用户名: 密码: 验证码:
炮制火候数学模型的建立及对槐米的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加热是中药炮制的最重要手段之一,炮制火候的大小对中药的药性及其药效变化程度具有决定性的影响。判断炮制火候的传统方法具有明显的主观性和随意性,不能客观化、参数化和标准化,难以保证火候的一致性,即难以保证炮制品质量的稳定。为了探讨不同炮制火候对中药化学成分的影响,同时对炮制火候进行数学表征以便对其进行参数化、客观化、标准化,最终保证在科学可控的炮制火候条件下,统一中药炮制的加热程度,保证其工艺可控和质量稳定,确保中医临床用药的安全性和有效性。本文建立了表征炮制火候的数学模型,并以槐米为模型药物进行了实验研究,为探讨炮制火候的科学内涵及炮制机理提供了一种新思路和新方法。主要工作如下:
     1、炮制火候表征数学模型的建立。根据化学动力学原理,建立了单成分和多成分的中药炮制火候的数学模型。
     2、不同炮制火候对槐米质量的影响研究。参照中国药典及有关文献的方法,对槐米生品及49种不同火候炮制品的水分、总灰分、酸不溶灰分、浸出物、总黄酮、鞣酸、芦丁及槲皮素等成分的含量进行了测定,发现经不同火候炮制后,槐米主要成分的含量均发生了一定的变化。其中水分含量随火候的增加而显著降低,总灰分和酸不溶灰分的含量均随火候的增加而增加,而浸出物、总黄酮、鞣酸、芦丁及槲皮素等成分的含量先随火候的增加而增加,在不同的火候达到最大后再随火候的增加而降低,这些成分含量的变化趋势相似。
     3、槐米炮制火候数学表征模型的研究。根据所建立的中药炮制火候的数学模型,对槐米中的芦丁、槲皮素、总黄酮和鞣酸等单成分以及以芦丁和槲皮素的总量为多成分模型进行了初步研究,通过计算验证了这些数学表征方程的正确性。
     4、不同火候槐米炮制品指纹图谱的研究。为进一步考察不同炮制火候对槐米质量的影响,本研究建立了有15个共有峰的槐米水煎液的HPLC指纹图谱,色谱柱UltimateXB-C18色谱柱(4.6mm×250mm,0.45μm);检测波长:256nm;柱温:35℃;流动相:甲醇—0.4%磷酸水溶液作梯度洗脱;流速:1.0mL/min;进样量:20μL。并对不同火候炮制品的指纹图谱分别进行了相似度和聚类分析,研究发现在同一系列火候的炮制品中,火候越大,与生品的相似度就越小。火候接近的炮制品之间的相似度也比较大,火候最小的炮制品H1-1与生品的相似度最大,表明小火候对其化学成分变化影响不大:而火候最大的炮制品H7-7与生品的相似度最小,表明经最大火候炒炭后,其化学成分发生了较大的变化。综合不同火候槐米炮制品共有峰的相对保留时间和相对峰面积的聚类分析结果可以看出,槐米经不同火候加热炮制后,各炮制品之间的相对保留时间的差别不是很大,但相对峰面积的差别相对较大,50个样品基本可分为2大类,火候较大的H7-6和H7-7为第1类,其余为第2类。在第2类中,H3-7、H7-5和H6-7相对比较接近,火候较小的H1-1、H2-1及H1-2等炮制品与生品比较接近,另外H6-6、H3-6、H2-7及H5-7等火候相对次高的炮制品,也与生品的共有峰峰面积比较接近。提示当火候达到一定的时候,这些火候相对次高的炮制品与生品比较,共有峰成分相对峰面积的变化由大到小,也说明这些成分的含量增加或降低到一定量时,可随炮制火候的增加而降低或增加趋于生品的含量水平。
     5、不同火候对槐米化学成分提取动力学数学模型参数的影响研究。选择生槐米、H4-4(中等火候品)以及H7-7(最大火候品)等3种槐米炮制品进行动态提取,分别探讨了炮制火候对槐米主要有效成分芦丁及槲皮素的提取动力学数学模型参数的影响,发现不同的炮制火候对中药的不同化学成分的提取工艺参数有较大且不同的影响。本研究为探讨同一中药不同火候炮制品中的化学成分提取工艺参数,提供了一定的实验基础和科学依据。
Heating is one of the most important means of TCM processing, the degree of the heating processing has a decisive influence on the medicinal properties and the effect variation scope of traditional medicine. The traditional method of judging heating degree of has been so subjective and arbitrary obviously, not objective, parameterized and standardized, that it's difficult to ensure the heating degree uniformity, which means it's difficult to ensure the stable quality of processed products. In order to study the effects of different heating degree on the chemical composition of traditional Chinese medicine, mathematics representation, meanwhile, is introduced to stand for the heating degree, so to carry out parameterization, objectification and standardization on heating degree, finally to ensure uniform heating degree under the condition of scientific controllable heating, process controllable and quality stable, further to ensure the safety and efficacy of TCM clinical application. The mathematical model Characterizing the processing temperature was established and sophora japonica acted as the model drug experiments, provided a new thinking and new method to study the scientific connotation of heating degree and processing mechanism.The main researches were as the following:
     1. Establishment of the mathematical model of the processing heating degree. Established the mathematical model of the processing heating degree for single component and multi-component.according to the principle of chemical dynamics.
