用户名: 密码: 验证码:
高能激光调控微观化学反应及材料合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得结构均匀可控、合成简单、性能良好的纳米材料一直是材料研究的重要内容,探索合成纳米材料的新方法及新概念具有重要的理论意义。本论文将高能激光与常规的化学反应结合,创造出了新颖的反应条件,得到一系列不同形貌与结构的新型纳米结构,深入研究了纳米结构的合成机理,揭示了激光对化学反应的影响规律。
     采用激光烧蚀法合成了活泼金属纳米颗粒。研究了不同激光烧蚀工艺对纳米材料分散性与均匀性的影响,通过控制载气流量及纳米颗粒飞行距离得到了均匀分散的产物。采用激光制备的活泼金属纳米颗粒进行伽伐尼置换反应,得到了应用前景良好的多孔金纳米球。
     利用激光合成的Zn纳米颗粒作为起始原料,研究了在Zn/Cu_~(2+)体系中伽伐尼置换反应的机制。发现界面氧化层对活泼金属的伽伐尼置换反应具有决定性的影响,在没有界面层的情况下得到了大量的铜纳米枝晶,在有界面层时得到了大量的粒径均匀的单分散的铜纳米颗粒。
     提出了纳米尺度溶剂热反应的概念。利用激光辐照溶液中的铜纳米颗粒,使之加热溶剂,诱导溶剂热反应,制备金属半导体异质结。研究了激光能量、激光作用时间、反应物对产物的影响。
     设计了CuCl水解工艺,获得均匀可控的Cu_2O空心纳米立方体。发现CuCl微粉在低pH值的水溶液中首先形成均匀的CuCl纳米立方体。该立方体作为牺牲模板在较高的pH值下通过水解形成Cu_2O空心立方体,本工作首次证明了水解是一种简单高效的制备空心纳米结构的新方法。此外,系统研究了CuCl在不同pH值水溶液中的反应机理,通过控制pH值分别合成尺寸均匀的铜纳米颗粒、氧化亚铜空心立方体及氧化亚铜实心立方体。
     研究了激光调控CuCl的水解反应。将CuCl的水解反应置于激光下,利用激光成功地改变了化学反应进程,在酸性条件下得到了氧化亚铜立方体。研究了激光波长、激光能量、激光作用时间对产物形貌的影响,为利用激光光化学法合成纳米材料做了有益的尝试。
Fabrication of nanomaterials with uniform and controllable structure, simplesynthesis process, and good performance is an important topic in materials field, andthe explorations of new methods and new concepts are critical to the synthesis ofmaterials. In this thesis, high energy laser is combined with common chemicalreactions to generate extreme synthesis conditions, resultantly, a series of novelnanostructures are obtained. The formation mechanisms of novel nanostructures arecomprehensively investigated, and the principle of laser effect is discovered.
     Laser ablation method is adopted to synthesize active metal nanoparticles. Theparameters of laser ablation are varied to determine their influence on the dispersionand uniformity of nanoparticles. It is found that the gas flux and flying distance ofnanoparticles are the key factors on preparing uniform and disperse product.Furthermore, active metal nanoparticles prepared under different laser ablationconditions are used for the galvanic replacement reaction, resulting in porous hollowAu nanospheres which are considered promising for bio-application.
     The laser synthesized Zn nanoparticles are employed as a starting material for thegalvanic replacement reaction with Cu_~(2+)ions, and surface oxide layer of Znnanoparticles shows a remarkable impact on the reaction and products. Coppernano-dendrites were obtained in absence of the oxide layer, a large number of uniformsize monodispersed copper nanoparticles were fabricated without the oxide layer.
     The concept of nanoscale solvothermal reaction is proposed. The laser irradiationis introduced to heat Cu nanoparticles, which act as the heat source to induce thesolvothermal reaction and then the formation of the metal-semiconductorheterojunctions. The laser energy, irradiation time, precursors are varied to makecontrol experiments.
     A hydrolyzation process is proposed to synthesize uniform and controllable Cu_2Ohollow nanocubes. The formation mechanism of Cu_2O hollow nanocubes is discussed.It is found that CuCl micropowder first decomposes and then precipitates to give riseto uniform CuCl nanocubes which act as sacrificial templates to produce Cu_2O hollownanocubes by hydrolyzation. This work demonstrates for the first time thathydrolyzation is an effective way to produce hollow nanocubes. The influence of the pH value on the reaction of CuCl in aqueous solution was studied systematically,copper nanoparticles and hollow cuprous oxide nanocubes were obtained at differentpH value.
     The hydrolyzation of CuCl is conducted under the laser ablation, and thechemical reaction is modified by the laser energy, and Cu_2O nanocubes are obtainedunder acidic conditions, which is obviously different from the case without laserenergy. The influence of laser wavelength, laser energy and laser irradiation time onthe morphology of products is investigated, which is a meaningful attempt on thematerials synthesis by laser chemistry.
