用户名: 密码: 验证码:
基于PTFE微粉和PDMS材料渗透汽化膜制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,生产废水及生活废水中常含有挥发性有机物(VOC)。由于其毒性大、可生化性差,因此治理难度较大,危害环境安全。与此同时,VOC是重要的化工原料,其回收有重要的经济价值。因此,VOC的治理一直是近几年研究的热点。渗透汽化(PV)膜分离法由于具有相变质量小、效率高、能耗低、设备简单及工艺放大效应小等优点,逐渐在环境保护中得到应用。本文利用聚四氟乙烯(PTFE)微粉和硅橡胶(PDMS)膜材料,制备了几种PTFE-PDMS共混渗透汽化膜,研究了PTFE-PDMS膜结构、溶解-扩散性能、渗透汽化低浓度氯仿或乙醇水溶液性能及渗透汽化过程的传质阻力等。研究结果如下:
     首先,制各了不同组成的PTFE-PDMS渗透汽化平板膜,采用SEM-EDAX、FT-IR、 XRD、DSC、TG和水接触角等方法,研究了PTFE-PDMS渗透汽化膜结构及性能,考察了PTFE-PDMS渗透汽化膜的溶胀和渗透汽化性能。结果表明:PTFE-PDMS渗透汽化膜为致密膜,PTFE与PDMS间相容性较好,没有相分离现象;PTFE与PDMS间为物理混合;随着PTFE填加量的增加,PTFE-PDMS膜结晶度、水接触角和热稳定性增加,膜在氯仿或乙醇水溶液中溶胀度降低,而力学性能呈现先增加后减小的趋势;PTFE的加入提高了PDMS膜的渗透汽化性能,对氯仿水体系,PTFE在膜内含量30%时分离指数最大,进料温度50℃、渗透侧真空度2.2mmHg、料液氯仿浓度620mg/L、流速400mL/min条件下,总通量31.9g/(m2·h),分离因子3215;而对乙醇水体系,PTFE在膜内含量10%时分离指数最大,进料温度60℃、料液流速1600mL/min和渗透侧压力120mmHg下,料液乙醇质量分数为10%条件下,总通量52.2g/(m2·h),分离因子10。
     其次,根据溶解-扩散理论,研究了单组分溶剂氯仿、乙醇及水在PTFE-PDMS膜中的溶解及扩散性能。同温度下,随着PTFE在膜内填加量的增加,氯仿和水在PTFE-PDMS膜中溶解度w∞,c和w∞,w呈减小趋势,乙醇w∞,E值呈现先增加后减小的趋势;随溶解温度的升高,相同组成PTFE-PDMS膜内的w∞,c值基本不变,w∞,E和w∞w值呈增加趋势。而且溶解度大小顺序为w∞,c>w∞,E>w∞,w,说明PTFE-PDMS膜是亲有机疏水膜。氯仿、乙醇和水在PTFE-PDMS膜内扩散系数D呈现较为复杂的变化,其大小顺序遵循DC>DE>DW。PTFE的填加提高了PDMS膜的氯仿渗透系数PC、乙醇渗透系数PE、水渗透系数PW,而且氯仿对水及乙醇对水的理想分离系数αs,C和αs,E均得到提高。
     随后,制备了两种分别以无纺布PET和超滤膜PVDF为底膜的PTFE-PDMS/PET及PTFE-PDMS/PVDF渗透汽化复合膜,讨论了其渗透汽化低浓度氯仿水溶液及PTFE-PDMS/PET膜渗透汽化乙醇水溶液的分离性能,考察了料液浓度、料液温度、渗透侧压力等条件对膜渗透汽化性能的影响。结果表明,PTFE-PDMS/PET及PTFE-PDMS/PVDF膜渗透汽化氯仿水溶液性能变化趋势基本相同,不同之处在于PTFE-PDMS/PET膜通量小于PTFE-PDMS/PVDF膜的通量,而PTFE-PDMS/PET膜分离因子大于PTFE-PDMS/PVDF膜的分离因子。对于PTFE-PDMS/PET渗透汽化乙醇水溶液性能,料液浓度增加,总通量、乙醇通量和分离因子增加;总通量、乙醇通量和分离因子均随温度的升高而增加;随着料液流量的增加,总通量、乙醇和分离因子呈缓慢增加趋势,变化较小,说明乙醇水体系的渗透汽化不会出现较明显的传质边界层。
     然后,基于溶解-扩散理论和串联阻力模型分析了氯仿水溶液渗透汽化过程中氯仿传质机理。随料液中氯仿浓度的增加,氯仿渗透系数Kc.t线性增加,而水Kw.t略有线性减小趋势:随料液流速的增加,边界层厚度逐渐减薄,氯仿边界层传质系数Kb逐渐增加,传质阻力Rb逐渐减小。当Re为133时,Rb是Rm的29倍,氯仿传质过程由Rb控制。当Re达到5330时,Rt逐渐接近Rm,此时Rb极小,氯仿传质过程由Rm控制。
     最后,制备了PTFE-PDMS/PVDF中空纤维膜和外压式膜组件。以实际工业排放水配制氯仿水溶液,讨论了活性层厚度、料液浓度、料液温度、渗透侧压力、料液流速和运行时间对膜渗透汽化性能的影响。结果表明,随着活性层厚度的增加,总通量减少而分离因子增加;料液浓度增加,总通量呈线性增加而分离因子呈下降趋势;渗透侧压力降低,渗透通量和分离因子都增加;料液流速增加,渗透通量和分离因子都增加:料液温度升高,总通量及分离因子皆呈增加趋势。渗透汽化连续运行11天,通量略有增加而分离因子有下降趋势。适宜的操作条件为:膜活性层厚度13.8μm、料液氯仿浓度小于350ppm、渗透侧压力2.2mmHg、Re1932、料液温度60℃。
There are much volatile organic compounds (VOC) in industrial and domestic wastewater at present. It is difficult to treat VOC which can endanger environmental safe because of toxity and low biochemical degradation. At the same time, VOC is an important chemical raw material, and its recovery has important economic value. Therefore, the treatment of VOC is a research hotpot recently. The membrane separation technology of pervaporation, which have the advantages of low mass in phase transition, efficiency, low power consumption with simple equipment and low technological scale up effect, are preferred ways of environmental protection. In this paper, several kinds of PTFE-PDMS composite pervaporation membranes were prepared using PTFE micro-powder and PDMS membrane materials. PTFE-PDMS pervaporation membrane structures, solution-diffusion properties, permeation performance for dilute chloroform or ethanol organic aqueous solution and the mass transfer resistance in permeation were investigated. The conclusions were as follows:
     Firstly, PTFE-PDMS pervaporation flat-sheet membranes prepared with different ratioes of PTFE into PDMS. The structures and characterizations of PTFE-PDMS pervaporation membranes were studied by SEM-EDAX, FT-IR, XRD, DSC, TG and water contact angle method. The properties of membrane swelling behavior and permeation were discussed. The experimental results showed that PTFE-PDMS membranes were dense and no phase separations due to the good compatibility between organophilic PTFE particles and organophilic PDMS. The PTFE particles are only physically blended with the PDMS polymer matrix. With an increase of PTFE, the crystallinity, the water contact angle and thermal stability of the PTFE-PDMS membranes were enhanced, but the swelling degree in chloroform or ethanol aqueous solutions were reduced. And the mechanical strength was increased greatly at first and then decreased with an increase of PTFE. The examinations showed that the PTFE filled PDMS membranes exhibited striking advantages in flux and separation factor as compared with unfilled PDMS membranes. For chloroform aqueous solutions, separation index was best when the content of the PTFE micro-powder additive in PDMS composite membrane was30wt.%. For the30%PTFE-PDMS membrane, the total fluxes and the separation factor can reach31.9g/(m2·h) and3215respectively at the condition of feed temperature50℃, permeate pressure2.2mmHg, feed concentration620mg/L, feed flow400mL/min. But for ethanol aqueous solutions, the PTFE additive in PDMS composite membrane was10wt.%. For the10%PTFE-PDMS membrane, the total fluxes and the separation factor can reach52.2g/(m2·h) and10respectively at the condition of feed temperature60℃, permeate pressure120mmHg, feed concentration10wt.%, feed flow1600mL/min.
     Then, on the basis of solution-diffusion theory, the sorption and diffusion behaviors of pure solvents such as chloroform, ethanol and water in the composite membranes were investigated. The results showed that at the same temperature, the solubility w∝,c and w∞,W of chloroform and water in PTFE-PDMS membranes decreased respectively with increasing PTFE content, but the w∞,E of ethanol first increased then decreased. With an increase of solubility temperature, w∞,c for PTFE-PDMS membranes with same proportion unchanged, but w∞,E and w∞,W increased. The order of solubility is w∞,c> w∞,E> w∞,W, which proved that PTFE-PDMS membrane was water repellent. The diffusion coefficients of chloroform, ethanol and water in the composite membranes have a complex change, and the order is DC> DE>DW. Adding PTFE in PDMS increased permeation coefficient Pc, PE and PW of chloroform, ethanol and water respectively, and the ideal separation selectivities for both chloroform to water and ethanol to water, αs,C and αs,E, increased.