     2. Effect of heating degree on the quality of the sophora flower bud processed by different heating degree:Following Chinese pharmacopoeia and the relevant literature, the chemical components of the crude and the49kinds of heat-processed product of the sophora flower, which included water, total ash, acid insoluble ash, extract, flavonoids, tannin, rutin and quercetin. were determined. The author found the content of all these chemical components in the sophora flower bud changed after processing. The water content significantly decreased with the increase of heating degree, while the total ash and the acid insoluble ash content increased with that, but the rest chemical components, having the same variation tendency:at first, it climbed up with the increase of heating degree and then, it declined with that when the heating degree went to its climax.
     3. Study on the mathematical model of the sophora flower bud. The established mathematical model of the processing heating degree was applied to pilot research of the single component such as rutin, quercetin, flavonoids and tannin, and the multi-component (the total of rutin and quercetin) extracted from the sophora flower bud, and the reliability of these mathematical model were proved by calculation.
     4. Study on the HPLC fingerprint of the sophora flower bud processed by the different heating degree:In order to study the influence of different heating degree on the quality of the sophora flower bud further, this paper set up the HPLC fingerprint with15common peaks of [he sophora flower bud water decoction, Chromatographic conditions included Ultimate XB-C18column(4.6mm×250mm,0.45μn), the measurement wavelength was256μm, the column temperature was35℃, the mobile phase consisting of a mixture of methanol-0.4%phosphoric acid by gradient elution. The flow rate was1.0mL/min, and the sample size was20μL. And the similarity and the clustering analysis were conducted in regard to the fingerprints of the different products processed by the different heating degree. The author found, in the same series of processed product, the heavier the heating degree, the less similarity between the processed products and the crude one. The similarity between the processed products under close heating degree was larger than not. No.H1-1, the processed product under the minimum heating degree, had the maximum similarity with the crude, which indicated that the light healing degree a fleets its chemical composition slightly. On the contrary, the No. H7-7, the processed product under maximum healing degree, had the minimum similarity with the crude, which indicated that its chemical composition changed visibly after carbonizing by stir-frying with the maximum heating degree. It can be seen from the cluster analysis results combining the relative retention time and the relative peak area of the common peaks of the sophora flower bud processed by the different heating degree, that the difference of the relative retention time between the processed products by different heating degree was minor, but the difference of the relative peak area was relatively major. The50kinds of processed products can be divided into two classes, the processed products by heavier heating degree, such as No. H7-6and117-7, belong to the first kind, and the rest fit into the second kind. In the second kind, the processed products like No.113-7, H7-5and H6-7were close relatively. And the processed products by heavier heating degree, such as No. H6-6, H3-6, H2-7and H5-7, were close to the crude in the relative peak area of the common peak. It indicated that the changes of the relative peak area of the common peak of the processed products by heavier heating degree were listed from significant to unobvious within a certain range. And it demonstrated that the content of these chemical components in processed products would tend to the crude one when increased or reduced to a certain quantity during heating process.
     5. Study on the effect of kinetic model of the components extracted from the processed products of the sophora flower bud by different heating degree. Three kinds of processed products, including the crude, the medium heat product (H4-4) and the maximum heat product(H7-7), were extracted dynamically. The effects of kinetic model of the rutin and the quercetin extracted from the3kinds of processed products were studied. The author found it was significant that the parameters of the kinetic model of the different components extracted from the processed products by different heating degree was varied. This research can provide a certain of experimental and scientific basis to explore the parameters of extracting process of the same Chinese medicine processed by different heating degree.
引文
[1]丁安伟主编.中药炮制学[M].北京:高等教育出版社,2007:99
    [2]龚千锋主编.中药炮制学(第3版)[M].北京:中国中医药出版社,2012:13,183.
    [3]周林,任玉珍,李飞,等.不同炮制方法对附子生物碱类成分的影响[J].安徽中医学院学报,2012,31(5):71-74.
    [4]区炳雄,龚又明,林华,等.川乌微波炮制工艺优选[J].中国实验方剂学杂志,2012,18(1):39-42
    [5]Liu Y, Tan P, Li F, etc. Study on the aconitine-type alkaloids of Radix Aconiti Lateralis and its processed products using HPLC-ESI-MS(n) [J]. Drug Test Anal 2012 Mar 22
    [6]韩志强,那生桑.烘制时间对蒙药草乌总生物碱和酯型生物碱含量的影响[J].中国中医药科技,2011,18(6):506-507.
