用户名: 密码: 验证码:
~(19)F定点标记及~(19)F核磁共振方法在蛋白质结构和动力学研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在此论文中我们主要讨论了应用非天然氨基酸标记和19F核磁共振相结合的方法研究蛋白质的结构和动力学,论文共分为六个章节。
     第一章简要概述了蛋白质结构、功能和动力学之间的关系,以及用于研究蛋白质结构、功能和动力学的核磁共振方法。蛋白质功能的多样性与其空间结构密不可分,蛋白质的空间结构是蛋白质的功能活性基础。蛋白质结构是内部动态的过程,动力学特性对蛋白质的功能发挥具有重要作用。NMR方法可以在很宽的时间尺度上进行蛋白质动力学的研究。针对大分子量蛋白和信号灵敏度较低的情况下,可以采用固体核磁共振和位点特异性氨基酸标记的方法进行蛋白质结构、功能和动力学的研究。
     第二章介绍了用非天然氨基酸位点特异性标记的方法研究蛋白质的结构和动力学。核磁共振能够研究适当大小蛋白质的结构、配体结合、构象变化等,研究更大的蛋白质需要发展硬件以及同位素标记方法等。由于大分子量蛋白质的氨基酸数目较多,弛豫较快,线宽很宽,信号较弱,往往导致重叠的核磁谱峰难以进行归属。单氨基酸特异性标记可以减少核磁谱峰的重叠,但是对于含有很多同种氨基酸的大蛋白还是解决不了问题。但是位点特异性非天然氨基酸标记只有一个核磁信号出现,使得核磁信号的归属非常容易。本章介绍了目前用于核磁共振研究的非天然氨基酸的种类和标记方法,分别介绍了液体和固体核磁在非天然氨基酸标记研究中的应用。
     第三章描述了应用19F位点特异性氨基酸标记的方法对蛋白质的动力学分析。我们成功的化学合成了主链和侧链双标记非天然氨基酸15N/19F tfmF,用一对正交的氨酰tRNA合成酶/tRNACUA实现了将双标记非天然氨基酸插入到水溶性蛋白和膜蛋白的特异性位点。对人源Vinexin蛋白C末端第一个SH3domain进行了配体结合前后的动力学分析。将15N/19F tfinF标记在SH3结构域的三个不同位点,得到了三个不同位点的主链和侧链化学位移。对SH3在配体P868结合前后的主链(15N)1H、侧链19F的化学位移和弛豫分析表明,三个不同位点在配基结合前后具有不同的内部运动。接着我们用SH3结构域在60%甘油中的样品模拟了大分子量蛋白的运动,对其一维19F谱和侧链T1、T2进行了分析。另外,我们对膜蛋白DGAK三聚体在DPC micell中的化学位移和侧链弛豫分析表明,这种非天然氨基酸位点特异性标记的方法可以用于分析膜蛋白的侧链内部运动。
     第四章阐述了19F位点特异性氨基酸标记方法的其他应用。首先以膜蛋白DAGK为例,分析了19F位点特异性氨基酸标记在膜蛋白溶剂暴露中的研究,结果表明位于DAGK不同位置的氨基酸残基化学位移的变化是不同的,与已知三维结构中残基的位置分布一致。其次,应用位点特异性19F弛豫增强实验(PRE)对一个多结构域蛋白L27tan的两种结构构象进行了辨认。通过检测半胱氨酸上的自旋标记物MTSL和位点特异性标记的氨基酸tfmF之间的PRE效应,判断两个位点在空间结构上的距离。结果表明,L27tan在溶液中采取关闭型的构象。最后是对19F位点特异性标记膜蛋白DAGK的原位固体核磁共振研究。用原位MAS固体核磁共振的方法对DAGK在天然膜环境中的化学位移和侧链弛豫进行了分析。与DAGK/DPC样品的液体核磁数据比较表明,位于膜蛋白不同位置的氨基酸残基的化学位移和纵向弛豫受膜环境的影响不同。
     第五章主要概括了对BK钾离子通道跨膜螺旋S0和S1之间loop (S0-S1loop)的液体核磁共振研究。BK钾离子通道是一种大电导钾离子通道,能够被Ca2+、 Mg2+和电压所激活,在许多生理过程中发挥重要作用。与其他电压门控钾离子通道不同的是,BK钾离子通道具有7个跨膜螺旋和SO-S1loop。我们用液体核磁共振的方法对SO-S1loop的二级结构和主链动力学进行了分析。Xplor-NIH结构计算表明SO-S1loop中有两个双亲的α螺旋,可能与细胞膜或者跨膜螺旋有相互作用。Mg2+滴定实验结果表明,单独的SO-S1loop存在时T45和L46有化学位移扰动而Mg2+结合位点D99却没有化学位移变化。
     第六章主要展望了如何利用19F非天然氨基酸标记的方法将蛋白质的结构和动力学偶联起来。细胞膜中的膜蛋白结构代表了其真实的结构,蛋白质的结构和功能不仅取决于蛋白质本身,其周围的膜环境对其结构和功能的发挥具有重要作用,包括蛋白-蛋白相互作用,蛋白-磷脂相互作用等。因此,简略探讨了在In situ情况下,如何解析膜蛋白的结构。
In this thesis, we will discuss the method of combining unnatural amino acid labeling and nuclear magnetic resonance to study protein structure and dynamics. There are six chapters in this thesis.
     Chapter1is a review of protein structure, function and dynamics, as well as the methods of nuclear magnetic resonance in the study of protein structure, function and dynamics. Protein is the basis of life activities. The function of protein is inextricably linked with stuctures. The structure of proteins is the basis of protein function and activity. Protein structure is intrinsically dynamic and continually performed conformational changes on a wide range of timescales. Protein dynamics affect a wide range of functions, such as ligand binding, folding and thermostability. Dynamics can enable some proteins to perform multiple different functions. Dynamics are important for the evolution of novel functions of proteins. NMR spectroscopy is uniquely suited to study protein dynamics. The most fundamental limitation of NMR is the poor sensitivity of signal detection. This places NMR a relatively low upper-limit on the size of proteins which can be studied. Spectral crowding is also a problem to NMR. However, those limitations can be solved by solid state NMR and site-specific amino acid labeling at some degree.
     Chapter2is a review of site-specific labeling of unnatural amino acid to study protein structure and dynamics. NMR is currently capable of studying the structure, ligand interactions and conformational changes of proteins and complexes approaching a megadalton in size. The ability to extend NMR to such large systems has been affected by improvements in instrumentation, experiments and isotope labeling approaches for large proteins. However, the increased number of NMR correlations and broad linewidth associated with larger proteins will generally result in more congested spectra. Then there will be dufficult to assign. A simple approach to reduce signal complexity is using amino acid type labeling methods. Unfortunately these methods are limited when applied to larger systems. Because assigning a large number of identical amino acids still a challenge. Site-specific labeling with unnatural amino acids represents a powerful method because assignment is straightforward. We will introduce kinds of NMR-active unnatural amino acids and methods of labeling unnatural amino acids incorporated into proteins. Further more liquid and solid state NMR in the study of non-natural amino acids will be introduced.
     In chapter3, the compound15N/19F tfmF was synthetized successfully. An orthogonal amber tRNA/tRNA synthetase pair for15N/19F-trifluoromethyl-Phenyl-alanine (15N/19F-tfmF) has been applied to achieve site-specific labeling of SH3at three different sites. One dimensional solution NMR spectra of backbone amide (15N)1H and side-chain19F were obtained for SH3with three different site-specific labels. Site-specific backbone amide (15N)1H and side-chain19F chemical shift and relaxation analysis of SH3in the absence or presence of a peptide ligand demonstrated different internal motions upon ligand binding at the three different sites. One dimensional19F spectra and T1, T2relaxation data were acquired on a SH3domain in aqueous buffer containing60%glycerol, and a nine-transmembrane helices membrane protein diacyl-glycerol kinase (DAGK) in dodecyl phosphochoine (DPC) micelles. Site-specific19F chemical shift and side chain relaxation analysis can be applied to site-specifically analyze side chain internal mobility of membrane proteins or large size proteins.