     Next, two kinds of PTFE-PDMS pervaoparation membranes, PTFE-PDMS/PET and PTFE-PDMS/PVDF pervaoparation composite membranes were fabricated, in which PET non-woven fabrics and PVDF UF membrane were as the support layers. The pervaporation performances of PTFE-PDMS membranes, PTFE-PDMS/PET composite membrane for dilute chloroform aqueous solutions and PTFE-PDMS/PVDF composite membrane for ethanol aqueous solutions were investigated. The effects of feed concentration, feed temperature and permeate-side vacuum on the PV performance of the composite membrane were studied. The examinations showed that the two kind of composite membranes exhibited a similar trend. The difference was that the permeation fluxes of PTFE-PDMS/PET membrane for chloroform aqueous solutions were lower than that of PTFE-PDMS/PVDF, and the separation factor of PTFE-PDMS/PET membrane for chloroform aqueous solutions were higher than that of PTFE-PDMS/PVDF. For the permeation of PTFE-PDMS/PET for ethanol aqueous solution, total and ethanol flux and separation factor all increased with feed concentration increasing. With an increase of temperature, total and ethanol flux and separation factor all increased. Total, water and ethanol flux and separation factor all increased lightly with feed flow increased. That proved there is no obvious mass transfer boundary layer when the PTFE-PDMS/PET membrane was used to permeate ethanol aqueous solution.
     After that, mass transfer process of permeation for chloroform aqueous solution on the basis of solution-diffusion theory and resistance in series model was analyzed. With an increase of chloroform content in feed, chloroform permeation coefficient, KC,t, increased linearly, but water permeation coefficient, Kw,t, decreased linearly. With an increase of feed flow, boundary layer thickness was reduced gradually, so chloroform permeation coefficient in boundary layer, Kb, increased gradually and mass transfer Resistance, Rb, decreased gradually. When Re for feed flow is133, Rb was29times over Rm, which proved that chloroform mass transfer process was controlled by Rb, When Re for feed flow is5330, Rt was closed to Rm and Rb can be ignored, which proved that chloroform mass transfer process was controlled by Rm.
     Finally, PTFE-PDMS/PVDF hollow fiber pervaporation membrane and external pressure membrane module were prepared. The effects of active layer thickness, feed concentration, feed temperature, permeate-side vacuum, feed flow and operating time on the PV performance of the composite membrane were studied. The results showed that with an increase of active layer thickness, total flux decreased but separation factor increased. When feed concentration increased, total flux increased linearly but separation factor decreased. Both total flux and separation factor increased with permeation pressure decreased. With feed flow or feed temperature increased, both total flux and separation factor increased. Total flux decreased but separation factor increased lightly after11operating days. The suitable pervaporation condition is:active layer thickness13.8μm, low feed concentration (less than350ppm), permeate pressure2.2mmHg, Re1932and feed temperature60℃.
引文
[1]Lad V N. Controlling Volatile Organic Compounds Emissions from Chemical Process Industries for Sustainable Development. International Conference on Chemical and Environmental Sciences (ICCES'2012).2012,(16-17):136-138.
    [2]Lee S C, Guo H, Lam S M J, et al. Multipathway risk assessment on disinfection by-products of drinking water in Hong Kong. Environmental Research. 2004,94(1):47-56.
    [3]Luo D, Corey R, Propper R, et al. England. Comprehensive environmental impact assessment of exempt volatile organic compounds in California. Environmental science & policy.2011,14(6):585-593.
    [4]Fang C, Behr M, Xie F, et al. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism. Toxicology and Applied Pharmacology.2008,227(1):48-55.
    [5]Uyak V. Multi-pathway risk assessment of trihalomethanes exposure in Istanbul drinking water supplies. Environment International.2006,32(1):12-21.
    [6]Quijano G, Couvert A, Amrane A, et al. Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chemical Engineering Science.2011,66 (12):2707-2712.
    [7]孙治荣,李保华,胡翔等Pd-Ni/GC电极电化学还原水中CHF的研究.环境科学.2008,29(5):1249-1254.
    [8]Zeinali F, Ghoreysh A A, Najafpour G, et al. Removal of Toluene and Dichloromethane from Aqueous Phase by Granular Activated Carbon (GAC). Chemical Engineering Communications.2012,199(2):203-220.