引文
[1] Andreu Cabot, Maria Ibanez, Pablo Guardia, et al., Reaction Regimes on the Synthesis of HollowParticles by the Kirkendall Effect, Journal of the American Chemical Society,2009,131(32):11326-+
    [2] Hong Jin Fan, Mato Knez, Roland Scholz, et al., Influence of surface diffusion on the formation ofhollow nanostructures induced by the Kirkendall effect: The basic concept, Nano Letters,2007,7(4):993-997
    [3] Hong Jin Fan, Mato Knez, Roland Scholz, et al., Monocrystalline spinel nanotube fabrication basedon the Kirkendall effect, Nature Materials,2006,5(8):627-631
    [4] Justin G. Railsback, Aaron C. Johnston-Peck, Junwei Wang, et al., Size-Dependent NanoscaleKirkendall Effect During the Oxidation of Nickel Nanoparticles, Acs Nano,2010,4(4):1913-1920
    [5] Y. D. Yin, R. M. Rioux, C. K. Erdonmez, et al., Formation of hollow nanocrystals through thenanoscale Kirkendall Effect, Science,2004,304(5671):711-714
    [6] Z. L. Wang, J. H. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays, Science,2006,312(5771):242-246
    [7] Krishna P. Acharya, Elena Khon, Timothy O'Conner, et al., Heteroepitaxial Growth of ColloidalNanocrystals onto Substrate Films via Hot-Injection Routes, Acs Nano,2011,5(6):4953-4964
    [8] Y. D. Li, H. W. Liao, Y. Ding, et al., Solvothermal elemental direct reaction to CdE (E=S, Se, Te)semiconductor nanorod, Inorganic Chemistry,1999,38(7):1382-1387
    [9] K. B. Tang, Y. T. Qian, J. H. Zeng, et al., Solvothermal route to semicouductor nanowires,Advanced Materials,2003,15(5):448-450
    [10] Shinji Iwamoto, Masashi Inoue, Solvothermal synthesis of inorganic materials and theirperformance as catalysts, Journal of the Japan Petroleum Institute,2008,51(3):143-156
    [11] M. J. O'Connell, S. M. Bachilo, C. B. Huffman, et al., Band gap fluorescence from individualsingle-walled carbon nanotubes, Science,2002,297(5581):593-596
    [12] R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes-the route toward applications,Science,2002,297(5582):787-792
    [13] S. J. Tans, A. R. M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbonnanotube, Nature,1998,393(6680):49-52
    [14] Z. F. Ren, Z. P. Huang, J. W. Xu, et al., Synthesis of large arrays of well-aligned carbon nanotubeson glass, Science,1998,282(5391):1105-1107
    [15] A. K. Geim, Graphene: Status and Prospects, Science,2009,324(5934):1530-1534
    [16] Sasha Stankovich, Dmitriy A. Dikin, Geoffrey H. B. Dommett, et al., Graphene-based compositematerials, Nature,2006,442(7100):282-286
    [17] Sasha Stankovich, Dmitriy A. Dikin, Richard D. Piner, et al., Synthesis of graphene-basednanosheets via chemical reduction of exfoliated graphite oxide, Carbon,2007,45(7):1558-1565
    [18] J. H. Zhao, A. H. Wang, M. A. Green, et al.,19.8%efficient "honeycomb'' texturedmulticrystalline and24.4%monocrystalline silicon solar cells, Applied Physics Letters,1998,73(14):1991-1993
    [19] T. J. Rinke, R. B. Bergmann, J. H. Werner, Quasi-monocrystalline silicon for thin-film devices,Applied Physics a-Materials Science&Processing,1999,68(6):705-707
    [20] K. A. Munzer, K. T. Holdermann, R. E. Schlosser, et al., Thin monocrystalline silicon solar cells,Ieee Transactions on Electron Devices,1999,46(10):2055-2061
    [21] E. Pihan, A. Slaoui, C. Maurice, Growth kinetics and crystallographic properties of polysiliconthin films formed by aluminium-induced crystallization, Journal of Crystal Growth,2007,305(1):88-98
    [22] L. Carnel, I. Gordon, D. Van Gestel, et al., High open-circuit voltage values on fine-grainedthin-film polysilicon solar cells, Journal of Applied Physics,2006,100(6)
    [23] G. Beaucarne, S. Bourdais, A. Slaoui, et al., Thin-film polysilicon solar cells on foreign substratesusing direct thermal CVD: material and solar cell design, Thin Solid Films,2002,403:229-237
    [24] Y. G. Sun, B. T. Mayers, Y. N. Xia, Template-engaged replacement reaction: A one-step approachto the large-scale synthesis of metal nanostructures with hollow interiors, Nano Letters,2002,2(5):481-485
    [25] P. Liu, H. Cui, C. X. Wang, et al., From nanocrystal synthesis to functional nanostructurefabrication: laser ablation in liquid, Physical Chemistry Chemical Physics,2010,12(16):3942-3952
    [26] M. B. Sigman, A. Ghezelbash, T. Hanrath, et al., Solventless synthesis of monodisperse Cu2Snanorods, nanodisks, and nanoplatelets, Journal of the American Chemical Society,2003,125(51):16050-16057
    [27] Y. G. Sun, Y. N. Xia, Mechanistic study on the replacement reaction between silver nanostructuresand chloroauric acid in aqueous medium, Journal of the American Chemical Society,2004,126(12):3892-3901
    [28] Y. G. Sun, B. Wiley, Z. Y. Li, et al., Synthesis and optical properties of nanorattles andmultiple-walled nanoshells/nanotubes made of metal alloys, Journal of the American Chemical Society,2004,126(30):9399-9406
    [29] S. K. Wonnell, J. M. Delaye, M. Bibolé, et al., Activation volume for the interdiffusion of Ag-Aumultilayers, Journal of Applied Physics,1992,72(11):5195-5205
    [30] T. Shibata, B. A. Bunker, Z. Y. Zhang, et al., Size-dependent spontaneous alloying of Au-Agnanoparticles, Journal of the American Chemical Society,2002,124(40):11989-11996
    [31] Xiaowei Teng, Qi Wang, Ping Liu, et al., Formation of Pd/Au nanostructures from Pd nanowiresvia galvanic replacement reaction, Journal of the American Chemical Society,2008,130(3):1093-1101
    [32] Xianmao Lu, Hsing-Yu Tuan, Jingyi Chen, et al., Mechanistic studies on the galvanic replacementreaction between multiply twinned particles of Ag and HAuCl4in an organic medium, Journal of theAmerican Chemical Society,2007,129(6):1733-1742