    [7]陆浩伟,郑琴,郝伟伟,等.乌头类双酯型生物碱水解转化规律研究[C].2010年全国中药学术研讨会论文集,中国中西医结合学会,2010年8月1日,武汉:96-100.
    [8]王昌利,雷建林,张军武,等.炮制条件对附子总生物碱及酯型生物碱含量影响的动态研究[J].陕西中医学院学报,2009,32(2):61-63.
    [9]张化为,冯改利,王薇,等.不同煎煮时间对附子总生物碱的影响及其指纹图谱研究[J].陕西中医学院学报,2010,33(4):100-101.
    [10]舒晓燕,赵详升,侯大斌,等.两种炮制方法对附子品质的影响[J].湖北农业科学,2009,48(3):704-706.
    [11]林华,方莉,邓广海,等.川乌高温烘制工艺优选[J].中国实验方剂学杂志,2012,18(15):51-54.
    [12]余葱葱,郭力,彭成.不同煎煮时间的附子毒效组分与毒性成分质量控制研究[C].中华中医药学会2008临床中药学学术研讨会论文集,2008年5月,北京:229-234.
    [13]占永良.炮制对马钱子生物碱含量及毒性的影响分析[J].浙江中医杂志,2009,44(10):760.
    [14]夏荃,李灿明.HPLC测定黄柏生品与不同炮制品中3种生物碱的含量[J].中成药2008,30(7):1018-1021.
    [15]陈锦容HPLC法测定不同炮制工艺莲子心中生物碱的含量[J].海峡药学,2009,21(9):33-36
    [16]薛智民,张立伟.炮制方法对连翘主要化学成分连翘酯苷的影响[J].化学研究与应用,2011,23(5):606-609
    [17]杜伟锋,梁小娟,吴晶宇,等.栀子炮制前后绿原酸、栀子苷和西红花苷-Ⅰ的比较[J].中草药,2011,42(10):2008-2010.
    [18]李更生,刘明,王慧森,等.地黄药材炮制过程中环烯醚萜苷类成分动态变化的研究[J].中国中医药科技,2008,15(6):440-442.
    [19]张学兰,徐苹,李彬.炮制对栀子中色素类成分含量的影响[J].中国现代中药,2009,11(7):38-41.
    [20]唐超,张学兰,徐鑫,等.荷叶炮制金丝桃苷含量变化研究.山东中医药大学学报,2011,35(1):78-79.
    [21]田国芳,张村,李丽,等.大黄5种炮制品中芦荟大黄素-3-CH2-O-β-D-葡萄糖苷和大黄素-8-O-β-D-葡萄糖苷变化规律[J].中国中药杂志,2010,35(18):2437-2439.
    [22]赵冬霞,刘志庆,李钦.杜仲几种不同炮制方法的比较[J].河南大学学报(医学版),2011,30(4):245-246.
    [23]杨海玲,覃葆,宋永龙,等.不同炮制方法对栀子中栀子苷含量的影响安徽农业科学,2011,39(32):19755-19757.
    [24]李银科,蔡正洪,韦晓华,等.微波技术在何首乌药材加工中的应用研究[J].西南民族大学学报(自然科学版),2009,35(1):101-103.
    [25]华永丽,魏彦明,郭延生,等.气相色谱-质谱法对当归及其炮制品挥发油的指纹图谱和潜在标志物研究[J].分析化学,2012,40(4):602-607.
    [26]李娟,王智民,高慧敏.炮制对生姜及其不同炮制品中挥发性成分的影响[J].中国实验方剂学杂志,2012,18(19):77-81.
    [27]石晓,黄艳萍.GC-MS分析白术炮制前后化学成分的变化[J].食品与药品,2011.13(1):36-38.
    [28]蔡梅超,周洪雷,孙建,等.川楝子炮制前后挥发油化学成分的气相色谱-质谱联用分析[J].中国药业,2010,19(17):11-12.
    [29]张欣,王爱武,宿廷敏,等.莱菔子生制品挥发性成分GC-MS分析[J].中成药,2008,30(1):36-38.
    [30]石继连,蒋以号,龚千锋.枳实3种不同炮制品挥发油的GC-MS分析[J].北京中医药大学学报,2010,33(10):676-680.
    [31]曾祥丽,丁安伟,单鸣秋.侧柏叶炮制前后鞣质的含量测定[J].中国中医药信息杂志,2008,15(4):45-46.
    [32]李景丽,袁武会,于坚,等.乌梅制炭前后有机酸和鞣质的含量变化[J].时珍国医国药,2009,20(1):63-64.
    [33]郭东艳,师廷琼,王幸,等.大黄不同炮制品中鞣质含量的测定[J].现代中医药,2012,32(4):76-78.
    [34]李会芳,孙琴,王伽伯,等.大黄炮制后化学组分转移规律研究[J].山西中医学院学报,2011,12(6):13-17.
    [35]马长振,陈佩东,丁安伟,等.白茅根炮制前后鞣质含量的比较[C].中华中医药 学会中药炮制分会2009年学术研讨会论文集,2009年11月,武汉:347-350.