     In chapter4, the more application of site-specific F NMR will be discussed. Firstly,19F-tfmF was applied to accomplish site-specific19F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on19F spins, a standard curve for19F-tfmF chemical shifts was drawn for varying solvent H2O/D2O ratios. The acquired solvent isotope shift values for the seven DAGK/DPC sites were consistent with the residue distribution in a trimeric membrane protein with three transmembrane helices in each monomer. Secondly,19F was site-specifically introduced to L27tan via the incorporation of tfmF. Different19F signal intensity attenuations were observed at different L27tan sites. It is due to different distances between the site-specifically incorporated tfmF and site-directed spin radical labeling. Analysis of the19F detection PRE showed that the L27tan protein had a closed conformation in solution. Thirdly, Site-specific F chemical shifts and longitudinal relaxation times of diacylglycerol kinase (DAGK) were measured in its native membrane using in situ magic angle spinning (MAS) solid state nuclear magnetic resonance (NMR). Comparing with solution NMR data of the purified DAGK in detergent micelles, the in situ MAS-NMR data illustrated that19F chemical shift values of residues at different membrane protein locations were influenced by interactions between membrane proteins and their surrounding lipid or lipid mimic environments, while19F side chain longitudinal relaxation values were probably affected by different interactions of DAGK with planar lipid bilayer versus globular detergent micelles.
     In chapter5, solution NMR characterization of SO-S1loop of BK channel a subunit will be discussed. BK channel is a large conductance potassium channel, which could be activated by intracellular Ca+, Mg2+as well as by membrane depolarization, and plays a central role in numerous physiological processes. The SO-Sl loop of BK channel is essential to its structure and function. Multidimensional heteronuclear nuclear magnetic resonance spectroscopy was used to study the secondary structure and its backbone dynamics of the S0-S1loop of BK channel. There are two amphiphilic helices in the S0-S1loop which might interact with the membrane. Two possible Mg2+binding sites in the S0-S1loop were studied by Mg2+titration experiments.
     Chapter6is the main expectations for how to combine protein structure and dynamics using the methods of19F un-natural amino acid labeling. The functional diversity of membrane proteins is determined not only by membrane proteins themselves, but also by their interactions with membranes. Native cellular membranes host various proteins, together with lipids in a variety of compositions. How to analysis membrane proteins'structure in its native membrane will be discussed.
引文
Allerhand, A., Doddrell, D., Glushko, V., Cochran, D. W., Wenkert, E., Lawson, P. J. and Gurd, F. R. (1971). "Conformation and segmental motion of native and denatured ribonuclease A in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance." J Am Chem Soc 93(2):544-546.
    Bax, A. (2003). "Weak alignment offers new NMR opportunities to study protein structure and dynamics." Protein Sci 12(1):1-16.
    Bracken, C., Carr, P. A., Cavanagh, J. and Palmer, A. G,3rd (1999). "Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4:implications for the entropy of association with DNA." J Mol Biol 285(5):2133-2146.
    Chevelkov, V., Xue, Y, Rao, D. K., Forman-Kay, J. D. and Skrynnikov, N. R. (2010). "15N(H/D)-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: application to denatured drkN SH3." J Biomol NMR 46(3):227-244.
    Clore, G. M. and Iwahara, J. (2009). "Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes." Chem Rev 109(9):4108-4139.
    Corazza, A., Rennella, E., Schanda, P., Mimmi, M. C., Cutuil, T., Raimondi, S., Giorgetti, S., Fogolari, F., Viglino, P., Frydman, L., Gal, M., Bellotti, V., Brutscher, B. and Esposito, G. (2010). "Native-unlike long-lived intermediates along the folding pathway of the amyloidogenic protein beta2-microglobulin revealed by real-time two-dimensional NMR." J Biol Chem 285(8):5827-5835.
    Doucleff, M. and Clore, G. M. (2008). "Global jumping and domain-specific intersegment transfer between DNA cognate sites of the multidomain transcription factor Oct-1." Proc Natl Acad Sci U S A 105(37):13871-13876.
    Felli, I. C. and Brutscher, B. (2009). "Recent advances in solution NMR:fast methods and heteronuclear direct detection." Chemphyschem 10(9-10):1356-1368.
    Foster, M. P., Mcelroy, C. A. and Amero, C. D. (2007). "Solution NMR of large molecules and assemblies." Biochemistry 46(2):331-340
    Igumenova, T. I., Frederick, K. K. and Wand, A. J. (2006). "Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution." Chem Rev 106(5): 1672-1699.
    Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R. (1979). "Investigation of Exchange Processes by 2-Dimensional Nmr-Spectroscopy." Journal of Chemical Physics 71(11): 4546-4553.
    Kamerzell, T. J. and Middaugh, C. R. (2008). "The complex inter-relationships between protein flexibility and stability." J Pharm Sci 97(9):3494-3517.
    Kempf, J. G. and Loria, J. P. (2003). "Protein dynamics from solution NMR:theory and applications." Cell Biochem Biophys 37(3):187-211.
    Kern, D., Eisenmesser, E. Z. and Wolf-Watz, M. (2005). "Enzyme dynamics during catalysis measured by NMR spectroscopy." Nuclear Magnetic Resonance of Biological Macromolecules, Part C 394:507-524.
    Key, J., Scheuermann, T. H., Anderson, P. C., Daggett, V. and Gardner, K. H. (2009). "Principles of ligand binding within a completely buried cavity in HIF2 alpha PAS-B." J Am Chem Soc 131(48):17647-17654.
    Khersonsky, O. and Tawfik, D. S. (2010). "Enzyme promiscuity:a mechanistic and evolutionary perspective." Annu Rev Biochem 79:471-505.
    Kleckner, I. R. and Foster, M. P. (2011). "An introduction to NMR-based approaches for measuring protein dynamics." Biochim Biophys Acta 1814(8):942-968.
    Kovrigin, E. L., Cole, R. and Loria, J. P. (2003). "Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate." Biochemistry 42(18): 5279-5291.
    Kovrigin, E. L. and Loria, J. P. (2006). "Enzyme dynamics along the reaction coordinate:critical role of a conserved residue." Biochemistry 45(8):2636-2647.
    Kuloglu, E. S., Mccaslin, D. R., Markley, J. L. and Volkman, B. F. (2002). "Structural rearrangement of human lymphotactin, a C chemokine, under physiological solution conditions." J Biol Chem 277(20):17863-17870.
    Lakomek, N. A., Lange, O. F., Walter, K. F., Fares, C., Egger, D., Lunkenheimer, P., Meiler, J., Grubmuller, H., Becker, S., De Groot, B. L. and Griesinger, C. (2008). "Residual dipolar couplings as a tool to study molecular recognition of ubiquitin." Biochem Soc Trans 36(Pt 6): 1433-1437.
    Lundstrom, P., Vallurupalli, P., Hansen, D. F. and Kay, L. E. (2009). "Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy." Nat Protoc 4(11):1641-1648.
    Mittermaier, A. K. and Kay, L. E. (2009). "Observing biological dynamics at atomic resolution using NMR." Trends Biochem Sci 34(12):601-611.
    Mori, S., Abeygunawardana, C., Van Zijl, P. C. and Berg, J. M. (1996). "Water exchange filter with improved sensitivity (WEX II) to study solvent-exchangeable protons. Application to the consensus zinc finger peptide CP-1." J Magn Reson B 110(1):96-101.