    [33] J. Y. Chen, B. Wiley, J. McLellan, et al., Optical properties of Pd-Ag and Pt-Ag nanoboxessynthesized via galvanic replacement reactions, Nano Letters,2005,5(10):2058-2062
    [34] G. J. Zhou, M. K. Lu, Z. S. Yang, Aqueous synthesis of copper nanocubes and bimetalliccopper/palladium core-shell nanostructures, Langmuir,2006,22(13):5900-5903
    [35] Xiaofeng Lu, Maureen McKiernan, Zhenmeng Peng, et al., Noble-Metal Nanotubes Prepared via aGalvanic Replacement Reaction Between Cu Nanowires and Aqueous HAuCl4, H2PtCl6, or Na2PdCl4,Science of Advanced Materials,2010,2(3):413-420
    [36] Yang Lu, Yang Zhao, Le Yu, et al., Hydrophilic Co@Au Yolk/Shell Nanospheres: Synthesis,Assembly, and Application to Gene Delivery, Advanced Materials,2010,22(12):1407-1411
    [37] Melinda Mohl, Ashavani Kumar, Arava Leela Mohana Reddy, et al., Synthesis of Catalytic PorousMetallic Nanorods by Galvanic Exchange Reaction, Journal of Physical Chemistry C,2010,114(1):389-393
    [38] Fedoseev D V, Bukhovets V L, Varshavskaya I G, Transition of Graphite Into Diamond in a SolidPhase Under the Atmospheric Pressure, Carbon,1983,21:237-241
    [39] Fedoseev D V, Varshavskaya I G, Lavrent'ev A V, Phase Transformations in Highly DispersePowders During their Rapid Heating and Cooling, Powder Technology,1985,2:125-129
    [40] Alam M, Debroy T, Roy R, Diamond Formation in Air by the Fedoseev-Derjaguin Laser Process,Carbon,1989,27(2):289-294
    [41] Kroto H W, Heath J R, O'Brien S C, C60:Buckminsterfullerene, Nature,1985,318:162-163
    [42] J. H. Hafner, M. J. Bronikowski, B. R. Azamian, et al., Catalytic growth of single-wall carbonnanotubes from metal particles, Chemical Physics Letters,1998,296(1-2):195-202
    [43] Ogalea S B, Malshea A P, Kanetkara S M, Formation of Diamond Particulates by Pulsed RubyLaser Irradiation of Graphite Immersed in Benzene,1992,84(4):371-373
    [44] G. W. Yang, Laser ablation in liquids: Applications in the synthesis of nanocrystals, Progress inMaterials Science,2007,52(4):648-698
    [45] P. V. Kazakevich, A. V. Simakin, V. V. Voronov, et al., Laser induced synthesis of nanoparticles inliquids, Applied Surface Science,2006,252(13):4373-4380
    [46] N. V. Tarasenko, A. V. Butsen, Laser synthesis and modification of composite nanoparticles inliquids, Quantum Electronics,2010,40(11):986-1003
    [47] P. S. Liu, W. P. Cai, H. B. Zeng, Fabrication and size-dependent optical properties of FeOnanoparticles induced by laser ablation in a liquid medium, Journal of Physical Chemistry C,2008,112(9):3261-3266
    [48] R. K. Thareja, S. Shukla, Synthesis and characterization of zinc oxide nanoparticles by laserablation of zinc in liquid, Applied Surface Science,2007,253:8889-8895
    [49] A. S. Nikolov, P. A. Atanasov, D. R. Milev, et al., Synthesis and characterization of TiOxnanoparticles prepared by pulsed-laser ablation of Ti target in water, Applied Surface Science,2009,255(10):5351-5354
    [50] H. M. Zhang, C. H. Liang, Z. F. Tian, et al., Single Phase Mn3O4Nanoparticles Obtained byPulsed Laser Ablation in Liquid and Their Application in Rapid Removal of Trace Pentachlorophenol,Journal of Physical Chemistry C,2010,114(29):12524-12528
    [51] K. Y. Niu, J. Yang, S. A. Kulinich, et al., Morphology Control of Nanostructures via SurfaceReaction of Metal Nanodroplets, Journal of the American Chemical Society,2010,132(28):9814-9819
    [52] J. G. Lee, H. Mori, Direct evidence for reversible diffusional phase change in nanometer-sizedalloy particles, Physical Review Letters,2004,93(23)
    [53] D. Poondi, J. Singh, Synthesis of metastable silver-nickel alloys by a novel laser-liquid-solidinteraction technique, Journal of Materials Science,2000,35(10):2467-2476
    [54] J. Zhang, J. Worley, S. Denommee, et al., Synthesis of metal alloy nanoparticles in solution bylaser irradiation of a metal powder suspension, Journal of Physical Chemistry B,2003,107(29):6920-6923
    [55] W. G. Zhang, Z. G. Jin, Research on successive preparation of nano-FeNi alloy and its ethanol solby pulsed laser ablation, Science in China Series B-Chemistry,2004,47(2):159-165
    [56] Q. X. Liu, C. X. Wang, W. Zhang, et al., Immiscible silver-nickel alloying nanorods growth uponpulsed-laser induced liquid/solid interfacial reaction, Chemical Physics Letters,2003,382(1-2):1-5
    [57] T. Sakka, S. Iwanaga, Y. H. Ogata, et al., Laser ablation at solid-liquid interfaces: An approachfrom optical emission spectra, Journal of Chemical Physics,2000,112(19):8645-8653
    [58] L. Yang, P. W. May, L. Yin, et al., Ultra fine carbon nitride nanocrystals synthesized by laserablation in liquid solution, Journal of Nanoparticle Research,2007,9:1181-1185
    [59] Q. X. Liu, C. X. Wang, G. W. Yang, Formation of silver particles and silver oxide plumenanocomposites upon pulsed-laser induced liquid-solid interface reaction, European Physical Journal B,2004,41(4):479-483
    [60] T. X. Phuoc, B. H. Howard, D. V. Martello, et al., Synthesis of Mg(OH)(2), MgO, and Mgnanoparticles using laser ablation of magnesium in water and solvents, Optics and Lasers inEngineering,2008,46(11):829-834
    [61] T. Tsuji, Y. Tsuboi, N. Kitamura, et al., Microsecond-resolved imaging of laser ablation atsolid-liquid interface: investigation of formation process of nano-size metal colloids, Applied SurfaceScience,2004,229(1-4):365-371
    [62] J. H. Yoo, S. H. Jeong, R. Greif, et al., Explosive change in crater properties during high powernanosecond laser ablation of silicon, Journal of Applied Physics,2000,88(3):1638-1649