    [36]张学兰,徐苹,刘彬.炮制对栀子中色素类成分和鞣质含量的影响[C].中华中医药学会中药炮制分会2008年学术研讨会论文集,2008年10月1日,江西樟树:376-380.
    [37]戴衍朋,周倩,石典花,等.炮制对地榆中鞣质和没食子酸的影响[C].中华中医药学会中药炮制分会2009年学术研讨会论文集,2009年11月1日,武汉:457-459.
    [38]张虹,丁安伟,张丽.正交法优选丹皮炭炮制工艺[J].中国药业,2008,17(3):25-26.
    [39]焦坤,张丽,陈佩东,等.正交优选法筛选茅根炭炮制的最佳工艺[J].中国中医药信息杂志,2008,15(5):60-61.
    [40]高文秀,王景峰,钟方丽.炮制对山楂中有机酸含量的影响[J].吉林化工学院学报,2012,29(1):35-37.
    [41]王光宁,杨银凤,陈秋兰.木瓜不同炮制品中水溶性有机酸的含量比较[J].中国现代药物应用2012,06(22):5-6.
    [42]汤华清,肖锦,王耀登.清半夏的炮制工艺研究[J].湖北中医药大学学报,2012,14(5):39-41.
    [43]宋小军,丛晓东,马月光,等.不同炮制温度对薏苡仁油含量的影响[J].中国现代医生,2011.49(36):83-83.
    [44]郜新莲,刘艳芳,张振凌.中药菟丝子炮制前后脂肪油含量的比较[J].时珍国医国药,2012,23(3):694.
    [45]赵敏,翟延君,翟羽.水红花子炮制前后脂肪油的GC-MS联用分析[J].中药材,2008,31(5):648-649.
    [46]张本山,刘艳芳,张振凌,等.不同炮制方法菟丝子中脂肪油含量的比较[C].中华中医药学会中药化学分会第五届学术年会论文集,2010年8月5日,长春:307-309.
    [47]卢淑君,杨燕云,许亮,等.气相色谱法测定牛蒡子脂肪油中3种脂肪酸含量[J].中国实验方剂学杂志,2011,17(20):56-60.
    [48]杨春,王道平,杨倩.薏苡仁不同炮制品中脂肪油及亚油酸含量比较[J].贵阳中医学院学报,2010,32(4):82-84.
    [49]闫学红,卢建峰.不同制法对蛋黄脂肪油的影响[J].中医临床研究,2010,02(19):26-27
    [50]Li BN, Wu YW, Ouyang J, Sun SQ, Chen SC. Study on the processing of leech by FTIR and 2D-IR correlation spectroscopy[J]. Guang Pu Xue Yu Guang Pu Fen Xi, 2011 Apr;31(4):979-82
    [51]王艳杰,董欣,刘晓波,等.斑蝥炮制前后蛋白质及氨基酸含量测定[J].吉林中医药,2010,30(10):904-905.
    [52]侯林,姬涛,田景振,等.不同炮制方法对全蝎有效成分和活性的影响[J].中草药,2011,42(5):897-899.
    [53]朱卫星.微波炮制穿山甲的工艺初探[J].中国药房,2008,19(9):672-673.
    [54]曹蔚,王萌,权伟,等.不同炮制方法对蛴螬蛋白质氨基酸等含量的影响[J].陕西中医,2010,31(12):1663-1665.
    [55]王厚伟.低温炮制工艺对紫河车水溶性蛋白组成及其纤溶活性的影响[C].第七届全国中医药生物化学与分子生物学学术交流会论文集,2008年7月27日,郑州:52-56.
    [56]Wang G,Hou Z,Peng Y, etc. Adaptive kernel independent component analysis and UV spectrometry applied to characterize the procedure for processing prepared rhubarb roots[J]. Analyst,2011 Nov 7; 136(21):4552-7
    [57]Chang WT, Choi YH, etc. Traditional processing strongly affects metabolite composition by hydrolysis in Rehmannia glutinosa roots[J]. Chem Pharm Bull (Tokyo) 2011;59(5):546-52
    [58]曾林燕,魏征,曹玉娜,等.3个品种黄精炮制前后小分子糖含量变化[J].中国实验方剂学杂志,2012,18(11):69-72
    [59]周萍,田源红,杨玉琴,等.无花果的炮制工艺研究[J].贵州农业科学,2009,37(11):175-177.
    [60]刘振丽,巢志茂,李林福,等HPLC-ELSD测定何首乌炮制过程中单糖和双糖含量的变化[J].中国实验方剂学杂志,2008.14(5):6-8.
    [61]王柏喜,雷黎明.何首乌清蒸工艺的探讨[J].中国医药导报,2008,5(27):23-24.
    [62]罗旭蔚,欧听.不同清蒸工艺对何首乌糖类成分含量的影响[J].中医药导报,2011,17(3):97-98.