    Popovych, N., Sun, S., Ebright, R. H. and Kalodimos, C. G. (2006). "Dynamically driven protein allostery." Nat Struct Mol Biol 13(9):831-838.
    Ruschak, A. M. and Kay, L. E. (2010). "Methyl groups as probes of supra-molecular structure, dynamics and function." J Biomol NMR 46(1):75-87.
    Smock, R. G. and Gierasch, L. M. (2009). "Sending signals dynamically." Science 324(5924): 198-203.
    Snyder, G. H., Rowan, R.,3rd, Karplus, S. and Sykes, B. D. (1975). "Complete tyrosine assignments in the high field H nuclear magnetic resonance spectrum of the bovine pancreatic trypsin inhibitor." Biochemistry 14(17):3765-3777.
    Sugase, K., Dyson, H. J. and Wright, P. E. (2007). "Mechanism of coupled folding and binding of an intrinsically disordered protein." Nature 447(7147):1021-1025.
    Sze, K. H. and Lai, P. M. (2011). "Probing protein dynamics by nuclear magnetic resonance." Protein Pept Lett 18(4):373-379.
    Tokuriki, N. and Tawfik, D. S. (2009). "Protein dynamism and evolvability." Science 324(5924): 203-207.
    Tolman, J. R. (2002). "A novel approach to the retrieval of structural and dynamic information from residual dipolar couplings using several oriented media in biomolecular NMR spectroscopy." J Am Chem Soc 124(40):12020-12030.
    Tugarinov, V., Hwang, P. M. and Kay, L. E. (2004). "Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins." Annu Rev Biochem 73:107-146.
    Tugarinov, V., Kanelis, V. and Kay, L. E. (2006). "Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy." Nat Protoc 1(2):749-754.
    Vallurupalli, P. and Kay, L. E. (2006). "Complementarity of ensemble and single-molecule measures of protein motion:a relaxation dispersion NMR study of an enzyme complex." Proc Natl Acad Sci U S A 103(32); 11910-11915.
    Wang, Y., Berlow, R. B. and Loria, J. P. (2009). "Role of loop-loop interactions in coordinating motions and enzymatic function in triosephosphate isomerase." Biochemistry 48(21): 4548-4556.
    Watt, E. D., Shimada, H., Kovrigin, E. L. and Loria, J. P. (2007). "The mechanism of rate-limiting motions in enzyme function." Proc Natl Acad Sci U S A 104(29):11981-11986.
    Zeeb, M. and Balbach, J. (2004). "Protein folding studied by real-time NMR spectroscopy." Methods 34(1):65-74.
    石攀,田长麟.“核磁共振方法研究膜蛋白三维结构的进展”中国科学技术大学学报.2008,38(8):950-960.
    Adriaensens, P., Box, M. E., Martens, H. J., Onkelinx, E., Put, J. and Gelan, J. (1988). "Investigation of protein structure by means of 19F-NMR. A study of hen egg-white lysozyme." Eur J Biochem 177(2):383-394.
    Anderluh, G, Razpotnik, A., Podlesek, Z., Macek, P., Separovic, F. and Norton, R. S. (2005). "Interaction of the eukaryotic pore-forming cytolysin equinatoxin Ⅱ with model membranes: 19F NMR studies." J Mol Biol 347(1):27-39.
    Boulegue, C.,Milbradt, A. G., Renner, C. and Moroder, L. (2006). "Single proline residues can dictate the oxidative folding pathways of cysteine-rich peptides." J Mol Biol 358(3): 846-856.
    Campos-Olivas, R., Aziz, R., Helms, G. L., Evans, J. N. and Gronenborn, A. M. (2002). "Placement of 19F into the center of GB1:effects on structure and stability." FEBS Lett 517(1-3):55-60.
    Cellitti, S. E., Jones, D. H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H., Brittain, S. M., Brinker, A., Caldwell, J., Bursulaya, B., Spraggon, G, Brock, A., Ryu, Y., Uno, T., Schultz, P. G. and Geierstanger, B. H. (2008). "In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy." J Am Chem Soc 130(29):9268-9281.
    Chen, P. R., Groff, D., Guo, J., Ou, W., Cellitti, S., Geierstanger, B. H. and Schultz, P. G. (2009). "A facile system for encoding unnatural amino acids in mammalian cells." Angew Chem Int Ed Engl 48(22):4052-4055.
    Daviso, E., Diller, A., Alia, A., Matysik, J. and Jeschke, G. (2008). "Photo-CIDNP MAS NMR beyond the T1 limit by fast cycles of polarization extinction and polarization generation." J Magn Reson 190(1):43-51.
    Dougherty, D. A. (2000). "Unnatural amino acids as probes of protein structure and function." Curr Opin Chem Biol 4(6):645-652.
    Drake, S. K., Bourret, R. B., Luck, L. A., Simon, M. I. and Falke, J. J. (1993). "Activation of the phosphosignaling protein CheY. I. Analysis of the phosphorylated conformation by 19F NMR and protein engineering." J Biol Chem 268(18):13081-13088.
    Ellman, J. A., Mendel, D. and Schultz, P. G. (1992). "Site-specific incorporation of novel backbone structures into proteins." Science 255(5041):197-200.
    Evanics, F., Bezsonova, I., Marsh, J., Kitevski, J. L., Forman-Kay, J. D. and Prosser, R. S. (2006). "Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and 1H NMR." Biochemistry 45(47):14120-14128.
    Evanics, F., Kitevski, J. L., Bezsonova, I., Forman-Kay, J. and Prosser, R. S. (2007). "19F NMR studies of solvent exposure and peptide binding to an SH3 domain." Biochim Biophys Acta 1770(2):221-230.
    Frieden, C. (2007). "Protein aggregation processes:In search of the mechanism." Protein Sci 16(11):2334-2344.
    Frieden, C., Hoeltzli, S. D. and Bann, J. G. (2004). "The preparation of 19F-labeled proteins for NMR studies." Methods Enzymol 380:400-415.
    Grage, S. L., Wang, J., Cross, T. A. and Ulrich, A. S. (2002). "Solid-state 19F-NMR analysis of 19F-labeled tryptophan in gramicidin A in oriented membranes." Biophys J 83(6):3336-3350.
    Groff, D., Thielges, M. C., Cellitti, S., Schultz, P. G. and Romesberg, F. E. (2009). "Efforts toward the direct experimental characterization of enzyme microenvironments:tyrosine100 in dihydrofolate reductase." Angew Chem Int Ed Engl 48(19):3478-3481.
    Holmgren, S. K., Taylor, K. M., Bretscher, L. E. and Raines, R. T. (1998). "Code for collagen's stability deciphered." Nature 392(6677):666-667.
    Homg, J. C. and Raleigh, D. P. (2003). "phi-Values beyond the ribosomally encoded amino acids: kinetic and thermodynamic consequences of incorporating trifluoromethyl amino acids in a globular protein." J Am Chem Soc 125(31):9286-9287.
    Hubbard, J. A., Maclachlan, L. K., King, G W., Jones, J. J. and Fosberry, A. P. (2003). "Nuclear magnetic resonance spectroscopy reveals the functional state of the signalling protein CheY in vivo in Escherichia coli." Mol Microbiol 49(5):1191-1200.
    Hull, W. E. and Sykes, B. D. (1976). "Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase:the influence of zinc on protein structure and a conformational change induced by phosphate binding." Biochemistry 15(7):1535-1546.
    Jackson, J. C., Hammill, J. T. and Mehl, R. A. (2007). "Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity." J Am Chem Soc 129(5):1160-1166.