    [63] H. Zeng, Z. Li, W. Cai, et al., Microstructure control of Zn/ZnO core/shell nanoparticles and theirtemperature-dependent blue emissions, Journal of Physical Chemistry B,2007,111(51):14311-14317
    [64] W. T. Nichols, T. Sasaki, N. Koshizaki, Laser ablation of a platinum target in water. I. Ablationmechanisms, Journal of Applied Physics,2006,100(11)
    [65] W. T. Nichols, T. Sasaki, N. Koshizaki, Laser ablation of a platinum target in water. II. Ablationrate and nanoparticle size distributions, Journal of Applied Physics,2006,100(11)
    [66] W. T. Nichols, T. Sasaki, N. Koshizaki, Laser ablation of a platinum target in water. III.Laser-induced reactions, Journal of Applied Physics,2006,100(11)
    [67] N. Takada, T. Sasaki, K. Sasaki, Synthesis of crystalline TiN and Si particles by laser ablation inliquid nitrogen, Applied Physics a-Materials Science&Processing,2008,93(4):833-836
    [68] J. Kupcik, J. Blazevska-Gilev, J. Subrt, et al., IR laser-induced decomposition of poly(vinylchloride-co-vinyl acetate): Control of products by irradiation conditions, Polymer Degradation andStability,2006,91(11):2560-2566
    [69] D. Pokorna, J. Subrt, A. Galikova, et al., IR laser ablative and conventional decomposition ofpoly(vinyl phenyl ketone): Different processes and different products, Polymer Degradation andStability,2007,92(3):352-358
    [70] V. N Bagratashvili, Multiple photon infrared laser photophysics and photochemistry, HarwoodAcademic Publishers Chur Switzerland and New York,1985,1-3
    [71] A. L. Robinson, INFRARED PHOTOCHEMISTRY-(I)-LASER-CATALYZED REACTIONS,Science,1976,193(4259):1230-&
    [72] J. F. Harris, R. I. Gamow, SNAKE INFRARED RECEPTORS-THERMAL ORPHOTOCHEMICAL MECHANISM, Science,1971,172(3989):1252-&
    [73] H. D. Zeng, C. J. Zhao, J. R. Qiu, et al., Preparation and optical properties of silver nanoparticlesinduced by a femtosecond laser irradiation, Journal of Crystal Growth,2007,300(2):519-522
    [74] S. H. Zhang, B. Li, L. M. Tang, et al., Studies on the near infrared laser inducedphotopolymerization employing a cyanine dye-borate complex as the photoinitiator, Polymer,2001,42(18):7575-7582
    [75] B. Jedrzejewska, S. Urbanski, Studies on an Argon Laser-Induced PhotopolymerizationEmploying Both Mono-and Bischromophoric Hemicyanine Dye-Borate Complex as a Photoinitiator.Part III, Journal of Applied Polymer Science,2010,118(3):1395-1405
    [76] J. Kabatc, A. Celmer, An argon laser induced polymerization photoinitiated by both mono-andbichromophoric hemicyanine dye-borate salt ion pairs. The synthesis, spectroscopic, electrochemicaland kinetic studies, Polymer,2009,50(1):57-67
    [77] R. Alexandrescu, I. Morjan, F. Dumitrache, et al., Photochemistry aspects of the laser pyrolysisaddressing the preparation of oxide semiconductor photocatalysts, International Journal of Photoenergy,2008,
    [78] H. Hofmeister, F. Huisken, B. Kohn, et al., Filamentary iron nanostructures from laser-inducedpyrolysis of iron pentacarbonyl and ethylene mixtures, Applied Physics a-Materials Science&Processing,2001,72(1):7-11
    [79] J. S Haggerty, W. R Cannon, Sinterable Powders from Laser Driven Reactions in LaserInduced Chemical Processes//J. I. Steinfeld, Plenum Press New York,1981,
    [80] S. Veintemillas-Verdaguer, M. P. Morales, C. J. Serna, Continuous production of gamma-Fe2O3ultrafine powders by laser pyrolysis, Materials Letters,1998,35(3-4):227-231
    [81] R. Alexandrescu, I. Morjan, M. Scarisoreanu, et al., Development of the IR laser pyrolysis for thesynthesis of iron-doped TiO2nanoparticles: Structural properties and photoactivity, Infrared Physics&Technology,2010,53(2):94-102
    [82] R Alexandrescu, I Morjan, F Dumitrache, et al., Recent developments in the formation andstructure of tin–iron oxides by laser pyrolysis, Applied Surface Science,2011,257:5460–5464
    [83] M. Schnaiter, T. Henning, H. Mutschke, et al., Infrared spectroscopy of nano-sized carbon grainsproduced by laser pyrolysis of acetylene: Analog materials for interstellar grains, Astrophysical Journal,1999,519(2):687-696
    [84] I. Morjan, I. Voicu, F. Dumitrache, et al., Carbon nanopowders from the continuous-wave CO2laser-induced pyrolysis of ethylene, Carbon,2003,41(15):2913-2921
    [85] I. Llamas-Jansa, C. Jager, H. Mutschke, et al., Far-ultraviolet to near-infrared optical properties ofcarbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation withstructural variations, Carbon,2007,45:1542-1557
    [86] I. L. Jansa, H. Mutschke, D. Clement, et al., IR spectroscopy of carbon nanoparticles fromlaser-induced gas pyrolysis, Proceedings of the Symposium on Exploiting the Iso Data Archive:Infrared Astronomy in the Internet Age,2003,511:69-72
    [87] A. Galvez, N. Herlin-Boime, C. Reynaud, et al., Carbon nanoparticles from laser pyrolysis,Carbon,2002,40(15):2775-2789
    [88] E. Trave, V. Bello, G. Mattei, et al., Surface control of optical properties in silicon nanocrystalsproduced by laser pyrolysis, Applied Surface Science,2006,252(13):4467-4471
    [89] O. Sublemontier, F. Lacour, Y. Leconte, et al., CO2laser-driven pyrolysis synthesis of siliconnanocrystals and applications, Journal of Alloys and Compounds,2009,483(1-2):499-502
    [90] Y. Q. He, X. G. Li, M. T. Swihart, Laser-driven aerosol synthesis of nickel nanoparticles,Chemistry of Materials,2005,17(5):1017-1026
    [91] Y. Q. He, Y. Sahoo, S. M. Wang, et al., Laser-driven synthesis and magnetic properties of ironnanoparticles, Journal of Nanoparticle Research,2006,8(3-4):335-342