    [63]张学兰,侯杰.女贞子炮制过程中2种三萜类成分及水溶性低分子糖含量变化规律研究[C].中华中医药学会中药炮制分会2011年学术年会论文集,2011年12月1日,贵阳:213-218.
    [64]刘晓茵,纪耀华,章春宇,等.地黄炮制前后粗多糖的提取和总糖含量测定[J].中国医药导报,2009,6(29):57-59.
    [65]邱建国,张汝学,贾正平,等.生地黄不同炮制阶段寡糖和梓醇的变化研究[J].中草药,2011,42(12):2434-2437.
    [66]李卫先.用不同方法炮制的熟地黄还原糖含量的比较[J].中医药导报,2008,14(11):79-80.
    [67]蔡皓,傅紫琴,李俊松,等.山药麸炒前后多糖成分的含量及单糖组成研究[J].南京中医药大学学报(自然科学版),2008,24(2):104-107
    [68]孙静,王昌利,杜鹃.不同炮制方法对天麻饮片中多糖含量影响的实验研究[J].时 珍国医国药,2010,21(11):2773-2774.
    [69]敖茂宏,宋智琴.中药材莱菔子炮制前后多糖含量的比较研究[J].广东农业科学,2010,37(8):174-175.
    [70]谢秀丽,何斌,于海群,等.异株荨麻不同炮制品中总黄酮和多糖的含量分析[J].时珍国医国药,2008,19(9):2249-2252.
    [71]肖岚,杨梓懿,陈曦.不同炮制方法对菟丝子中多糖含量的影响[J].湖南中医药大学学报,2011,31(5):44-46.
    [72]石继连,蒋新平,许娟,等.不同炮制方法对稻芽还原糖含量的影响研究[J].中国药师,2012,15(3):318-320.
    [73]林肖惠,刘鹏,徐为人,等.牛膝不同炮制品中多糖的测定[J].中草药,2008,39(8):1180-1182
    [74]赵素霞,毛靖.生姜及其炮制品多糖含量的测定[J].中医学报,2011,26(12):1475-1476.
    [75]贺春兰,贺红星.离子选择性电位法测定不同方法炮制的紫石英中氟含量[J].中国民族民间医药,2011,20(18):45.
    [76]袁珂,王麟,孙素琴,等.三种浙产特色药材炮制前后微量元素与重金属的含量研究[J].光谱学与光谱分析,2010,30(5):1400-1403.
    [77]张婉,谢坤,楼彩霞,等.蒙药阿给(冷蒿)炒炭前后无机元素含量及溶出率的变化[J].中国药物与临床,2008,8(11):852-855.
    [78]高婵,李伟东,李俊松,等.自然铜炮制前后微量元素含量变化研究[J].中国中医药信息杂志,2009,16(2):47-48.
    [79]何立巍,李祥,高锦飚,等.中药花蕊石炮制前后宏微量元素分析[J].亚太传统医药,2008,4(12):26-27.
    [80]高金波,吕文海.磁石生制品14种元素含量与溶出量测定分析[C].中华中医药学会中药炮制分会2009年学术研讨会论文集,2009年11月1日,武汉:394-397.
    [81]黄长高,李钢.矿物中药花蕊石组成与热稳定性研究[J].科技视界,2012,(25):24-27.
    [82]徐鹏,许娟,朱丽婷,等.谷芽不同炮制品中α-淀粉酶激活剂的含量比较[J].中国药业,2012,21(12):18-19.
    [83]包永睿,杨欣欣,王帅,等.红外光谱与ICP-MS研究石膏炮制前后物质基础的差异[J].光谱实验室,2012,29(5):3193-3197.
    [84]赵启苗,贾天柱ICP-MS法测定肉豆蔻及其炮制品中无机元素含量[J].甘肃中医学院学报,2012,29(3):32-34.
    [85]周红燕,陈建伟.生、炒决明子中无机元素的分析测定[J].广东微量元素科学,2007,14(2):23-26.
    [86]赵晶,孟宪生,包永睿,等.花蕊石煅制后结构变化与元素溶出量差异研究[J].医药导报,2010,29(5):565-568.
    [87]王国庆,魏丽芳,董春红,等.不同品质怀地黄中金属元素含量的ICP-MS测定及其比较[J].光谱学与光谱分析,2009,29(12):3392-3394.
    [88]李萍,顾兴平,黄涛,等.矿物类药材炮制前后微量元素的变化研究[J].中国药业,2010,19(15):13-14.
    [89]刘丹.中药赭石煅制研究[D].南京中医药大学硕士学位论文:2009
    [90]周灵君,徐春蕾,张丽,等.炉甘石炮制机制研究[J].中国中药杂志,2010,35(12):1556-1559.
    [91]谭朝阳,袁宏佳,刘文龙,等.煅制对紫石英中有害元素铅、镉、铜、砷、汞影响的研究[J].湖南中医药大学学报,2011,31(5):37-40.