    Kalbitzer, H. R., Rohr, G, Nowak, E., Goody, R. S., Kuhn, W. and Zimmermann, H. (1992). "A new high sensitivity 19F probe for labeling cysteine groups of proteins." NMR Biomed 5(6): 347-350.
    Khan, F., Kuprov, I., Craggs, T. D., Hore, P. J. and Jackson, S. E. (2006). "19F NMR studies of the native and denatured states of green fluorescent protein." J Am Chem Soc 128(33): 10729-10737.
    Kitevski-Leblanc, J. L., Al-Abdul-Wahid, M. S. and Prosser, R. S. (2009). "A mutagenesis-free approach to assignment of 19F NMR resonances in biosynthetically labeled proteins." J Am Chem Soc 131(6):2054-2055.
    Kitevski-Leblanc, J. L. and Prosser, R. S. (2012). "Current applications of 19F NMR to studies of protein structure and dynamics." Prog Nucl Magn Reson Spectrosc 62:1-33.
    Klein-Seetharaman, J., Getmanova, E. V, Loewen, M. C., Reeves, P. J. and Khorana, H. G. (1999). "NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution 19F NMR." Proc Natl Acad Sci U S A 96(24):13744-13749.
    Kosen, P. A. (1989). "Spin labeling of proteins." Methods Enzymol 177:86-121.
    Kranz, J. K., Lu, J. and Hall, K. B. (1996). "Contribution of the tyrosines to the structure and function of the human U1AN-terminal RNA binding domain." Protein Sci 5(8):1567-1583.
    Lahiri, S., Brehs, M., Olschewski, D. and Becker, C. F. (2011). "Total chemical synthesis of an integral membrane enzyme:diacylglycerol kinase from Escherichia coli." Angew Chem Int Ed Engl 50(17):3988-3992.
    Lampe, J. N., Floor, S. N., Gross, J. D., Nishida, C. R., Jiang, Y., Trnka, M. J. and Ortiz De Montellano, P. R. (2008). "Ligand-induced conformational heterogeneity of cytochrome P450 CYP119 identified by 2D NMR spectroscopy with the unnatural amino acid 13C-p-methoxyphenylalanine." J Am Chem Soc 130(48):16168-16169.
    Laws, D. D., Bitter, H. M. and Jerschow, A. (2002). "Solid-state NMR spectroscopic methods in chemistry." Angew Chem Int Ed Engl 41(17):3096-3129.
    Lee, H. S. and Schultz, P. G. (2008). "Biosynthesis of a site-specific DNA cleaving protein." J Am Chem Soc 130(40):13194-13195.
    Lee, H. S., Spraggon, G., Schultz, P. G. and Wang, F. (2009). "Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe." J Am Chem Soc 131(7): 2481-2483.
    Lee, H. W., Sohn, J. H., Yeh, B. I., Choi, J. W., Jung, S. and Kim, H. W. (2000). "19F NMR investigation of F(1)-ATPase of Escherichia coli using fluorotryptophan labeling." J Biochem 127(6):1053-1056.
    Lemke, E. A., Summerer, D., Geierstanger, B. H., Brittain, S. M. and Schultz, P. G. (2007). "Control of protein phosphorylation with a genetically encoded photocaged amino acid." Nat Chem Biol 3(12):769-772.
    Li, C., Lutz, E. A., Slade, K. M., Ruf, R. A., Wang, G. F. and Pielak, G. J. (2009). "19F NMR studies of alpha-synuclein conformation and fibrillation." Biochemistry 48(36):8578-8584.
    Li, C., Wang, G. F., Wang, Y., Creager-Allen, R., Lutz, E. A., Scronce, H., Slade, K. M., Ruf, R. A., Mehl, R. A. and Pielak, G. J. (2010). "Protein 19F NMR in Escherichia coli." J Am Chem Soc 132(1):321-327.
    Li, H. and Frieden, C. (2006). "Fluorine-19 NMR studies on the acid state of the intestinal fatty acid binding protein." Biochemistry 45(20):6272-6278.
    Li, H. and Frieden, C. (2007). "Observation of sequential steps in the folding of intestinal fatty acid binding protein using a slow folding mutant and 19F NMR." Proc Natl Acad Sci U S A 104(29):11993-11998.
    Lian, C., Le, H., Montez, B., Patterson, J., Harrell, S., Laws, D., Matsumura, I., Pearson, J. and Oldfield, E. (1994). "Fluorine-19 nuclear magnetic resonance spectroscopic study of fluorophenylalanine-and fluorotryptophan-labeled avian egg white lysozymes." Biochemistry 33(17):5238-5245.
    Liang, B., Bushweller, J. H. and Tamm, L. K. (2006). "Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy." J Am Chem Soc 128(13):4389-4397.
    Loewen, M. C., Klein-Seetharaman, J., Getmanova, E. V., Reeves, P. J., Schwalbe, H. and Khorana, H. G. (2001). "Solution 19F nuclear Overhauser effects in structural studies of the cytoplasmic domain of mammalian rhodopsin." Proc Natl Acad Sci U S A 98(9):4888-4892.
    Luchette, P. A., Prosser, R. S. and Sanders, C. R. (2002). "Oxygen as a paramagnetic probe of membrane protein structure by cysteine mutagenesis and 19F NMR spectroscopy." J Am Chem Soc 124(8):1778-1781.
    Martinez, D. and Gerig, J. T. (2001). "Intermolecular (1)H[(19)F] NOEs in studies of fluoroalcohol-induced conformations of peptides and proteins." J Magn Reson 152(2): 269-275.
    Mcnulty, B. C, Young, G. B. and Pielak, G. J. (2006). "Macromolecular crowding in the Escherichia coli periplasm maintains alpha-synuclein disorder." J Mol Biol 355(5):893-897.
    Mehta, V. D., Kulkarni, P. V., Mason, R. P., Constantinescu, A. and Antich, P. P. (1994). "Fluorinated proteins as potential 19F magnetic resonance imaging and spectroscopy agents." Bioconjug Chem 5(3):257-261.
    Muchmore, D. C., Mcintosh, L. P., Russell, C. B., Anderson, D. E. and Dahlquist, F. W. (1989). "Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance." Methods Enzymol 177:44-73.
    Otting, G. (2008). "Prospects for lanthanides in structural biology by NMR." J Biomol NMR 42(1): 1-9.
    Oxenoid, K., Sonnichsen, F. D. and Sanders, C. R. (2002). "Topology and secondary structure of the N-terminal domain of diacylglycerol kinase." Biochemistry 41(42):12876-12882.
    Papeo, G, Giordano, P., Brasca, M. G, Buzzo, R, Caronni, D., Ciprandi,F., Mongelli, N., Veronesi, M., Vulpetti, A. and Dalvit, C. (2007). "Polyfluorinated amino acids for sensitive 19F NMR-based screening and kinetic measurements." J Am Chem Soc 129(17):5665-5672.
    Peng, J. W. (2001). "Cross-correlated 19F relaxation measurements for the study of fluorinated ligand-receptor interactions." J Magn Reson 153(1):32-47.
    Post, J. F., Cottam, P. F., Simplaceanu, V. and Ho, C. (1984). "Fluorine-19 nuclear magnetic resonance study of 5-fluorotryptophan-labeled histidine-binding protein J of Salmonella typhimurium." J Mol Biol 179(4):729-743.
    Prosser, R. S., Evanics,F., Kitevski, J. L. and Patel, S. (2007). "The measurement of immersion depth and topology of membrane proteins by solution state NMR." Biochim Biophys Acta 1768(12):3044-3051.
    Quint, P., Ayala, I., Busby, S. A., Chalmers, M. J., Griffin, P. R., Rocca, J., Nick, H. S. and Silverman, D. N. (2006). "Structural mobility in human manganese superoxide dismutase." Biochemistry 45(27):8209-8215.