    [92] R. Alexandrescu, I. Morjan, M. Scarisoreanu, et al., Structural investigations on TiO2andFe-doped TiO2nanoparticles synthesized by laser pyrolysis, Thin Solid Films,2007,515(24):8438-8445
    [93] R. Alexandrescu, F. Dumitrache, I. Morjan, et al., TiO2nanosized powders by TiCl4laserpyrolysis, Nanotechnology,2004,15(5):537-545
    [94] M. Scarisoreanu, Morjan, R. Alexandrescu, et al., Effects of some synthesis parameters on thestructure of titania nanoparticles obtained by laser pyrolysis, Applied Surface Science,2007,253(19):7908-7911
    [95] M. C. Bautista, O. Bomati-Miguel, M. D. Morales, et al., Surface characterisation ofdextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation, Journal ofMagnetism and Magnetic Materials,2005,293(1):20-27
    [96] F. Dumitrache, V. Ciupina, I. Morjan, et al., Carbon-encapsulated iron nanoparticles prepared bylaser pyrolysis: characterization and catalyzers for carbon nanotubes and nanofibers, Nanoengineering:Fabrication, Properties, Optics, and Devices,2004,5515:244-251
    [97] C. Jager, H. Mutschke, F. Huisken, et al., Iron-carbon nanoparticles prepared by CO2laserpyrolysis of toluene and iron pentacarbonyl, Applied Physics a-Materials Science&Processing,2006,85(1):53-62
    [98] A. Tomescu, R. Alexandrescu, I. Morjan, et al., Structural and sensing properties of a novelFe/Fe2O3/polyoxocarbosilane core shell nanocomposite powder prepared by laser pyrolysis, Journal ofMaterials Science,2007,42(5):1838-1846
    [99] I. Morjan, J. Pola, R. Alexandrescu, et al., Newly developed Fe-Fe2O3/polyoxocarbosilanecore-shell nanocomposite prepared by laser pyrolysis: Characterization and sensing properties//E.Comini, P. I. Gouma, V. Guidi, et al, Nanostructured Materials and Hybrid Composites for Gas Sensorsand Biomedical Applications,2006:59-64
    [100] R. Subramanian, P. E. Denney, J. Singh, et al., A novel technique for synthesis of silvernanoparticles by laser-liquid interaction, Journal of Materials Science,1998,33(13):3471-3477
    [101] T Hasumura, T Fukuda, R. L. D Whitby, et al., Low temperature synthesis of iron containingcarbon nanoparticles in critical carbon dioxide, Journal of nanoparitlce research,2011,13:53-58
    [102] C. Ghica, C. Ristoscu, G. Socol, et al., Growth and characterization of beta-SiC films obtained byfs laser ablation, Applied Surface Science,2006,252(13):4672-4677
    [103] Y. Kamlag, A. Goossens, I. Colbeck, et al., Laser CVD of cubic SiC nanocrystals, AppliedSurface Science,2001,184(1-4):118-122
    [104] D. Devaux, R. Fabbro, L. Tollier, et al., Generation of shock waves by laser-induced plasma inconfined geometry, Journal of Applied Physics,1993,74:2268-2273
    [105] K. Y. Niu, J. Yang, J. Sun, et al., One-step synthesis of MgO hollow nanospheres with blueemission, Nanotechnology,2010,21(29):295604
    [106] K. Y. Niu, J. Yang, S. A. Kulinich, et al., Hollow Nanoparticles of Metal Oxides and Sulfides:Fast Preparation via Laser Ablation in Liquid, Langmuir,2010,26(22):16652-16657
    [107] Q. Li, C. R. Wang, Cu nanostructures formed via redox reaction of Zn nanowire and Cu2+containing solutions, Chemical Physics Letters,2003,375(5-6):525-531
    [108] M. N. Nadagouda, R. S. Varma, A greener synthesis of core (Fe, Cu)-shell (An, Pt, Pd, and Ag)nanocrystals using aqueous vitamin C, Crystal Growth&Design,2007,7(12):2582-2587
    [109] Y. G. Sun, B. Mayers, Y. N. Xia, Metal nanostructures with hollow interiors, Advanced Materials,2003,15(7-8):641-646
    [110] Sara E. Skrabalak, Jingyi Chen, Leslie Au, et al., Gold nanocages for biomedical applications,Advanced Materials,2007,19(20):3177-3184
    [111] K. Y. Niu, S. A. Kulinich, J. Yang, et al., Galvanic Replacement Reactions of Active MetalNanoparticles, Chemistry-A Europe Journal,2012,
    [112] Simona E. Hunyadi, Catherine J. Murphy, Bimetallic silver-gold nanowires: fabrication and usein surface-enhanced Raman scattering, Journal of Materials Chemistry,2006,16(40):3929-3935
    [113] M. A. Mahmoud, M. A. El-Sayed, Aggregation of Gold Nanoframes Reduces, Rather ThanEnhances, SERS Efficiency Due to the Trade-Off of the Inter-and Intraparticle Plasmonic Fields, NanoLetters,2009,9(8):3025-3031
    [114] Y. G. Sun, Y. N. Xia, Increased sensitivity of surface plasmon resonance of gold nanoshellscompared to that of gold solid colloids in response to environmental changes, Analytical Chemistry,2002,74(20):5297-5305
    [115] Mahmoud A. Mahmoud, Mostafa A. El-Sayed, Gold Nanoframes: Very High Surface PlasmonFields and Excellent Near-Infrared Sensors, Journal of the American Chemical Society,2010,132(36):12704-12710
    [116] M. Yin, C. K. Wu, Y. B. Lou, et al., Copper oxide nanocrystals, Journal of the AmericanChemical Society,2005,127(26):9506-9511
    [117] Ling-I. Hung, Chia-Kuang Tsung, Wenyu Huang, et al., Room-Temperature Formation ofHollow Cu2O Nanoparticles, Advanced Materials,2010: n/a-n/a
    [118] Guangjun Cheng, A. R. Hight Walker, Transmission electron microscopy characterization ofcolloidal copper nanoparticles and their chemical reactivity, Analytical and Bioanalytical Chemistry,2010,396(3):1057-1069
    [119] David B. Pedersen, Shiliang Wang, Septimus H. Liang, Charge-transfer-driven diffusionprocesses in Cu@Cu-oxide core-shell nanoparticles: Oxidation of3.0+/-0.3nm diameter coppernanoparticles, Journal of Physical Chemistry C,2008,112(24):8819-8826
    [120] Jixiang Fang, Xiaoni Ma, Hanhui Cai, et al., Double-interface growth mode of fractal silver treeswithin replacement reaction, Applied Physics Letters,2006,89(17):173104
