X Y, Zhong C M, Zhang J, Wang B N. Ultrafine gahnite (ZnAl2O4) nanocrystals: Hydrothermal synthesis and photoluminescent properties, Materials Science and Engineering B. 2008,151,224-230.
    [22]王秀丽,曾永匕,卜显和.模板法合成纳米结构材料.化学通报,2005,10:723-730.
    [23]Yang Y, Kim D S, Knez M, Scholz R, Berger A, Pippel E, Hesse D, Golsele U, Zacharias M. Influence of Temperature on Evolution of Coaxial ZnO/Al2O3 One-Dimensional Heterostructures: From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires, J. Phys. Chem. C 2008, 112,4068-4074.
    [24]Malham I B, Letellier P, Turmine M. J. Phys. Chem. B 2006,110,14212.
    [1]Ma C C, Zhou X X, Xu X. Synthesis and thermal decomposion of ammonium aluminum carbonate hydroxide(ACCH), Materials Chemistry and Physic.2001,72,374-379.
    [2]Morinaga K, Nakagawa K, et al. Fabrication of fine a-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide(ACCH), Acta. Mater.2000,1, 48,4735-4741.
    [3]李继光,孙旭东,张民,等.碳酸铝铵分解制备α-Al2O3超细粉,无机材料学报,1998,13(6),803-807.
    [4]付高峰,毕诗文,杨毅宏,等.碳酸铝铵热分解制取α-Al2O3微粉.中国有色金属学报,998,8,64-66.
    [5]李继光,孙旭东,赵志红,等.晶籽对碳酸铝铵热分解相变及α-Al2O3纳米粉烧结活性的影响,金属学报,1999,35(10),1099-1102.
    [6]畅晔,吴玉程,李勇,等.碳酸铝铵低温热分解制备α-Al2O3超细粉末,过程工程学报,2002,2(4),325-329.
    [7]付高峰,毕诗文,孙旭东,等.超细氧化铝粉未制备技术,有色冶炼,2000,16(1),39-41.
    [8]丁安平,饶拎民.“纳米氧化铝”的用途和制备方法初探,有色冶炼,2001,16(3),6-9.
    [9]周益明,忻新泉.低热固相合成化学,尢机化学学报,1999,3(5),273-292.
    [10]俞建群,贾殿赠,郎毓峰,等,纳米氧化镍,氧化锌的合成新方法,无机化学学报,1999,15(1),95-98.
    [11]王国平,石晓波.室温固相反应制备纳米氧化锌,合肥工业大学学报(自然科学版),2002,25(1),32-35.
    [12]宋宝玲,廖森,姜求宇,等,固相反应制备纳米氧化锡,化工技术与开发,2003,32(2),3-7.
    [13]宋宝玲,廖森,吴文伟,等.固相反应制备磷酸锌纳米晶体,广西大学学报(自然科学版),2004,28(4),314-317.
    [14]吴志鸿,廖森,王建设,等,新法合成碱式碳酸铝铵及其中的数据挖掘研究,中国科学学报,2004,1(2),15-19.
    [15]吴志鸿,廖森,王建设,周明山.纤维状碱式碳酸铝铵的固相合成及其热解的自粉碎特征,精细化工,2004,22(1),19-11.
    [16]Zhang X F, Wen Z Y, Gu Z H, Xu X H, Lin Z X. Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds, Journal of Solid State Chemistry 2004, 177,849-855.
    [17]Ali A A, Hasan M A, Zaki M I. Dawsonite-Type Precursors for Catalytic Al, Cr, and Fe Oxides, Synthesis and Characterization, Chem. Mater.2005,17,6797-6804.
    [18]Ali A A, Hasan M A, Zaki M I. Hydrothermal synthesis attempts of dawsonite-type hydroxymetalocarbonate precursor compounds for catalytic Ho, Sm, and La oxides, Materials Research Bulletin,2008,43,16-29.