    Rule, G S., Pratt, E. A., Simplaceanu, V. and Ho, C. (1987). "Nuclear magnetic resonance and molecular genetic studies of the membrane-bound D-lactate dehydrogenase of Escherichia coli." Biochemistry 26(2):549-556.
    Schlorb, C., Mensch, S., Richter, C. and Schwalbe, H. (2006). "Photo-CIDNP reveals differences in compaction of non-native states of lysozyme." J Am Chem Soc 128(6):1802-1803.
    Shriver, J. W. and Sykes, B. D. (1982). "Energetics of the equilibrium between two nucleotide-free myosin subfragment 1 states using fluorine-19 nuclear magnetic resonance." Biochemistry 21(12):3022-3028.
    Smith, S. O., Aschheim, K. and Groesbeek, M. (1996). "Magic angle spinning NMR spectroscopy of membrane proteins." Q Rev Biophys 29(4):395-449.
    Srinivasan, G, James, C. M. and Krzycki, J. A. (2002). "Pyrrolysine encoded by UAG in Archaea: charging of a UAG-decoding specialized tRNA." Science 296(5572):1459-1462.
    Steiner, T., Hess, P., Bae, J. H., Wiltschi, B., Moroder, L. and Budisa, N. (2008). "Synthetic biology of proteins:tuning GFPs folding and stability with fluoroproline." PLoS One 3(2): el680.
    Sternberg, U., Klipfel, M., Grage, S. L., Witter, R. and Ulrich, A. S. (2009). "Calculation of fluorine chemical shift tensors for the interpretation of oriented 19F-NMR spectra of gramicidin A in membranes." Phys Chem Chem Phys 11(32):7048-7060.
    Su, X. C, Man. B., Beeren, S., Liang, H., Simonsen, S., Schmitz, C., Huber, T., Messerle, B. A. and Otting, G. (2008). "A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy." J Am Chem Soc 130(32):10486-10487.
    Thielges, M. C.; Axup, J. Y., Wong, D., Lee, H. S., Chung, J. K., Schultz, P. G. and Fayer, M. D. (2011). "Two-dimensional IR spectroscopy of protein dynamics using two vibrational labels: a site-specific genetically encoded unnatural amino acid and an active site ligand." J Phys Chem B 115(38):11294-11304.
    Wang, L., Xie, J., Deniz, A. A. and Schultz, P. G. (2003). "Unnatural amino acid mutagenesis of green fluorescent protein." J Org Chem 68(1):174-176.
    Williams, S. P., Haggie, P. M. and Brindle, K. M. (1997). "19F NMR measurements of the rotational mobility of proteins in vivo." Biophys J 72(1):490-498.
    Wu, N., Deiters, A., Cropp, T. A., King, D. and Schultz, P. G. (2004). "A genetically encoded photocaged amino acid." J Am Chem Soc 126(44):14306-14307.
    Xiao, N., Jiang, Z. X. and Yu, Y. B. (2007). "Enantioselective synthesis of (2R,3S)-and (2S, 3R)-4,4,4-trifluoro-N-Fmoc-O-tert-butyl-threonine and their racemization-free incorporation into oligopeptides via solid-phase synthesis." Biopolymers 88(6):781-796.
    Xie, J., Wang, L., Wu, N., Brock, A., Spraggon, G. and Schultz, P. G. (2004). "The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination." Nat Biotechnol 22(10):1297-1301.
    Cellitti, S. E., Jones, D. H., Lagpacan, L., Hao, X., Zhang, Q., Hu, H., Brittain, S. M., Brinker, A., Caldwell, J., Bursulaya, B., Spraggon, G, Brock, A., Ryu, Y., Uno, T., Schultz, P. G. and Geierstanger, B. H. (2008). "In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy." J Am Chem Soc 130(29):9268-9281.
    Chou, J. J., Baber, J. L. and Bax, A. (2004). "Characterization of phospholipid mixed micelles by translational diffusion." J Biomol NMR 29(3):299-308.
    Deiters, A., Geierstanger, B. H. and Schultz, P. G. (2005). "Site-specific in vivo labeling of proteins for NMR studies." Chembiochem 6(1):55-58.
    Durr, U. H., Grage, S. L., Witter, R. and Ulrich, A. S. (2008). "Solid state 19F NMR parameters of fluorine-labeled amino acids. Part I:aromatic substituents." J Magn Reson 191(1):7-15.
    Grage, S. L., Durr, U. H., Afonin, S., Mikhailiuk, P. K., Komarov, Ⅰ.Ⅴ. and Ulrich, A. S. (2008). "Solid state 19F NMR parameters of fluorine-labeled amino acids. Part Ⅱ:aliphatic substituents." J Magn Reson 191(1):16-23.
    Hammill, J. T., Miyake-Stoner, S., Hazen, J. L., Jackson, J. C. and Mehl, R. A. (2007). "Preparation of site-specifically labeled fluorinated proteins for 19F-NMR structural characterization." Nat Protoc 2(10):2601-2607.
    Jackson, J. C., Hammill, J. T. and Mehl, R. A. (2007). "Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity." J Am Chem Soc 129(5):1160-1166.
    Kioka, N., Ueda, K. and Amachi, T. (2002). "Vinexin, CAP/ponsin, ArgBP2:a novel adaptor protein family regulating cytoskeletal organization and signal transduction." Cell Struct Funct 27(1):1-7.
    Lipchock, J. M. and Loria, J. P. (2009). "Monitoring molecular interactions by NMR." Methods MolBiol 490:115-134.
    Lorch, M. and Booth, P. J. (2004). "Insertion kinetics of a denatured alpha helical membrane protein into phospholipid bilayer vesicles." J Mol Biol 344(4):1109-1121.
    Nagy, J. K. and Sanders, C. R. (2004). "Destabilizing mutations promote membrane protein misfolding." Biochemistry 43(1):19-25.
    Palmer, A. G.,3rd (1993). "Dynamic properties of proteins from NMR spectroscopy." Curr Opin Biotechnol 4(4):385-391.
    Shi, P., Wang, H., Xi, Z., Shi, C., Xiong, Y. and Tian, C. (2011). "Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid." Protein Sci 20(1):224-228.
    Shi, P., Xi, Z., Wang, H., Shi, C., Xiong, Y. and Tian, C. (2010). "Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded 15N/19F-labeled unnatural amino acid." Biochem Biophys Res Commun 402(3):461-466.
    Van Horn, W. D., Kim, H. J., Ellis, C. D., Hadziselimovic, A., Sulistijo, E. S., Karra, M. D., Tian, C., Sonnichsen, F. D. and Sanders, C. R. (2009). "Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase." Science 324(5935):1726-1729.
    Wang, L., Brock, A., Herberich, B. and Schultz, P. G. (2001). "Expanding the genetic code of Escherichia coli." Science 292(5516):498-500.
    Wang, L. and Schultz, P. G. (2002). "Expanding the genetic code." Chem Commun (Camb)(1): 1-11.
    Wang, L., Xie, J. and Schultz, P. G (2006). "Expanding the genetic code." Annu Rev Biophys Biomol Struct 35:225-249.
    Xie, J. and Schultz, P. G. (2005). "An expanding genetic code." Methods 36(3):227-238.
    Zhang, J., Li, X., Yao, B., Shen, W., Sun, H., Xu, C., Wu, J. and Shi, Y. (2007). "Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin pep tides." Biochem Biophys Res Commun 357(4):931-937.
    Agarwal, V., Xue, Y., Reif, B. and Skrynnikov, N. R. (2008). "Protein side-chain dynamics as observed by solution-and solid-state NMR spectroscopy:a similarity revealed." J Am Chem Soc 130(49):16611-16621.