    [121] Xiaochun Zhou, Weilin Xu, Guokun Liu, et al., Size-Dependent Catalytic Activity and Dynamicsof Gold Nanoparticles at the Single-Molecule Level, Journal of the American Chemical Society,2010,132(1):138-146
    [122] Y. Isomura, T. Narushima, H. Kawasaki, et al., Surfactant-free single-nano-sized colloidal Cunanoparticles for use as an active catalyst in Ullmann-coupling reaction, Chemical Communications,2012,48(31):3784-3786
    [123] Mazaahir Kidwai, Vikas Bansal, Amit Saxena, et al., Cu-Nanoparticles: efficient catalysts for theoxidative cyclization of Schiffs' bases, Tetrahedron Letters,2006,47(46):8049-8053
    [124] Mazaahir Kidwai, Saurav Bhardwaj, Neeraj Kumar Mishra, et al., A novel method for thesynthesis of beta-enaminones using Cu-nanoparticles as catalyst, Catalysis Communications,2009,10(11):1514-1517
    [125] Mazaahir Kidwai, Neeraj Kumar Mishra, Vikas Bansal, et al., Novel one-potCu-nanoparticles-catalyzed Mannich reaction, Tetrahedron Letters,2009,50(12):1355-1358
    [126] A. K. Verma, R. Kumar, P. Chaudhary, et al., Cu-nanoparticles: a chemoselective catalyst for theaza-Michael reactions of N-alkyl-and N-arylpiperazines with acrylonitrile, Tetrahedron Letters,2005,46(31):5229-5232
    [127] M. C. Daniel, D. Astruc, Gold nanoparticles: Assembly, supramolecular chemistry,quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,Chemical Reviews,2004,104(1):293-346
    [128] X. Michalet, F. F. Pinaud, L. A. Bentolila, et al., Quantum dots for live cells, in vivo imaging, anddiagnostics, Science,2005,307(5709):538-544
    [129] Y. Cui, U. Banin, M. T. Bjork, et al., Electrical transport through a single nanoscalesemiconductor branch point, Nano Letters,2005,5(7):1519-1523
    [130] J. E. Millstone, S. Park, K. L. Shuford, et al., Observation of a quadrupole plasmon mode for acolloidal solution of gold nanoprisms, Journal of the American Chemical Society,2005,127(15):5312-5313
    [131] Bikash Kumar Jena, C. Retna Raj, Synthesis of flower-like gold nanoparticles and theirelectrocatalytic activity towards the oxidation of methanol and the reduction of oxygen, Langmuir,2007,23(7):4064-4070
    [132] Y. W. Jun, S. M. Lee, N. J. Kang, et al., Controlled synthesis of multi-armed CdS nanorodarchitectures using monosurfactant system, Journal of the American Chemical Society,2001,123(21):5150-5151
    [133] Y. D. Li, H. W. Liao, Y. Ding, et al., Nonaqueous synthesis of CdS nanorod semiconductor,Chemistry of Materials,1998,10(9):2301-+
    [134] G. Y. Shan, S. J. Zheng, S. P. Chen, et al., Multifunctional ZnO/Ag nanorod array as highlysensitive substrate for surface enhanced Raman detection, Colloids and Surfaces B-Biointerfaces,2012,94:157-162
    [135] M. S. Gudiksen, L. J. Lauhon, J. Wang, et al., Growth of nanowire superlattice structures fornanoscale photonics and electronics, Nature,2002,415(6872):617-620
    [136] L. J. Lauhon, M. S. Gudiksen, C. L. Wang, et al., Epitaxial core-shell and core-multishellnanowire heterostructures, Nature,2002,420(6911):57-61
    [137] Wen-Jing Qin, Xiao-Bo Yang, Ying-Wei Lu, et al., Silicon nanodisks via a chemical route,Chemistry of Materials,2008,20(12):3892-3896
    [138] Seung-Chul Lee, Chang-Woo Lee, Sunyong Caroline Lee, et al., Optical and photocatalyticproperties of TiO2with hollow nanostructure, Materials Letters,2008,62(4-5):564-566
    [139] Yue Pan, Jinhao Gao, Bei Zhang, et al., Colloidosome-based Synthesis of a MultifunctionalNanostructure of Silver and Hollow Iron Oxide Nanoparticles, Langmuir,2010,26(6):4184-4187
    [140] Y. Baek, Y. Song, K. Yong, A novel heteronanostructure system: Hierarchical W nanothorn arrayson WO3nanowhiskers, Advanced Materials,2006,18(23):3105-+
    [141] Ji Chan Park, Jeonghan Kim, Hyuksong Kwon, et al., Gram-Scale Synthesis of Cu(2)ONanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery AnodeMaterials, Advanced Materials,2009,21(7):803-+
    [142] Fenghua Zhang, Heqing Yang, Xiaoli Xie, et al., Controlled synthesis and gas-sensing propertiesof hollow sea urchin-like alpha-Fe(2)O(3) nanostructures and alpha-Fe(2)O(3) nanocubes, Sensors andActuators B-Chemical,2009,141(2):381-389
    [143] Tao Liu, Dongsheng Li, Deren Yang, et al., Preparation of echinus-like SiO2@Ag structures withthe aid of the HCP phase, Chemical Communications,2011,47(18):5169-5171
    [144] Feng Dan Wu, Yong Wang, Self-assembled echinus-like nanostructures of mesoporous CoOnanorod@CNT for lithium-ion batteries, Journal of Materials Chemistry,2011,21(18):6636-6641
    [145] M. Nakayama, H. Ichida, H. Nishimura, Bound-biexciton photoluminescence in CuCl thin filmsgrown by vacuum deposition, Journal of Physics-Condensed Matter,1999,11(39):7653-7662
    [146] L. O'Reilly, O. F. Lucas, P. J. McNally, et al., Room-temperature ultraviolet luminescence fromgamma-CuCl grown on near lattice-matched silicon, Journal of Applied Physics,2005,98(11)
    [147] LI Zhong, MENG Fanhui, REN Jun, et al., Surface Structure and Catalytic Performance ofCuCl/SiO2-Al2O3Catalysts for Methanol Oxidative Carbonylation CHINESE JOURNAL OFCATALYSIS,2008,29(7):643-648
    [148] Yong Cao, Jun-Cheng Hu, Ping Yang, et al., CuCl catalyst heterogenized on diamide immobilizedSBA-15for efficient oxidative carbonylation of methanol to dimethylcarbonate, ChemicalCommunications,2003:908-909
    [149] Ting Xie, Ming Gong, Zhiqiang Niu, et al., Shape-Controlled CuCl Crystallite Catalysts forAniline Coupling Nano Research,2010,3(3):174-179
    [150] Sang-Hyun Choi, Hyon Bin Na, Yong Il Park, et al., Simple and Generalized Synthesis ofOxide-Metal Heterostructured Nanoparticles and their Applications in Multimodal Biomedical Probes,Journal of the American Chemical Society,2008,130(46):15573-15580