    [92]谭晓梅,王新雨,吴艳萍,等.牡蛎明煅工艺过程中钙及微量元素变化的研究[C].中药中微量元素与人体健康学术交流研讨会论文集,2009年6月13日,北京:41-43.
    [93]Liu S,Wu D,Lin R, etc. X-ray diffraction Fourier fingerprint of mineral Chinese medicine Chloriti Lapis[J]. Zhonggno Zhang Yao Za Zhi 201 1 Sep;36( 18):2498-502.
    [94]Liu Z, Liu Y, Wang C, etc. Comparative analyses of chromatographic fingerprints of the roots of Polygonum multiflorum Thunb. and their processed products using RRLC/DAD/ESI-MS(n) [J]. Planla Med 2011 Jun l4;[Epub ahead of print]
    [95]Liu Z,Liu Y,Chao Z, etc. !n vitro antioxidant activities of maillard reaction products produced in the steaming process of Polygonum multiflorum root[J]. Nat Prod Commun 2011 Jan;6(l):55-8.
    [96]Cao J,Liang Z,Yang D, etc. End point determination by HPLC chromatographic fingerprint in processing prepared Rehmannia[J].Zhonggno Zhong Yao Za Zhi 2010 Oct;35(19):2556-60.
    [97]Liang Z, Chen H,Yu Z, etc. Comparison of raw and processed Radix Polygoni Multiflori (Heshouvvu) by high performance liquid chromatography and mass spectrometry[J]. Chin Med 2010 Aug 12;5:29.
    [98]国家药典委员会.中华人民共和国药典2010年版一部[S].北京:中国医药科技出版社:333,附录52,附录53,333,附录62.
    [99]李飞,李秋红,李廷利.槐米有效成分含量测定方法研究进展[J].中医药信息,2008,25(4):19-21.
    [100]孟祥颖,郭良,李玉新,等.芦丁的来源、用途及提取纯化方法[J].长春中医学院学报,2003,19(2):61-64.
    [101]Jung SR, Kim YJ, Gwon AR, Lee J, Jo DG, Jeon TJ. Hong JW, Park KM, Park KW. Genistein mediates the anti-adipogenic actions of Sophora japonica L. extracts[J]. J Med Food.2011 Apr; 14(4):360-8.
    [102]Park KW, Lee JE, Park KM. Diets containing Sophora japonica L. prevent weight gain in high-fat diet-induced obese mice[J]. Nutr Res.2009 Nov;29(11):819-24.
    [103]Lo YH, Lin RD, Lin YP, Liu YL, Lee MH. Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes[J]. J Ethnopharmacol.2009 Jul 30;124(3):625-9.
    [104]Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Smith PT, Bartlett J, Shanmugam K, M u nch G, Wu MJ. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds[J]. J Agric Food Chem.2011 Dec 14;59(23):12361-7
    [105]张黎明,尹东剑,赵希,等.超声辅助萃取条件对槐米总黄酮提取效果的影响[J].天津科技大学学报,2009,24(5):18-21,44.
    [106]张黎明,赵希,高文远.红外光谱技术在槐米总黄酮提取过程中的应用[J].林产化学与工业,2007,27(增刊):60-64.
    [107]赵翡翠,张砾岩,田树革,等.微波处理对槐米中黄酮类成份溶出度影响的研究[J].新疆中医药,2004,22(6):17-18.
    [108]闰克玉,高远翔.响应面分析法优化槐米总黄酮的提取工艺[J].食品研究与开发,2009,30(7):21-24.
    [109]Wang R, Lei F. Ding Y, Xing D. Wang L, Du L. Manufacturing process and quality control of total flavonoid from Chrysanthemum morifolium and Sophora japonica and its quality control[J]. Zhongguo Zhong Yao Za Zhi.2010 Nov;35(22):2980-4.
    [110]盛建国,彭小根.槐米中芦丁的提取工艺条件研究[J].食品工程,2009,(1):44-46.
    [111]全先高,刘君,韩秀媛,等.槐米中提取芦丁的实验研究[J].济宁医学院学报,2008,31(4):293.
    [112]翟广玉,寇娴,王桂红,等.连续萃取法从槐米中提取芦丁的新工艺[J].精细化工2003,20(9):498-450.
    [113]龚盛昭,何远伦.从槐米中提取芦丁的研究[J].中国资源综合利用,2003,(1):22-24
    [114]颜军,甘亚,苟小军,等.星点设计-效应面法优化槐米中芦丁提取工艺[J].中药材,2011,34(4):628-631
    [115]李慧,王明明.槐米中芦丁的提取结晶与含量测定[J],陕西中医,2011,32(10):1412
    [116]魏彩霞,谢俊峰,高媛媛,等.槐米中芦丁的超声辅助提取工艺研究[J].中国药业,2010,19(7):36-37.
    [117]马国刚,王建中,卢晓蕊.响应面分析法优化槐米芦丁超声波提取工艺的研究[J].食品与发酵工业,2007,33(8):167-172.