    Akabas, M. H., Stauffer, D. A., Xu, M. and Karlin, A. (1992). "Acetylcholine receptor channel structure probed in cysteine-substitution mutants." Science 258(5080):307-310.
    Battiste, J. L. and Wagner, G. (2000). "Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data." Biochemistry 39(18):5355-5365.
    Burz, D. S. and Shekhtman, A. (2008). "In-cell biochemistry using NMR spectroscopy." PLoS One 3(7):e2571.
    Chevelkov, V., Diehl, A. and Reif, B. (2008). "Measurement of 15N-T, relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy." J Chem Phys 128(5):052316.
    Chevelkov, V., Xue, Y., Rao, D. K., Forman-Kay, J. D. and Skrynnikov, N. R. (2010). "15N H/D-SOLEXSY experiment for accurate measurement of amide solvent exchange rates: application to denatured drkN SH3." J Biomol NMR 46(3):227-244.
    Cross, T. A., Sharma, M., Yi, M. and Zhou, H. X. (2011). "Influence of solubilizing environments on membrane protein structures." Trends Biochem Sci 36(2):117-125.
    Daley, D. O., Rapp, M., Granseth, E., Melen, K., Drew, D. and Von Heijne, G. (2005). "Global topology analysis of the Escherichia coli inner membrane proteome." Science 308(5726): 1321-1323.
    Danielson, M. A., Biemann, H. P., Koshland, D. E., Jr. and Falke, J. J. (1994). "Attractant-and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor:a 19F NMR study." Biochemistry 33(20):6100-6109.
    Danielson, M. A. and Falke, J. J. (1996). "Use of 19F NMR to probe protein structure and conformational changes." Annu Rev Biophys Biomol Struct 25:163-195.
    Evanics, F., Bezsonova, I., Marsh, J.. Kitevski, J. L., Forman-Kay, J. D. and Prosser, R. S. (2006). "Tryptophan solvent exposure in folded and unfolded states of an SH3 domain by 19F and 1H NMR." Biochemistry 45(47):14120-14128.
    Evanics, F, Kitevski, J. L., Bezsonova, I., Forman-Kay, J. and Prosser, R. S. (2007). "19F NMR studies of solvent exposure and peptide binding to an SH3 domain." Biochim Biophys Acta 1770(2):221-230.
    Frieden, C., Hoeltzli, S. D. and Bann, J. G. (2004). "The preparation of 19F-labeled proteins for NMR studies." Methods Enzymol 380:400-415.
    Fu, R., Wang, X., Li, C., Santiago-Miranda, A. N., Pielak, G. J. and Tian, F. (2011). "In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR." J Am Chem Soc 133(32):12370-12373.
    Gillespie, J. R. and Shortle, D. (1997). "Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels." J Mol Biol 268(1):158-169.
    Hull, W. E. and Sykes, B. D. (1976). "Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase:the influence of zinc on protein structure and a conformational change induced by phosphate binding." Biochemistry 15(7):1535-1546.
    Konermann, L., Stocks, B. B., Pan, Y. and Tong, X. (2010). "Mass spectrometry combined with oxidative labeling for exploring protein structure and folding." Mass Spectrom Rev 29(4): 651-667.
    Krogh, A., Larsson, B., Von Heijne, G. and Sonnhammer, E. L. (2001). "Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes." J Mol Biol 305(3):567-580.
    Lee, B. L., Sykes, B. D. and Fliegel, L. (2011). "Structural analysis of the Na+/H+ exchanger isoform 1 (NHE1) using the divide and conquer approach." Biochem Cell Biol 89(2): 189-199.
    Lundbaek, J. A., Collingwood, S. A., Ingolfsson, H. I., Kapoor, R. and Andersen, O. S. (2010). "Lipid bilayer regulation of membrane protein function:gramicidin channels as molecular force probes." J R Soc Interface 7(44):373-395.
    Madl, T., Felli, I. C., Bertini, I. and Sattler, M. (2010). "Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements." J Am Chem Soc 132(21): 7285-7287.
    Pintacuda, G, Moshref, A., Leonchiks, A., Sharipo, A. and Otting, G. (2004). "Site-specific labelling with a metal chelator for protein-structure refinement." J Biomol NMR 29(3): 351-361.
    Prosser, R. S., Evanics, F., Kitevski, J. L. and Patel, S. (2007). "The measurement of immersion depth and topology of membrane proteins by solution state NMR." Biochim Biophys Acta 1768(12):3044-3051.
    Renault, M., Tommassen-Van Boxtel, R., Bos, M. P., Post, J. A., Tommassen, J. and Baldus, M. (2012). "Cellular solid-state nuclear magnetic resonance spectroscopy." Proc Natl Acad Sci U S A 109(13):4863-4868.
    Rule, G. S., Pratt, E. A., Simplaceanu, V. and Ho, C. (1987). "Nuclear magnetic resonance and molecular genetic studies of the membrane-bound D-lactate dehydrogenase of Escherichia coli." Biochemistry 26(2):549-556.
    Serber, Z., Selenko, P., Hansel, R., Reckel, S., Lohr,F., Ferrell, J. E., Jr., Wagner, G. and Dotsch, V. (2006). "Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy." Nat Protoc 1(6):2701-2709.
    Shi, P., Li, D., Chen, H., Xiong, Y., Wang, Y. and Tian, C. (2012). "In situ 19 FNMR studies of an E. coli membrane protein." Protein Sci 21(4):596-600.
    Shi, Pan, Li, Dong, Chen, Hongwei, Xiong, Ying and Tian, Changlin (2011). "Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and 19F nuclear magnetic resonance." Biochemical and Biophysical Research Communications 414(2): 379-383.
    Shi, Pan, Li, Dong, Li, Juan, Chen, Hongwei, Wu, Fangming, Xiong, Ying and Tian, Changlin (2012). "Application of Site-Specific 19F Paramagnetic Relaxation Enhancement to Distinguish two Different Conformations of a Multidomain Protein." The Journal of Physical Chemistry Letters 3(1):34-37.
    Suzuki, Y., Buer, B. C., Al-Hashimi, H. M. and Marsh, E. N. (2011). "Using fluorine nuclear magnetic resonance to probe changes in the structure and dynamics of membrane-active peptides interacting with lipid bilayers." Biochemistry 50(27):5979-5987.
    Truong, H. T., Pratt, E. A. and Ho, C. (1991). "Interaction of the membrane-bound D-lactate dehydrogenase of Escherichia coli with phospholipid vesicles and reconstitution of activity using a spin-labeled fatty acid as an electron acceptor:a magnetic resonance and biochemical study." Biochemistry 30(16):3893-3898.
    Van Horn, W. D., Kim, H. J., Ellis, C. D., Hadziselimovic, A., Sulistijo, E. S., Karra, M. D., Tian, C., Sonnichsen, F. D. and Sanders, C. R. (2009). "Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase." Science 324(5935):1726-1729.
    Vogel, E. P., Curtis-Fisk, J., Young, K. M. and Weliky, D. P. (2011). "Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide:NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41." Biochemistry 50(46):10013-10026.
    Von Heijne, G. (2006). "Membrane-protein topology." Nat Rev Mol Cell Biol 7(12):909-918.
    Yang, X., Xie, X., Chen, L., Zhou, H., Wang, Z., Zhao, W., Tian, R., Zhang, R., Tian, C., Long, J. and Shen, Y. (2010). "Structural basis for tandem L27 domain-mediated polymerization." FASEB J 24(12):4806-4815.
    Zhou, M., Boekhorst, J., Francke, C. and Siezen, R. J. (2008). "LocateP:genome-scale subcellular-location predictor for bacterial proteins." BMC Bioinformatics 9:173.
    Amberg, G. C., Bonev, A. D., Rossow, C. F., Nelson, M. T. and Santana, L. F. (2003). "Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension." J Clin Invest 112(5):717-724.