    [9]Ahmad S A, Lone S R. Hybrid Process (Pervaporation-Distillation):A Review. Journal of Scientific & Engineering Research.2012,3(5):1-5.
    [10]Guillermo Q, Annabelle C, Abdeltif A, et al. Potential of ionic liquids for VOC absorption and biodegradation in multiphase systems. Chemical Engineering Science. 2011,66(12):2707-2712.
    [11]Hee J K, Sung S N, Byoung R M. A new technique for preparation of PDMS pervaporation membrane for VOC removal. Advances in Environmental Research. 2002,6(3)255-264.
    [12]Cojocaru C, Khayet M, Zakrzewska T G, et al. Modeling and multi-response optimization of pervaporation of organic aqueous solutions using desirability function approach. Journal of Hazardous Materials.2009,167(1-3):52-63.
    [13]Ghoreyshi A A, Jahanshahi M, Peyvandi K. Modeling of volatile organic compounds removal from water by pervaporation process. Desalination.2008,222(1-3):410-418.
    [14]Park J Y, Yeom C K, Lee S, et al. Pervaporation permeation behavior of a series of chlorinated hydrocarbon/water mixtures through PDMS membranes, Journal of Industrial and Engineering Chemistry.2007,13(2):272-278.
    [15]Brian B, Manh H, Zongli X. A review of water recovery by vapour permeation through membranes. Water Research.2012,46(2) 259-266.
    [16]Wang J H, Masakoto K, Tomohisa Y, et al. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes. Journal of Membrane Science.2012,415-416(1) 810-815.
    [17]Song K H, Lee K R, Rim J M. Pervaporation of Esters with Hydrophobic Membrane. Korean Journal of Chemical Engineering.2004,21(3):693-698.
    [18]Salehi S, Mortahe H R, Barzin J, et al. Pervaporative performance of a PDMS/blended PES composite membrane for removal of toluene from water. Desalination.2012, 287(15):281-289.
    [19]Roualdes S, Durand J, Field R W. Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science.2003,211(1):113-126.
    [20]Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science.2007,287(2):162-179.
    [21]Boddeker K W, Bengtson G. Pervaporation of low volatility aromatics from water. Journal of Membrane Science.1990,53(1-2):143-158.
    [22]Miyata T, Higuchi J I, Okuno H, et al. Preparation of polydimethylsiloxane/polystyrene interpenetraing polymer network membranes and permeation of aqueous ethanol solutions through the membranes by pervaporation. Journal of Applied Polymer Science.1996,61(8):1315-1324.
    [23]Liang L, Ruckenstein E. Pervaporation of ethanol-water mixtures through polydimethylsiloxane-polystyrene interpenetrating polymernetwork supported membranes. Journal of Membrane Science.1996,114(2):227-234.
    [24]Roizard D, Clement R, Lochon P, et al. Synthesis, charcterization and transport properties of a new siloxane-phosphazene copolymer. Extration of n-butanol from water by pervaporation. Journal of Membrane Science.1996,113(1):151-160.
    [25]Wang X P, Shen Z Q, Zhang F Y, et al. Preferential separation of ethanol from aqueous solution through hydrophilic polymer membranes. Journal of Applied Polymer Science.1999,73(7):1145-1151.
    [26]Hao X G, Mark P, Feng X S. Use of pervaporation for the separation of phenol from dilute aqueous solutions. Journal of Membrane Science.2009,335(1-2):96-102.
    [27]Swatilekha D, Banthia A K, Basudam A. Porous polyurethane urea membranes for pervaporation separation of phenol and chlorophenols from water. Chemical Engineering Journal.2008,138(1-3):215-223.
    [28]Patrick C J, Kevin M D. Separation of pyridine/water mixture by pervaporation. SeparationScience and Technology.1995,30(10):2145-2158.
    [29]Garba O, Yahaya. Separation of volatile organic compounds (BTEX) from aqueous solutions by a composite organophilic hollow fiber membrane-based pervaporation process. Journal of Membrane Science.2008,319 (1-2):82-90.
    [30]Ujjal K G, Narayan C P, Basudam A. Separation of furfural from aqueous solution by pervaporation using HTPB-based hydrophobic polyurethaneurea membranes. Desalination.2007,208 (1-3):146-158.
    [31]Krystyna K, Michad B, Dorota P. Removal of volatile compounds from the wastewaters by use of pervaporation. Desalination.2008,223 (1-3):344-348.
    [32]Bai J, Fouda A E, Matsuura T, et al. A study on the preparation and performance of polydimethysiloxane-coated polyetherimide membranes in pervapora-tion. Journal of Applied Polymer Science.1993,48 (6):999-1008.