    [118]郭乃妮,杨建洲.超声条件下碱提取酸沉淀法从槐米中提取芦丁的研究[J].应用化工,2009,28(2):207-209:207-209.
    [119]黄汉昌,张艾,姜招峰.槐米中芦丁的提取及其与人血清白蛋白荧光光谱研究[J].北京联合大学学报(自然科学版).2008,22(4):11-14.
    [120]边军昌,杨静,赵慧茹,等.槐米中芸香苷的几种提取工艺比较[J].亚太传统医药,2009,5(8):37-38.
    [121]王立娟,李坚,张丽君.微波法提取槐米中芦丁的工艺条件[J].东北林业大学学报,2003,31(3):36-37.
    [122]刘静,张光华,高敏.槐米中芦丁的微波辅助萃取研究[J].陕西科技大学学报,2007,25,(5):40-43.
    [123]陈燕芬,陈丽娟,杨柳.微波技术提取槐米中芦丁的研究[J].中药材,2007,30(7):866-867.
    [124]李敏,马晓.槐米芦丁的微波提取研究[J].今日科苑,2009,(6):44-45.
    [125]唐坤,龙绪欢,李标.微波-超声波提取槐米的工艺研究[J].湘潭师范学院学报(自然科学版),2009,31(4):27-29.
    [126]廖华卫,邓金梅,宋粉云.正交法优化槐米中芦丁的提取工艺[J].广东药学院学报,2006,22(3):275-276.
    [127]李玉山,王经安.T型关联度分析法优化芦丁提取纯化工艺[J].化学试剂,2009,31(4),305-30:305-306.
    [128]涂瑶生,施之琪.槐米中芦丁提取纯化工艺研究[J].海峡药学,2010,22(1):49-51.
    [129]乔瑾,张兆勇,王克东.中试提取槐米中芦丁[J].齐鲁药事,2004,23(7):52-53.
    [130]赵文彬,刘金荣,樊莲莲,等.从槐米中提取槲皮素方法的研究[J].石河子大学学报:自然科学版,2006,24(3):302-304.
    [131]骆阳葆.从槐米中提取槲皮素的研究[J].医药论坛杂志,2007,28(2):77-78.
    [132]蒙松年陈代武.微波辅助提取槐米中的槲皮素[J].华西药学杂志,2005,20(6):561-562.
    [133]徐萌萌,沈竞,徐春.槐米固态发酵提高槲皮素含量的研究[J].时珍国医国药,2008,19(3):704-706.
    [134]周颖;夏新奎.槐米多糖的提取和纯化工艺研究[J].湖北农业科学,2011,50(15):3161-3163.
    [135]王丽琴,党高潮.卡尔曼滤光度法同时测定槐米中芦丁和槲皮素[J].药物分析杂志,2000,20(1):60-61
    [136]李满秀张静张海容,等.等吸收紫外光度法同时测定槐米中的芦丁和槲皮素[J]. 光谱实验室,2005,22(1):42-45.
    [137]喻樊.槐米中总黄酮的含量测定[J].海峡药学,2008,20(7):71-73.
    [138]余琳,吴晓桦.槲皮素一镓(Ⅲ)一十二烷基磺酸钠荧光体系及其在测定中药槐米、银杏叶、陈皮中黄酮的应用[J].理化检验-化学分册,2007,43(8):632-634.
    [139]王朝周,程秀民.薄层扫描法测定槐米中芦丁含量[J].中国实验方剂学杂志,2004,10(4):21-22.
    [140]周漩,宋粉云,钟兆键.薄层色谱扫描法测定槐米中的芦丁和槲皮素[J].中国实验方剂学杂志,2006,12(8):14-16.
    [141]陈代武,李杰红,王芳.GC—MS测定槐米萃取液中的挥发性化学成分[J].华西药杂志,2006,21(5):450-451.
    [142]杨海霞,夏新奎,陈利军.槐米挥发油化学成分GC.MS分析[J].南阳师范学院学报,2010,9(3):38-39.
    [143]康文艺,武小红.槐花、槐米和槐叶脂肪酸成分的GC-MS分析[J].河南大学学报:医学版,2009,28(1):17-20.
    [144]邓富良,陈本美,陈国华,等.高效液相色谱法测定槐米中的芦丁含量[J].湖南医科大学学报,2000,25(6):597-598.
    [145]程秀民,尘学兰,高彦慧,等RP-HPLC测定槐米中芦丁和槲皮素含量[J].中成药,2004,26(8):680-682.
    [146]朱轶妲,赵鸿雁,罗贤标,等.反相高效液相色谱法测定槐米中槲皮素的含量[J].南京医科大学学报,2004,24(5):551-552.
    [147]伍世清,陈代武.利用HPLC法测定槐米中槲皮素含量及意义[J].医学理论与实践,2005,18(6):730-731.