    [151] Chenjie Xu, Jin Xie, Don Ho, et al., Au-Fe3O4dumbbell nanoparticles as dual-functional probes,Angewandte Chemie-International Edition,2008,47(1):173-176
    [152] Renguo Xie, Xiaogang Peng, Synthetic scheme for high-quality InAs nanocrystals based onself-focusing and one-pot synthesis of InAs-based core-shell nanocrystals, AngewandteChemie-International Edition,2008,47(40):7677-7680
    [153] Ronny Costi, Aaron E. Saunders, Uri Banin, Colloidal Hybrid Nanostructures: A New Type ofFunctional Materials, Angewandte Chemie-International Edition,2010,49(29):4878-4897
    [154] Susan E. Habas, Hyunjoo Lee, Velimir Radmilovic, et al., Shaping binary metal nanocrystalsthrough epitaxial seeded growth, Nature Materials,2007,6(9):692-697
    [155] Feng-Ru Fan, Yong Ding, De-Yu Liu, et al., Facet-Selective Epitaxial Growth of HeterogeneousNanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals, Journal of theAmerican Chemical Society,2009,131(34):12036-+
    [156] D. I. Enache, J. K. Edwards, P. Landon, et al., Solvent-free oxidation of primary alcohols toaldehydes using Au-Pd/TiO2catalysts, Science,2006,311(5759):362-365
    [157] Jiatao Zhang, Yun Tang, Kwan Lee, et al., Nonepitaxial Growth of Hybrid Core-ShellNanostructures with Large Lattice Mismatches, Science,2010,327(5973):1634-1638
    [158] Bo Gao, Yue Lin, Sijie Wei, et al., Charge transfer and retention in directly coupled Au-CdSenanohybrids, Nano Research,2012,5(2):88-98
    [159] Mingzhao Liu, Philippe Guyot-Sionnest, Preparation and optical properties of silverchalcogenide coated gold nanorods, Journal of Materials Chemistry,2006,16(40):3942-3945
    [160] W. L. Shi, H. Zeng, Y. Sahoo, et al., A general approach to binary and ternary hybrid nanocrystals,Nano Letters,2006,6(4):875-881
    [161] Yung-Jun Hsu, Shih-Yuan Lu, Yi-Feng Lin, Spontaneous reduction of metal ions initiated byethylenediamine-capped CdS nanowires: A sensing mechanism revealed, Chemistry of Materials,2008,20(9):2854-2856
    [162] Zhenhua Sun, Zhi Yang, Jianhua Zhou, et al., A General Approach to the Synthesis of Gold-MetalSulfide Core-Shell and Heterostructures, Angewandte Chemie-International Edition,2009,48(16):2881-2885
    [163] Min Li, Xue-Feng Yu, Shan Liang, et al., Synthesis of Au-CdS Core-Shell Hetero-Nanorods withEfficient Exciton-Plasmon Interactions, Advanced Functional Materials,2011,21(10):1788-1794
    [164] Yuanhui Zheng, Lirong Zheng, Yingying Zhan, et al., Ag/ZnO heterostructure nanocrystals:Synthesis, characterization, and photocatalysis, Inorganic Chemistry,2007,46(17):6980-6986
    [165] T. Mokari, C. G. Sztrum, A. Salant, et al., Formation of asymmetric one-sided metal-tippedsemiconductor nanocrystal dots and rods, Nature Materials,2005,4(11):855-863
    [166] V. Subramanian, E. E. Wolf, P. V. Kamat, Green emission to probe photoinduced charging eventsin ZnO-Au nanoparticles. Charge distribution and fermi-level equilibration, Journal of PhysicalChemistry B,2003,107(30):7479-7485
    [167] Tao Yao, Wensheng Yan, Zhihu Sun, et al., High-Temperature Ferromagnetism of HybridNanostructure Ag-Zn0.92Co0.08O Dilute Magnetic Semiconductor, Journal of Physical Chemistry C,2009,113(9):3581-3585
    [168] Susan E. Habas, Peidong Yang, Taleb Mokari, Selective growth of metal and binary metal tips onCdS nanorods, Journal of the American Chemical Society,2008,130(11):3294-+
    [169] T. Mokari, E. Rothenberg, I. Popov, et al., Selective growth of metal tips onto semiconductorquantum rods and tetrapods, Science,2004,304(5678):1787-1790
    [170] C. Pacholski, A. Kornowski, H. Weller, Site-specific photodeposition of silver on ZnO nanorods,Angewandte Chemie-International Edition,2004,43(36):4774-4777
    [171] Sasanka Deka, Andrea Falqui, Giovanni Bertoni, et al., Fluorescent AsymmetricallyCobalt-Tipped CdSe@CdS Core@Shell Nanorod Heterostructures Exhibiting Room-TemperatureFerromagnetic Behavior, Journal of the American Chemical Society,2009,131(35):12817-12828
    [172] S. H. Yu, Y. S. Wu, J. Yang, et al., A novel solventothermal synthetic route to nanocrystalline CdE(E=S, Se, Te) and morphological control, Chemistry of Materials,1998,10(9):2309-+
    [173] Q. Y. Lu, J. Q. Hu, K. B. Tang, et al., Growth of SiC nanorods at low temperature, AppliedPhysics Letters,1999,75(4):507-509
    [174] H. W. Liao, Y. F. Wang, X. M. Liu, et al., Hydrothermal preparation and characterization ofluminescent CdWO4nanorods, Chemistry of Materials,2000,12(10):2819-+
    [175] Y. Xie, P. Yan, J. Lu, et al., A safe low temperature route to InAs nanofibers, Chemistry ofMaterials,1999,11(9):2619-2622
    [176] Y. Jiang, Y. Wu, S. Y. Zhang, et al., A catalytic-assembly solvothermal route to multiwall carbonnanotubes at a moderate temperature, Journal of the American Chemical Society,2000,122(49):12383-12384
    [177] Peng Li, Zhe Wei, Tong Wu, et al., Au-ZnO Hybrid Nanopyramids and Their PhotocatalyticProperties, Journal of the American Chemical Society,2011,133(15):5660-5663
    [178] M. M. I. Hossain, M. Hossain, Y. Kimura, et al., Acquired acid resistance of enamel and dentinby CO2laser irradiation with sodium fluoride solution, Journal of Clinical Laser Medicine&Surgery,2002,20(2):77-82
    [179] Tobias Koeniger, Thomas Rechtenwald, Ihab Al-Naimi, et al., CO2-laser treatment of indium tinoxide nanoparticle coatings on flexible polyethyleneterephthalate substrates, Journal of CoatingsTechnology and Research,2010,7(2):261-269