    Bentrop, D., Beyermann, M., Wissmann, R. and Fakler, B. (2001). "NMR structure of the "ball-and-chain" domain of KCNMB2, the beta 2-subunit of large conductance Ca2+ -and voltage-activated potassium channels." J Biol Chem 276(45):42116-42121.
    Braun, A. P. and Sy, L. (2001). "Contribution of potential EF hand motifs to the calcium-dependent gating of a mouse brain large conductance, calcium-sensitive K+ channel." J Physiol 533(Pt 3):681-695.
    Brenner, R., Perez, G. J., Bonev, A. D., Eckman, D. M., Kosek, J. C., Wiler, S. W., Patterson, A. J., Nelson, M. T. and Aldrich, R. W. (2000). "Vasoregulation by the betal subunit of the calcium-activated potassium channel." Nature 407(6806):870-876.
    Chang, T., Wu, L. and Wang, R. (2006). "Altered expression of BK channel betal subunit in vascular tissues from spontaneously hypertensive rats." Am J Hypertens 19(7):678-685.
    Chen, R. S., Geng, Y. and Magleby, K. L. (2011). "Mg2+ binding to open and closed states can activate BK channels provided that the voltage sensors are elevated." The Journal of General Physiology 138(6):593-607.
    Cox, D. H. and Aldrich, R. W. (2000). "Role of the betal subunit in large-conductance Ca2+-activated K+ channel gating energetics. Mechanisms of enhanced Ca2+ sensitivity." J Gen Physiol 116(3):411-432.
    Cui, J. and Aldrich, R. W. (2000). "Allosteric linkage between voltage and Ca2+ -dependent activation of BK-type mslol K+ channels." Biochemistry 39(50):15612-15619.
    Cui, J., Yang, H. and Lee, U. S. (2009). "Molecular mechanisms of BK channel activation." Cell Mol Life Sci 66(5):852-875.
    Du, W., Bautista, J. F., Yang, H., Diez-Sampedro, A., You, S. A., Wang, L., Kotagal, P., Luders, H. O., Shi, J., Cui, J., Richerson, G. B. and Wang, Q. K. (2005). "Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder." Nat Genet 37(7): 733-738.
    Ghatta, S., Nimmagadda, D., Xu, X. and O' rourke, S. T. (2006). "Large-conductance, calcium-activated potassium channels:structural and functional implications." Pharmacol Ther 110(1):103-116.
    Horrigan, F. T. and Aldrich, R. W. (2002). "Coupling between voltage sensor activation, Ca2+ binding and channel opening in large conductance BK potassium channels." J Gen Physiol 120(3):267-305.
    Horrigan, F. T., Cui, J. and Aldrich, R. W. (1999). "Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+." J Gen Physiol 114(2); 277-304.
    Horrigan, F. T. and Ma, Z. (2008). "Mg2+ enhances voltage sensor/gate coupling in BK channels." J Gen Physiol 131(1):13-32.
    Hu, L., Yang, H., Shi, J. and Cui, J. (2006). "Effects of multiple metal binding sites on calcium and magnesium-dependent activation of BK channels." J Gen Physiol 127(1):35-49.
    Jeffries, O., Geiger, N., Rowe, I. C., Tian, L., Mcclafferty, H., Chen, L., Bi, D., Knaus, H. G, Ruth, P. and Shipston, M. J. (2010). "Palmitoylation of the S0-S1 linker regulates cell surface expression of voltage-and calcium-activated potassium (BK) channels." J Biol Chem 285(43):33307-33314.
    Kotlikoff, M. and Hall, I. (2003). "Hypertension:beta testing." J Clin Invest 112(5):654-656.
    Koval, O. M., Fan, Y. and Rothberg, B. S. (2007). "A role for the SO transmembrane segment in voltage-dependent gating of BK channels." J Gen Physiol 129(3):209-220.
    Latorre, R. and Brauchi, S. (2006). "Large conductance Ca2+ -activated K+ BK channel:activation by Ca2+ and voltage." Biol Res 39(3):385-401.
    Ledwell, J. L. and Aldrich, R. W. (1999). "Mutations in the S4 region isolate the final voltage-dependent cooperative step in potassium channel activation." J Gen Physiol 113(3): 389-414.
    Lee, U. S. and Cui, J. (2010). "BK channel activation:structural and functional insights." Trends Neurosci 33(9):415-423.
    Li, H., Yao, J., Tong, X., Guo, Z., Wu, Y, Sun, L., Pan, N., Wu, H., Xu, T. and Ding, J. (2007). "Interaction sites between the Slol pore and the NH2 terminus of the beta2 subunit, probed with a three-residue sensor." J Biol Chem 282(24):17720-17728.
    Liu, G., Zakharov, S. I., Yang, L., Deng, S. X., Landry, D. W., Karlin, A. and Marx, S. O. (2008). "Position and role of the BK channel alpha subunit SO helix inferred from disulfide crosslinking." J Gen Physiol 131(6):537-548.
    Lu, R., Alioua, A., Kumar, Y, Eghbali, M., Stefani, E. and Toro, L. (2006). "MaxiK channel partners:physiological impact." J Physiol 570(Pt 1):65-72.
    Lu, Z., Klem, A. M. and Ramu, Y (2001). "Ion conduction pore is conserved among potassium channels." Nature 413(6858):809-813.
    Meera, P., Wallner, M. and Toro, L. (2000). "A neuronal beta subunit (KCNMB4) makes the large conductance, voltage-and Ca2+ -activated K+ channel resistant to charybdotoxin and iberiotoxin." Proc Natl Acad Sci U S A 97(10):5562-5567.
    Meredith, A. L., Thorneloe, K. S., Werner, M. E., Nelson, M. T. and Aldrich, R. W. (2004). "Overactive bladder and incontinence in the absence of the BK large conductance Ca2+ -activated K+ channel." J Biol Chem 279(35):36746-36752.
    Niu, X., Qian, X. and Magleby, K. L. (2004). "Linker-gating ring complex as passive spring and Ca2+ -dependent machine for a voltage-and Ca2+ -activated potassium channel." Neuron 42(5): 745-756.
    Orio, P., Rojas, P., Ferreira, G. and Latorre, R. (2002). "New disguises for an old channel:MaxiK channel beta-subunits." News Physiol Sci 17:156-161.
    Pyott, S. J., Meredith, A. L., Fodor, A. A., Vazquez, A. E., Yamoah, E. N. and Aldrich, R. W. (2007). "Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits." J Biol Chem 282(5):3312-3324.
    Quirk, J. C. and Reinhart, P. H. (2001). "Identification of a novel tetramerization domain in large conductance K(ca) channels." Neuron 32(1):13-23.
    Ruttiger, L., Sausbier, M., Zimmermann, U., Winter, H., Braig, C., Engel, J., Knirsch, M., Arntz, C., Langer, P., Hirt, B., Muller, M., Kopschall, I., Pfister, M., Munkner, S., Rohbock, K., Pfaff, I., Rusch, A., Ruth, P. and Knipper, M. (2004). "Deletion of the Ca2+ -activated potassium (BK) alpha-subunit but not the BK betal-subunit leads to progressive hearing loss." Proc Natl Acad Sci U S A 101(35):12922-12927.
    Salkoff, L., Butler, A., Ferreira, G., Santi, C. and Wei, A. (2006). "High-conductance potassium channels of the SLO family." Nat Rev Neurosci 7(12):921-931.
    Sanchez, M. and Mcmanus, O. B. (1996). "Paxilline inhibition of the alpha-subunit of the high-conductance calcium-activated potassium channel." Neuropharmacology 35(7): 963-968.