    [33]Deng S, Sourirajan S, Matsuura T. A study of polydimethyl-siloxane/arom-atic polyamide laminated membranes for separation of acetic acid/water mixtures by pervaporation process. SeparationScience and Technology.1994,29 (9):1209-1216.
    [34]Netke S A, Sawant S B, Joshi J B, et al. Sorption and permeation of acetic acid through zeolite filled membrane. Journal of Membrane Science.1995,107 (1-2):23-33.
    [35]韩煦,刘家祺,王洪军等.渗透蒸发脱除水溶液中挥发性有机物.化学工业与工程.2003,20(1):1-5.
    [36]Stephanie R, Jean D, Robert W F. Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science.2003,211(1):113-126.
    [37]田秀枝,朱宝库,徐又一等.渗透蒸发脱除水中挥发性有机物的研究进展,环境污染与防治.2004,26(2):129-132.
    [38]姜忠义,徐海全,刘家祺等.水中VOCs的渗透蒸发分离技术研究进展,化工环保.2001,21(4):209-212.
    [39]Tadahiro O, Yoshihisa K, Takashi M, et al. Pervaporation characteristics of cross-linked poly (dimethylsiloxane) membranes for removal of various volatile organic compounds from water. Journal of Membrane Science.2005,260(1-2):156-163.
    [40]Nagase Y, Tomonori A, Cheol M Y. Syntheses of siloxane-grafted aromatic polymers and the application to pervaporation membrane. Reactive & Functional Polymers. 2007,67(11):1252-1263.
    [41]杨晓英,金蔓蓉,吴茵等.水中微量有机物氯化物脱除复合膜的研制.环境科学学报.2001,21(1):44-48.
    [42]Swatilekha D, Banthia A K, Basudam A. Removal of chlorinated volatile organic contaminants from water by pervaporation using a novel polyurethane urea-poly (methyl methacrylate) interpenetrating network membrane. Chemical Engineering Science.2006,61 (19):6454-6467.
    [43]Tadashi U, Hiroshi Y, Takashi M. Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of poly(alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology. Journal of Membrane Science.2001,187(1-2):255-269.
    [44]蒋晓钧,施艳荞,陈观文.溴代聚苯醚膜对有机液/水混合体系的渗透汽化分离.膜科学与技术.2000,20(5):16-20.
    [45]蒋晓钧,曾一鸣,陈观文.聚4-甲基戊烯-1对有机液/水混合体系的渗透汽化分离.膜科学与技术.2001,21(5):58-61.
    [46]Jou J D, Yoshida W, Cohen Y. A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds. Journal of Membrane Science. 1999,162(1-2):269-284.
    [47]Jian K, Pintauro E N. Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. Journal of Membrane Science.1997,135(1):41-53.
    [48]Mohamed K, Takeshi M. Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation. Desalination. 2002,148(1-3):31-37.
    [49]Yamaguchi T, Tominaga A, Kimura S. Chlorinated organicsremoval from water by plasma-graft filling polymerizedmembranes. Aiche Journal 1996,42 (3):892-895.
    [50]Yamaguchi T, Suzuki T, Kai T, et al. Hollow-fiber-type pore-filling membranes made by plasma-graft polymerization for theremoval of chlorinated organics from water. Journal of Membrane Science.2001,194(2):217-228.
    [51]Mishin S, Nakagaw T. Sorption and diffusion of volatileorganic compounds in fluoroalkyl methacrylate-grafted PDMS membrane. Journal of Applied Polymer Science.2000,75(6):773-783.
    [52]Bennett M, Brisdon B J, England R, et al. Performance of PDMS and organofunctionalised PDMS membranes for thepervaporative recovery of organics from aqueous streams. Journal of Membrane Science.1997,137(1-2):63-88.
    [53]Bennet M, Brisdon B J, England R, Field R W. Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science.1997,137(1-2):63-88.
    [54]Jou J D, Yoshida W, Cohen Y. A novel ceramic-supported polymer membrane for pervaporation of dilute volatile organic compounds. Journal of Membrane Science. 1999,162(1-2):269-284.
    [55]苗所贵,王保国.充填型复合膜脱除水中微量有机氯化物的研究.高校化学工程学报.2005,19(3):297-302.
    [56]蒋晓钧,施艳荞,陈观文.溴代聚苯醚膜对有机液/水混合体系的渗透汽化分离.膜科学与技术.2000,20(5):16-20.