    [19]Fernandez-Carrascoa L, Puertasb F, Blanco-Varelab M T, Vazquezb T, Rius J. Synthesis and crystal structure solution of potassium dawsonite:An intermediate compound in the alkaline hydrolysis of calcium aluminate cements Cement and Concrete Research,2005,35,641-646.
    [20]Alvarez-Ayuso E, Nugteren H W. Synthesis of dawsonite:A method to treat the etchingwaste streams of the aluminium anodisingindustry, Water Research,2005,39,2096-2104.
    [21]Zhang X F, Wen Z Y, Gu Z H, Xu X H, Lin Z X. Synthesis and thermal behavior of the dawsonite-type solid solution Kl-x(NH4)xAl(OH)2CO3, Thermochimica Acta,2005,433, 116-120.
    [22]Stoica G, Perez-Ramirez J. Reforming Dawsonite by Memory Effect of AACH-Derived Aluminas. Chem. Mater.2007,19,4783-4790.
    [23]Stoica G, Groen J C, Abello S, Manchanda R, Perez-Ramirez J. Reconstruction of Dawsonite by Alumina Carbonation in (NH4)2CO3:Requisites and Mechanism, Chem. Mater.2008,20, 3973-3982.
    [24]Zhong Q Y, Chong X W, Xiao T G, Cun L. Photoluminescent properties of boehmite whisker prepared by sol-gel process, Journal of Luminescence,2004,106:153-157.
    [25]Kuang D B, Fang Y P, Liu H Q, et al. Fabrication of boehmite A1OOH and γ-Al2O3 nanotubes via a soft solution route, J. Mater. Chem.,2003,13:660-662.
    [26]Chadradass J, Balasubramanian M. Sol-gel processing of alumina fibers, J. Mater. Processing Technology,2006,173:275-280.
    [27]Zhang M, Zhang R, Xi G C, Liu Y, Qian Y T. From Sheet to fibers:a novel approach to y-AlOOH and y-Al2O3 1D nanostructures, J. Nanoscience and Nanotechnology,2006,6:1437-1440.
    [28]Naskar M K, Chatterjee M. Boehmite nanoparticles by the two-reverse emulsion technique, J. Am. Cream. Soc.,2005,88 (12):3322-3326.
    [29]Park J H, Lee M K, Rhee C K, Kim W W. Control of hydrolytic reaction of aluminum particles for aluminum oxide nanofibers, Materials Science and Engineering A,2004,375-377:1263-1268.
    [30]Zhang L, Zhu Y J. Microwave-Assisted Solvothermal Synthesis of A1OOH Hierarchically Nanostructured Microspheres and Their Transformation to γ-Al2O3 with Similar Morphologies, J. Phys. Chem. C 2008,112,16764-16768.
    [31]Feng Y L, Lu W C, Zhang L M, et al. One-Step Synthesis of Hierarchical Cantaloupe-like A1OOH Superstructures via a Hydrothermal Route, Cryst. Growth & Des.,2008,8(4):1426-1429.
    [32]Suresh C K, Ed M, Swanand D P, Sameer A D, Sudipta S. Solution-Based Chemical Synthesis of Boehmite Nanofibers and Alumina Nanorods, J. Phys. Chem. B 2005,109, 3868-3872.
    [33]Malham I B, Letellier P, Turmine M. J. Phys. Chem. B 2006,110,14212.
    [34]Batista J, Pintar A, Mandrino D, Jenko M, Martin V. XPS and TPR examinations of g-alumina-supported Pd-Cu catalysts. Applied Catalysis A:General,2001,206,113-124.
    [35]Hlavay J, Polyak K. Determination of surface properties of iron hydroxide-coated alumina adsorbent prepared for removal of arsenic from drinking water. Journal of Colloid and Interface Science,2005.284,71-77.
    [36]Marek Kosmulski. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Advances in Colloid and Interface Science,2009,152,14-25.
    [37]姚超,高国生,林西平,汪信.氢氧化铝对纳米TiO2的表面包覆,2005,22(7),759-763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700