    Schreiber, M. and Salkoff, L. (1997). "A novel calcium-sensing domain in the BK channel." Biophys J 73(3):1355-1363.
    Schreiber, M., Wei, A., Yuan, A., Gaut, J., Saito, M. and Salkoff, L. (1998). "Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes." J Biol Chem 273(6):3509-3516.
    Schreiber, M., Yuan, A. and Salkoff, L. (1999). "Transplantable sites confer calcium sensitivity to BK channels." Nat Neurosci 2(5):416-421.
    Seibold, M. A., Wang, B., Eng, C., Kumar, G., Beckman, K. B., Sen, S., Choudhry, S., Meade, K., Lenoir, M., Watson, H. G., Thyne, S., Williams, L. K., Kumar, R., Weiss, K. B., Grammer, L. C., Avila, P. C., Schleimer, R. P., Burchard, E. G. and Brenner, R. (2008). "An african-specific functional polymorphism in KCNMB1 shows sex-specific association with asthma severity." Hum Mol Genet 17(17):2681-2690.
    Shi, J. and Cui, J. (2001). "Intracellular Mg2+ enhances the function of BK-type Ca2+-activated K+ channels." J Gen Physiol 118(5):589-606.
    Soler-Llavina, G J., Chang, T. H. and Swartz, K. J. (2006). "Functional interactions at the interface between voltage-sensing and pore domains in the Shaker K(v) channel." Neuron 52(4):623-634.
    Wallner, M., Meera, P. and Toro, L. (1996). "Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca+-sensitive K+channels:an additional transmembrane region at the N terminus." Proc Natl Acad Sci U S A 93(25):14922-14927.
    Wang, L. and Sigworth, F. J. (2009). "Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy." Nature 461(7261):292-295.
    Wei, A., Solaro, C., Lingle, C. and Salkoff, L. (1994). "Calcium sensitivity of BK-type KCa channels determined by a separable domain." Neuron 13(3):671-681.
    Xia, X. M., Ding, J. P. and Lingle, C. J. (1999). "Molecular basis for the inactivation of Ca2+-and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinoma tumor cells." J Neurosci 19(13):5255-5264.
    Xia, X. M., Ding, J. P., Zeng, X. H., Duan, K. L. and Lingle, C. J. (2000). "Rectification and rapid activation at low Ca2+of Ca2+-activated, voltage-dependent BK currents:consequences of rapid inactivation by a novel beta subunit." J Neurosci 20(13):4890-4903.
    Xia, X. M., Zeng, X. and Lingle, C. J. (2002). "Multiple regulatory sites in large-conductance calcium-activated potassium channels." Nature 418(6900):880-884.
    Yang, H., Hu, L., Shi, J. and Cui, J. (2006). "Tuning magnesium sensitivity of BK channels by mutations." Biophys J 91(8):2892-2900.
    Yang, H., Hu, L, Shi, J., Delaloye, K., Horrigan, F. T. and Cui, J. (2007). "Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels." Proc Natl Acad Sci U S A 104(46):18270-18275.
    Yang, H., Shi, J., Zhang, G, Yang, J., Delaloye, K. and Cui, J. (2008). "Activation of Slo1 BK channels by Mg2+ coordinated between the voltage sensor and RCK1 domains." Nat Struct Mol Biol 15(11):1152-1159.
    Yuan, A., Dourado, M., Butler, A., Walton, N., Wei, A. and Salkoff, L. (2000). "SLO-2, a K+ channel with an unusual Cl- dependence." Nat Neurosci 3(8):771-779.
    Yuan, P., Leonetti, M. D., Pico, A. R., Hsiung, Y. and Mackinnon, R. (2010). "Structure of the human BK channel Ca2+-activation apparatus at 3.0 A resolution." Science 329(5988): 182-186.
    Yusifov, T., Savalli, N., Gandhi, C. S., Ottolia, M. and Olcese, R. (2008). "The RCK2 domain of the human BK Ca channel is a calcium sensor." Proc Natl Acad Sci U S A 105(1):376-381.
    Zeng, X. H., Xia, X. M. and Lingle, C. J. (2003). "Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels." Nat Struct Biol 10(6): 448-454.
    Zhang, X., Solaro, C. R. and Lingle, C. J. (2001). "Allosteric regulation of BK channel gating by Ca2+ and Mg2+ through a nonselective, low affinity divalent cation site." J Gen Physiol 118(5): 607-636.
    Fu, R., Wang, X., Li, C., Santiago-Miranda, A. N., Pielak, G. J. and Tian, F. (2011). "In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR." J Am Chem Soc 133(32):12370-12373.
    Harbison, G. S., Smith, S. O., Pardoen, J. A., Mulder, P. P., Lugtenburg, J., Herzfeld, J., Mathies, R. and Griffin, R. G. (1984). "Solid-state 13C NMR studies of retinal in bacteriorhodopsin.' Biochemistry 23(12):2662-2667.
    Higman, V. A., Varga, K., Aslimovska, L., Judge, P. J., Sperling, L. J., Rienstra, C. M. and Watts, A. (2011). "The Conformation of Bacteriorhodopsin Loops in Purple Membranes Resolved by Solid-State MAS NMR Spectroscopy." Angew Chem Int Ed Engl.
    Kitevski-Leblanc, J. L. and Prosser, R. S. (2012). "Current applications of 19F NMR to studies of protein structure and dynamics." Prog Nucl Magn Reson Spectrosc 62:1-33.
    Linden, A. H., Lange, S., Franks, W. T., Akbey, U., Specker, E., Van Rossum, B. J. and Oschkinat, H. (2011). "Neurotoxin Ⅱ bound to acetylcholine receptors in native membranes studied by dynamic nuclear polarization NMR." J Am Chem Soc 133(48):19266-19269.
    Mao, L., Inoue, K., Tao, Y., Montelione, G. T., Mcdermott, A. E. and Inouye, M. (2011). "Suppression of phospholipid biosynthesis by cerulenin in the condensed Single-Protein-Production (cSPP) system." J Biomol NMR 49(2):131-137.
    Renault, M., Pawsey, S., Bos, M. P., Koers, E. J., Nand, D., Tommassen-Van Boxtel, R., Rosay, M., Tommassen, J., Maas, W. E. and Baldus, M. (2012). "Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization." Angew Chem Int Ed Engl 51(12):2998-3001.
    Renault, M., Tommassen-Van Boxtel, R., Bos, M. P., Post, J. A., Tommassen, J. and Baldus, M. (2012). "Cellular solid-state nuclear magnetic resonance spectroscopy." Proc Natl Acad Sci U S A 109(13):4863-4868.
    Shi, P., Li, D., Chen, H., Xiong, Y., Wang, Y. and Tian, C. (2012). "In situ 19 FNMR studies of an E. coli membrane protein." Protein Sci 21(4):596-600.
    Shi, P., Wang, H., Xi, Z., Shi, C., Xiong, Y. and Tian, C. (2011). "Site-specific 19F NMR chemical shift and side chain relaxation analysis of a membrane protein labeled with an unnatural amino acid." Protein Sci 20(1):224-228.
    Shi, P., Xi, Z., Wang, H., Shi, C., Xiong, Y. and Tian, C. (2010). "Site-specific protein backbone and side-chain NMR chemical shift and relaxation analysis of human vinexin SH3 domain using a genetically encoded 15N/19F-labeled unnatural amino acid." Biochem Biophys Res Commun 402(3):461-466.
    Shi, Pan. Li, Dong, Li, Juan, Chen, Hongwei, Wu, Fangming, Xiong, Ying and Tian, Changlin (2012). "Application of Site-Specific 19F Paramagnetic Relaxation Enhancement to Distinguish two Different Conformations of a Multidomain Protein." The Journal of Physical Chemistry Letters 3(1):34-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700