    [57]Dutta B K, Sikdar S K. Separation of volatile organiccompounds from aqueous solutions by pervaporation using S-B-Sblock copolymer membrane. Environmental Scien Technology 1999,33(10):1709-1716.
    [58]Hoshi M, Saitoh T, Yoshioka C, et al. Pervaporationseparation of 1,1,2-thrichloroethane-water mixture throughcrosslinked acrylate copolymer composite membranes. Journal of Applied Polymer Science.1999.74(4):983-994.
    [59]Hoshi M, leshige M, Saitoh T, et al. Separation of aqueous phenol through polyurethane membranes by pervaporation.Ⅲ.Effect of the methylene group length in poly (alkylene glycols). Journal of Applied Polymer Science.2000,76(5):654-664.
    [60]Tadashi U, Hiroshi Y, Takashi M. Removal of dilute volatile organic compounds in water through graft copolymer membranes consisting of polyalkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membrane morphology. Journal of Membrane Science.2001,187(1-2):255-269.
    [61]吴爱梅,平郑骅,龙英才.用渗透蒸发法回收废水中的酯.复旦学报:自然科学版.1997,36(4):428-432.
    [62]Liu Q L, Xiao J. Silicalite-filled poly(siloxane imide)membranes for removal of VOCs from water by pervaporation. Journal of Membrane Science.2004,230(1-2):121-129.
    [63]Goethaert M, Dotremout C, Kuijpers M, et al. Coupling phenomena in the removal of chlorinated hydrocarbons by means of pervaporation. Journal of Membrane Science. 1993,78(1-2):135-145.
    [64]姜忠义,李多,贾琦鹏.填充型渗透汽化膜的研究进展.膜科学与技术.2002,22(3):43-47.
    [65]Peng F B, Jiang Z Y, Hu C L, et al. Removing benzene from aqueous solution using CM S-filled PDMS pervaporation membranes. Separation and Purification Technology. 2006,48(3):229-234.
    [66]姜忠义,徐海全,刘家祺.填充碳分子筛的PDMS膜渗透汽化分离性能研究.膜科学与技术.2001,21(2):29-32.
    [67]Mohamed K, Takeshi M. Surface modification of membranes for the separation of volatile organic compounds from water by pervaporation. Desalination. 2002,148(1-3):31-37.
    [68]Uragami T, Terumi M, Miyata T. Effects of morphology of multicomponent polymer membranes containing calixarene on permselective removal of benzene from a dilute aqueous solution of benzene. Macromolecules.2003,36(6):2041-2048.
    [69]Uragami T, Yamada H, Miyata T. Removal of dilute volatileorganic compounds in water through graft copolymermembranes consisting of poly (alkylmethacrylate) and poly(dimethylsiloxane) by pervaporation and their membranemorphology. Journal of Membrane Science.2001,187(12):255-269.
    [70]徐国强,余江,王康等.填充法改性PDMS膜及其对乙酸/水的渗透汽化分离性能.过程工程学报.2007,7(1):44-48.
    [71]Chandak M V, Lln Y S, Ji W, et al.Sorption and diffusion of VOCs in DAY zeolite and silicalite-filled PDMS membranes. Journal of Membrane Science. 1997,133(2):231-243.
    [72]Nguyen Q T, Langevin D, Bahadori B, et al. Sorption and diffusion of volatile organic components in a membrane made by deposition of tetramethyl disiloxane in cold remote-plasma. Journal of Membrane Science.2007,299(1-2):73-82.
    [73]Dotremont C, Brabants B, Geeroms K, et al. Vandecasteele Sorption and diffusion of chlorinated hydrocarbons in silicalite-filled PDMS membranes. Journal of Membrane Science.1995,104(1-2):109-117.
    [74]Dorota P, Krystyna K. Preparation and applying the membranes with carbon black to pervaporation of toluene from the diluted aqueous solutions. Separation and Purification Technology.2007,57(3):507-512.
    [75]Polyakov A M, Starannikova L E, Yampolskii Y P. Amorphous Teflons AF as organophilic pervaporation materials Transport of individual components. Journal of Membrane Science.2003,216(1-2):241-256.
    [76]Liu Q L, Xiao Jian. Silicalite-filled poly (siloxane imide) membranes for removal of VOCs from water by pervaporation. Journal of Membrane Science. 2004,230(1-2):121-129.
    [77]Jian K, Pintauro P N. Integral asymmetric poly (vinylidene fluoride) (PVDF) pervaporation membranes. Journal of Membrane Science.1993,85(3):301-309.
    [78]Jian K, Pintauro P N, Ponangi R. Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) membranes. Journal of Membrane Science. 1996,117(1-2):117-133.