    [148]郭利民,钟世华,王招弟HPLC法测定槐米中槲皮素成分的微波辅助提取[J].中外医疗,2008,(2):21.
    [149]刘小柔,严启新,王存芳.槐米的高效液相色谱指纹图谱研究[J].时珍国医国药,2005,16(2):118-119.
    [150]陈刚,叶建农,张剑霞.槐米中芦丁和槲皮素的毛细管电泳—电化学检测[J].华东师范大学学报:自然科学版,2001,(4):82-87
    [151]Chu Q, Fu L, Wu T, Ye J. Simultaneous determination of phytoestrogens in different medicinal parts of Sophora japonica L. by capillary electrophoresis with electrochemical detection[J]. Biomed Chromatogr.2005 Mar; 19(2):149-54.
    [152]吕元琦,李玉美,李辉信.槐花和槐米中芦丁和槲皮素的毛细管电泳分析[J].化学分析计量,2008,17(3):16-18.
    [153]曾礼娜,夏之宁,颜磊.槐米的高效毛细管电泳指纹图谱研究[J].西南大学学报(自然科学版),2008,30(1):17-20.
    [154]林天乐,严宝珍,胡高飞,等.由槐米中提取槲皮素的光谱学表征[J].光谱实验室,2006,23(3):431-434.
    [155]张黎明,赵希,张小利,等.槐米总黄酮提取物的热分析指纹图谱[J].应用化学,2007,24(10):1206-1210.
    [156]李加林,吴素珍,李银保,等.中药槐米和远志中微量元素的测定[J].时珍国医国药,2008,19(2):332-333.
    [157]田树革,肖新芳,周晓英.槐米不同制品中总黄酮含量变化研究[J].时珍国医国药,1999,10(12):920-21.
    [158]郭戎,丁安伟,张永,等.炮制对槐米中槲皮素含量的影响[J].中国中药杂志.1996,21(7):406-407.
    [159]何登文郑阿利.不同炮制方法制备的槐米中芦丁含量比较[J].甘肃中医,2005,18(7):59-60
    [160]王月伶,吕元琦,袁倬斌.毛细管区带电泳法研究不同炮制方法对槐花、槐米中芦丁和槲皮素含量的影响[J].理化检验(化学分册),2007,43(1):48-50.
    [161]陈善信赵荣华.醋炒槐米炮制前后鞣质和黄酮的含量变化[J].云南中医学院学报,1991,14(2):31-32
    [162]念其滨.槐米不同炮制品的鞣质含量测定[J].福建中医药,2004,35(5):48.
    [163]陈美燕.槐米炒炭前后鞣质含量的比较[J].淮海医药,2006,24(3):247-248.
    [164]方艳夕,张磊,周国梁.紫外分光光度法测定槐米炮制品中鞣质含量[J].中兽医医药杂志,2008,(6):32-33.
    [165]李凯鹏,张金玲,常明,等.槐米炮制前后微量元素的比较[J].微量元索与健康研究1998,15(3):52-53.
    [166]蔡翠芳,冀小君,李宝霞,等.炒槐米质量标准研究[J].农业与技术,2009,29(2):63-65
    [167]李娆娆,原思通.制炭温度及受热时问对槐花中芦丁和槲皮素含量的影响[C].中华中医药学会第五届中药炮制学术会议论文集:151-154.2005-08-01,广东普宁.
    [168]陈华国,靳凤云,周欣,等.高效液相色谱法同时测定槐枝中芦丁和槲皮素[J].理化检验-化学分册,2010,46(7):754-755,759.
    [169]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报,2002,37(7):559-562
    [170]李有润,郑青.中草药提取过程的数字模拟与优化[J].中草药,1997,18(7):399-401.
    [171]贺福元,邓凯文,杨大坚,等.中药材成分提取动力学数学模型的建立及参数分析[J].数理医药学杂志,2005,18(6):513-517.
    [172]贺福元,邓凯文,罗杰英,等.中药复方成分提取动力学数学模型的初步研究[J].中国中药杂志,2007,32(6):490-495.
    [173]邱全胜,王泽宙,蔡起贵.猕猴桃原生质体质膜水通道蛋白特性[J].植物学报2000,42(2):143
    [174]王震宇,陶洪斌,唐玉林.植物质外体的研究方法[J].植物生理学通讯1999,35(5):394
    [175]Aris. R. Mathematical modeling:a chemical engineer's perspective[M].Academic, San Diego,London,1999:53.
    [176]《数学手册》编写组.数学手册[M].北京:高等教育出版社.2000,第8版:320.
    [177]苏辉,王伯初,刘玮琦,等.天然药物提取过程的动力学数学模型[J].中草药,2011,42(2):384-390.
    [178]谢相贵,贺福元,石继连,等.槐米不同炮制品中总黄酮提取动力学参数的初步研究[C].世界中联中药药剂专业委员会第五届学术年会暨中华中医药学会制剂分会2010年学术年会论文集,2010,苏州:212-219.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700