用户名: 密码: 验证码:
北山造山带南带构造—岩浆建造与金多金属成矿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中亚造山成矿域是全球最显著的显生宙大陆增生区,该区域大陆增生改造过程中的壳幔相互作用和大规模成矿机理是国内外研究的重要课题。北山造山带地处中亚造山成矿域南缘,是我国西部重要的金、铜、镍、铅锌成矿带。论文以北山南带为研究区,以区域构造-岩浆活动-成矿作用为主线,在深刻认识造山演化过程和动力学背景基础上,对典型矿床展开进一步解剖研究,对区域金多金属成矿作用和成矿规律进行了探讨。取得主要成果如下:
     1、地质背景与动力学演化研究
     选取相关中酸性侵入岩体展开系统的锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb同位素分析,并探讨了其岩石成因及起源。研究对象分别为:小西弓钾长花岗岩(841.34±8.1Ma)、拾金坡岩体(405.5±1.8Ma)、辉铜山钾长花岗岩(424.4±2.5Ma)、白山堂流纹斑岩(374.9±2.3Ma)、石板泉花岗岩(280.5±5.5Ma)、小西弓石英正长斑岩体(246.4±2.5Ma)、花牛山钾长花岗岩(225.6±2.2Ma)、金场沟钾长花岗岩。
     研究区造山演化过程可大致划分为前造山期(前寒武纪-早寒武世)、洋陆演化期(奥陶纪-二叠纪)、造山后(三叠纪-)。综合本文研究及前人资料,划分出四次中酸性侵入岩活动峰期:新元古代(880Ma-840Ma)、晚奥陶世-泥盆纪(451-374Ma)、石炭纪-二叠纪(310Ma~270Ma)、三叠纪(240Ma~220Ma)。不同阶段岩浆活动反映了不同的动力学环境:
     i.新元代的s型花岗岩、榴辉岩共同反映了早期陆块(地块)的汇聚拼合事件,并暗示同碰撞岩浆活动的峰期可能在860~880Ma。小西弓钾长花岗岩(841Ma)是北山地区目前发现最古老的A型花岗岩,侵位于新元古代中期,暗示了后碰撞伸展背景。属首次在北山地区解离出的新元古代后碰撞环境。
     ii.早中古生代-晚古生代研究区处于俯冲背景下,发育大量的I-S-A型花岗岩、埃达克质花岗岩、岛弧火山岩,代表岩体有辉铜山钾长花岗岩(424.4±2.5Ma)、拾金坡岩体(405.5±1.8Ma)、白山堂流纹斑岩(374.9±2.3Ma)、石板泉花岗岩(280.5±5.5Ma)。岩浆活动时间从奥陶纪一直持续到早二叠世,记录了洋陆体制下陆壳侧向增生作用。
     iii.三叠纪区域进入造山后伸展环境,中酸性岩浆活动依然强烈,代表性岩体有花牛山钾长花岗岩(225Ma)、金场沟钾长花岗岩等,侵位时间集中在240Ma~220Ma,属中晚三叠世。岩石成因类型主要为高分异I型-A型,岩浆起源于伸展背景下幔源岩浆底侵(受到混染改造的富集地幔)导致的年轻地壳物质(可能为早期洋壳和岛弧建造)重熔。该期岩浆活动揭示了三叠纪造山后伸展环境和陆壳垂向增生作用。
     2、典型矿床解剖与矿床成因新认识
     在充分吸收消化前人成果基础上,对拾金坡金矿床、小西弓金矿床和花牛山金多金属矿田展开进一步解剖研究,并获得一些新的认识。特别是对花牛山金多金属矿田的成因综合研究,较大程度填补了前人研究空白。