    [79]Jian K, Pintauro E N. Asymmetric PVDF hollow-fiber membranes for organic/water pervaporation separations. Journal of Membrane Science.1997,135(1):41-53.
    [80]Boddeker K W, Bengtson G. Pervaporation of low volatility aromatics from water. Journal of Membrane Science.1990,53(1-2):143-158.
    [81]王信玮,陈观文.有机液体优先透过渗透汽化膜及其过程.高分子通报.1995,3(9):163-169.
    [82]Ahn H, Jeong D, Jeong H K, et al. Pervaporation characteristics of trichlorinated organic compounds through Silicalite-1 zeolite membrane. Desalination. 2009,245(1-3):754-762.
    [83]Veronica G, Eva P, Esa M, et al. Pervaporation of dichloromethane from multicomponent aqueous systems containing n-butanol and sodium chloride. Journal of Membrane Science.2009,326(1):92-102
    [84]Ji W C, Subhas K S, Hwang S T. Modeling of Multicomponent Pervaporation forRemoval of Volatile Organic Compounds from Water. Journal of Membrane Science.1994,93(1):1-19.
    [85]Cocchini U, Nicolella C, Livingston A G. Countercurrent transport of organic and water molecules through thin film composite membranes in aqueous-aqueous extractive membrane processes. Part Ⅱ. Theoretical analysis. Chemical Engineering Science.2002,57(21):4461-4473.
    [86]Lipnizki F, Hausmanns S, Field R W. Influence of impermeable components on the permeation of aqueous 1-propanol mixtures in hydrophobic pervaporation. Journal of Membrane Science.2004,228(2):129-138.
    [87]Nguyen T Q, Nobe K. Extraction of organic contaminants in aqueous solutions by pervaporation. Journal of Membrane Science.1987,30(1):11-22.
    [88]Field R W. Organophilic Pervaporation:an Engineering Science Analysis of Component Transport and the Classification of Behavior with Reference to the Effect of Permeate Pressure. Chemical Engineering Science.2000,55(8):1425-1445.
    [89]Bane L M, Alvarez F R, Giroux E L. Reduction of concentration polarization in pervaporation using vibrating membrane module. Journal of Membrane Science. 1999,153(2):233-241.
    [90]Schnabel S, Moulin P, Nguyen Q T, et al. Removal of volatileorganic components (VOCs) from water by pervaporation:separation improvement by Dean vortices. Journal of Membrane Science.1998,142(1):129-141.
    [91]王春芬,虞斌,涂善东.聚四氟乙烯及其改性复合材料在换热器中应用.石油化工设备.2005,34(3):4145.
    [92]Jian K, Pintauro P N, Ponangi R. Separation of dilute organic/water mixtures with asymmetric poly(vinylidene fluoride) membranes. Journal of Membrane Science. 1996,117(1-2):117-133.
    [93]Tadahiro O, Yoshihisa K, Takashi M, et al. Pervaporation characteristics of cross-linked poly(dimethylsiloxane) membranes for removal of various volatile organic compounds from water. Journal of Membrane Science.2005,260(1-2):156-163.
    [94]孙德,刘骁,王光芳等.纳米白炭黑填充硅橡胶复合膜的制备与渗透汽化分离性能.塑料.2010,39(1):35-37.
    [95]杨会文,胡熙恩.分光光度法测定萃取残液中的微量氯仿.石油化工.2003,32(1):60-61.
    [96]Xia Z, Lu J, Tan T T. et, al. Mixed matrix membranes with HF acid etched ZSM-5 for ethanol/water separation:Preparation and pervaporation performance Original Research Article. Applied Surface Science.2012,259(15):547-556.
    [97]Shi G M, Tai S C. Thin film composite membranes on ceramic for pervaporation dehydration of isopropanol Original Research Article. Journal of Membrane Science. 2013,206(1-2):87-117.
    [98]Khulbe K C, Matsuura T. Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy; a review. Polymer.2000,41(5):1917-1935.
    [99]Khulbe K C, Matsuura T. Preparation and application of dense poly (phenylene oxide) membranes in pervaporation. Journal of Colloid and Interface Science. 2004,278(2):410-422.
    [100]Li J, Zhang G L, Ji S L, et al. Layer-by-layer assembled nanohybrid multilayer membranes for pervaporation dehydration of acetone-water mixtures. Journal of Membrane Science.2012,415-416(1):745-757.
    [101]Chao W C, Huang S H, An Q F, et al. Novel interfacially-polymerized polyamide thin-film composite membranes:Studies on characterization, pervaporation, and positron annihilation spectroscopy. Polymer.2011,52(11):2414-2421.