    [180] L. M. Tumanova, O. A. Tumanov, J. Pola, et al., Decomposition of liquid hexamethyldisiloxaneinduced by CO2laser pulse heating of carbon particles, Chemical Physics,2002,278(1):31-39
    [181] M. Yudasaka, F. Kokai, K. Takahashi, et al., Formation of single-wall carbon nanotubes:Comparison of CO2laser ablation and Nd: YAG laser ablation, Journal of Physical Chemistry B,1999,103(18):3576-3581
    [182] M. E. Khosroshahi, F. Anoosheh Pour, M. Hadavi, et al., In situ monitoring the pulse CO2laserinteraction with316-L stainless steel using acoustical signals and plasma analysis, Applied SurfaceScience,2010,256(24):7421-7427
    [183] Gong-Ru Lin, Chun-Jung Lin, Li-Jen Chou, et al., Localized CO2laser annealing induceddehydrogenation/ablation and optical refinement of silicon-rich silicon dioxide film with embedded Sinanocrystals, Journal of Nanoscience and Nanotechnology,2006,6(12):3710-3717
    [184] B. B. Radak, M. T. Petkovska, M. S. Trtica, et al., Photoacoustic study of CO2-laser coincidenceswith absorption of some organic solvent vapours, Analytica Chimica Acta,2004,505(1):67-71
    [185] Weijie Liu, Xinmei Zhao, Linyuan Cao, et al., A facile method for fabrication of highly orderedhollow Ag/TiO(2) nanostructure and its photocatalytic activity, Materials Letters,2009,63(28):2456-2458
    [186] Liang Li, Ying-Jie Zhu, Shao-Wen Cao, et al., Preparation and Drug Release Properties ofNanostructured CaCO(3) Porous Hollow Microspheres, Journal of Inorganic Materials,2009,24(1):166-170
    [187] Jaeyun Kim, Yuanzhe Piao, Taeghwan Hyeon, Multifunctional nanostructured materials formultimodal imaging, and simultaneous imaging and therapy, Chemical Society Reviews,2009,38(2):372-390
    [188] Yuanzhe Piao, Andrew Burns, Jaeyun Kim, et al., Designed Fabrication of Silica-BasedNanostructured Particle Systems for Nanomedicine Applications, Advanced Functional Materials,2008,18(23):3745-3758
    [189] Da Deng, Jim Yang Lee, Hollow core-shell mesospheres of crystalline SnO2nanoparticleaggregates for high capacity Li+ion storage, Chemistry of Materials,2008,20(5):1841-1846
    [190] S. F. Wang, F. Gu, M. K. Lu, Sonochemical synthesis of hollow PbS nanospheres, Langmuir,2006,22(1):398-401
    [191] Xuelian Yu, Chuanbao Cao, Hesun Zhu, et al., Nanometer-sized copper sulfide hollow sphereswith strong optical-limiting properties, Advanced Functional Materials,2007,17(8):1397-1401
    [192] Kwangjin An, Taeghwan Hyeon, Synthesis and biomedical applications of hollow nanostructures,Nano Today,2009,4(4):359-373
    [193] Benjamin D. Yuhas, Peidong Yang, Nanowire-Based All-Oxide Solar Cells, Journal of theAmerican Chemical Society,2009,131(10):3756-3761
    [194] S. Nikitine, J.B. Grun, M. Sieskind, Etude spectrophotometrique de la serie jaune de Cu2O auxbasses temperatures, Journal of Physics and Chemistry of Solids,1961,17:292-300
    [195] C. Malerba, F. Biccari, C. L. A. Ricardo, et al., Absorption coefficient of bulk and thin filmCu(2)O, Solar Energy Materials and Solar Cells,2011,95(10):2848-2854
    [196] S. Xiang-Ying, L. Bin, L. Hui, et al., Synthesis of Blue Fluorescence CdS Quantum DotsStabilized by L-cysteine in Aqueous Phase, Journal of Nanoscience and Nanotechnology,2011,11(8):6810-6814
    [197] Yongming Sui, Wuyou Fu, Yi Zeng, et al., Synthesis of Cu(2)O Nanoframes and Nanocages bySelective Oxidative Etching at Room Temperature, Angewandte Chemie-International Edition,2010,49(25):4282-4285
    [198] M. Hara, T. Kondo, M. Komoda, et al., Cu2O as a photocatalyst for overall water splitting undervisible light irradiation, Chemical Communications,1998,(3):357-358
    [199] Joong Jiat Teo, Yu Chang, Hua Chun Zeng, Fabrications of hollow nanocubes of Cu2O and Cuvia reductive self-assembly of CuO nanocrystals, Langmuir,2006,22(17):7369-7377
    [200] Z. C. Orel, E. Matijevic, D. V. Goia, Precipitation and recrystallization of uniform CuCl particlesformed by aggregation of nanosize precursors, Colloid and Polymer Science,2003,281(8):754-759
    [201] WANG Qun, XU Shuang, WANG Ke-ji, et al., Fabrication of CuS nano/micro tube thin film sand CuO nano/micro crystal thin films using CuCl nanorod films as precursor, JOURNAL OF FUNCTIONAL MATERIALS AND DEVICES,2008,14
    [202] W. Sesselmann, E. E. Marinero, T. J. Chuang, Laser-induced desorption and etching processes onchlorinated Cu and solid CuCl surfaces,1986,41:209-221
    [203] Y. Cudennec, A. Riou, Y. Gerault, et al., Synthesis and crystal structures of Cd(OH)Cl andCu(OH)Cl and relationship to brucite type, Journal of Solid State Chemistry,2000,151(2):308-312
    [204] Andrea R. Tao, Susan Habas, Peidong Yang, Shape control of colloidal metal nanocrystals, Small,2008,4(3):310-325
    [205] Kai-Yang Niu, Jing Yang, Jing Sun, et al., One-step synthesis of MgO hollow nanospheres withblue emission, Nanotechnology,2010,21(29)
    [206] Liu Dingfu, Huang Lingtao, Wang Dong, Effect of acidity on preparation of cuprous chloride bynantokite reduction method, Inorganic Chemicals Industry,2008,40(12):27-29
    [207] Z. Yang, C. K. Chiang, H. T. Chang, Synthesis of fluorescent and photovoltaic Cu(2)O nanocubes,Nanotechnology,2008,19(2)
    [208] Poonam Sharma, H. S. Bhatti, Synthesis of fluorescent hollow and porous Cu(2)Onanopolyhedras in the presence of poly(vinyl pyrrolidone), Materials Chemistry and Physics,2009,114(2-3):889-896
    [209] Ping He, Xinghai Shen, Hongcheng Gao, Size-controlled preparation of Cu2O octahedronnanocrystals and studies on their optical absorption, Journal of Colloid and Interface Science,2005,284(2):510-515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700