    [102]王瑾,张敏,卢至悦等PDMS/PTFE沸石填充复合膜及渗透汽化性能研究.贵州化 工.2009,34(3):4-6.
    [103]Li B, Xu D, Jiang Z Y, et al. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline. Journal of Membrane Science. 2008,322(1-3):293-301.
    [104]Khayet M, Villaluenga J P G., Godino M P, et al. Preparation and application of dense poly(phenylene oxide) membranes in pervaporation. Journal of Colloid and Interface 2004,278(2):410-422.
    [105]Shunsuke T, Yuan C, Sadao A, et al. Pervaporation characteristics of pore-filling PDMS/PMHS membranes for recovery of ethylacetate from aqueous solution. Journal of Membrane Science.2010,348(1-2):383-388.
    [106]Kuila S B, Ray S K. Separation of isopropyl alcohol-water mixtures by pervaporation using copolymer membrane:Analysis of sorption and permeation. Chemical Engineering Research and Design.2013,91(2):377-388.
    [107]Shi G M, Chen H M, Jean Y C, et al. Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer.2013,54(24):774-783.
    [108]Sajjan A M, Jeevan K B K, Kittur A A, et al. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science. 2013,77-88(1):425-426.
    [109]Chen J H, Zheng J Z, Liu Q L, et al. Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11). Journal of Membrane Science.2013,429(15):206-213.
    [110]Nora J, Tom D, Patricia L, et al Sorption and diffusivity study of acetic acid and water in polymeric membranes. Chemical Engineering Science.2012,78(20):14-20.
    [111]Hercules R C, Santosh K. Choudhari.1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes. Journal of Membrane Science.2013,429(15):214-224.
    [112]Ashok M. Sajjan B K. Jeevan K, et al. Development of novel grafted hybrid PVA membranes using glycidyltrimethylammonium chloride for pervaporation separation of water-isopropanol mixtures. Journal of Industrial and Engineering Chemistry.2013, 19(2):427-437.
    [113]Roman P, Katerina S, Petr U. The influence of water on butanol isomers pervaporation transport through polyethylene membrane. Separation and Purification Technology. 2013,107(2):85-90.
    [114]Han G L, Zhang Q G, Liu Q L. Separation of methanol/methyl tert-butyl ether using sulfonated polyarylethersulfone with cardo (SPES-C) membranes. Journal of Membrane Science.2013,430(1):180-187.
    [115]Yan X M, He G H, Wu X M, et al. Ion and water transport in functionalized PEEK membranes. Journal of Membrane Science.2013,429(1):13-22.
    [116]Wang R, Shan L L, Zhang G J, et al. Multiple sprayed composite membranes with high flux for alcohol permselective permeation. Journal of Membrane Science. 2013,432(1):33-41.
    [117]Xu B, Tian F X. W C Y, et al. Chlorination of chlortoluron:Kinetics, pathways and chloroform formation. Chemosphere,2011,83(7):909-916.
    [118]HAN X, LIU J Q, WANG H J. Pervaperation for Removing the Volatile Organic Compounds from Water. Chemical Industry and Engineering.2003,20(1):1-5.
    [119]Stephanie R, Jean D, Robert W F. Comparative performance of various plasma polysiloxane films for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science.2003,211(1):113-126.
    [120]Bennett M, Brisdon B J, England R, et al. Performance of PDMS and organofunctionalised PDMS membranes for the pervaporative recovery of organics from aqueous streams. Journal of Membrane Science.1997,137(1-2):63-78.
    [121]Tadahiro O, Yoshihisa K, Takashi M, et al. Pervaporation characteristics of cross-linked poly (dimethylsiloxane) membranes for removal of various volatile organic compounds from water. Journal of Membrane Science.2005,260(1-2):156-163.
    [122]Park Y I, Yeom C K, Kim B S, et al. Quantitative evaluation of concentration polarization in the permeation of VOCs/water mixtures through PDMS membrane using model equation. Desalination.2008,233(1-3):303-309.
    [123]Veronica G, Eva P, Esa M, et al. Pervaporation of dichloromethane from multicomponent aqueous systems containing n-butanol and sodium chloride. Journal of Membrane Science.2009,326(1):92-102.
    [124]Yang T H, Chang K S, Tung K. Water diflusivity suppression and ethanol-over-water diffusion selectivity enhancement for ethanol/water mixtures in polydimethylsiloxane-zeolite membranes. Journal of Membrane Science.2012,415-416(1):635-643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700