     拾金坡金矿床产在花岗岩体边部,受断裂构造控制明显,属受构造控制石英脉型金矿。获得热液蚀变绢云母40Ar/39Ar坪年龄为364.6±3Ma,表明成矿作用发生在晚泥盆世。成矿时间与赋矿花岗岩成岩年龄(405.5±1.8Ma)相差近40Ma,二者不存在直接成因联系。结合氢氧同位素和野外地质特征认为,初始成矿流体来自深部(变质)热液。主成矿阶段石英中流体包裹体群具明显沸腾作用特征,不同气液比的水溶液包裹体和含CO2包裹体集群分布,均一温度范围集中于270~340℃,盐度为4.65%~9.21%NaCl。晚阶段石英中仅发育水溶液包裹体,均一温度集中在160~230℃,盐度为9.47%~11.1%NaCl。成矿流体属中温、低盐度、富CO2流体。流体从早阶段演化到晚阶段,温度降低100℃,压力由约113MPa骤减到约11Mpa。温度和压力降低是石英大脉中金沉淀、富集的最主要原因。石英脉型矿石硫主要来自地层,蚀变岩型矿石硫更多地继承了花岗岩围岩硫。该矿床形成于晚泥盆世俯冲作用的应力松弛阶段。
     小西弓金矿床受韧性剪切带控制明显,矿体赋存于中元古界西尖山群变质岩和新元古代钾长花岗岩中。主成矿阶段流体温度为281~325℃,盐度变化范围为3.2%-9.2%NaCl,富含CO2、CH4组份,属于中高温、低盐度、CO2-H2O-CH4-NaCl热液体系。矿石硫化物63nS值范围为1.2‰~12.79‰,具有混源特征,暗示成矿物质来自花岗岩类和中元古界片岩。成矿流体为变质热液与大气降水的混合流体。该矿床形成于中二叠世主碰撞晚期。
     花牛山金多金属矿田由花牛山金矿床、花西山金矿床、花黑滩钼矿床、花牛山铅锌矿床组成,矿床类型包括矽卡岩型、高温岩浆热液型、中低温岩浆热液型以及沉积-改造型,构成与岩浆热液有关的Au-Mo-Pb-Zn-(W)成矿系列。论文对花牛山金多金属矿田进行了详细了年代学、矿床地球化学、流体包裹体及矿床成因分析:
     1)花牛山金矿床具典型矽卡岩型矿床特征,矿体产在钾长花岗岩体与大理岩接触部位,受断裂构造控制,磁黄铁矿和黄铁矿是最重要的载金矿物。矿石中辉钼矿Re-Os模式年龄为221.0±3.4Ma,与花岗岩侵位年龄(225Ma)基本一致。金成矿作用发生在晚三叠世。主成矿阶段石英中捕获了不同气液比H20溶液包裹体和含CO2流体包裹体,均一温度为280~425℃,峰值为330~370℃,盐度介于6.59%~14.04%NaCl。成矿流体属中高温、中等盐度、富CO2流体。石英中流体包裹体的δ18O和δD值分别为-0.01‰~0.29‰和-109‰--116‰,投点在岩浆水与大气降水区范围之间。成矿流体是岩浆水与大气降水的混合热液,且大气降水所占比重较高。矿石金属硫化物δ34s值变化范围集中在4.21‰-6.53‰,硫源较为单一,成矿物质来自岩浆。
     2)花西山金矿床产在钾长花岗岩体边部,属中低温岩浆热液型金矿。矿体以石英脉和蚀变岩形式产出,赋存在EW、NE和NNE向次级断裂破碎带中。流体包裹体研究表明,矿化发生在154~408℃这一较宽的温度区间,早阶段流体为中高温246~334℃、中等盐度(16.24%~9.86%NaCl)、富CO2热液;晚阶段成矿流体具中低温(154-214℃)、低盐度(2.41%~6.88%NaCl)特征。矿石硫化物δ34S值范围为2.6%‰~4.25‰,表明硫源单一,且均一化程度较高,成矿物质主要来自岩浆。
     3)花黑滩钼矿床产于钾长花岗岩体边缘及其外接触带,赋矿围岩为震旦系洗肠井群第二岩组黑云长英角岩。辉钼矿Re-Os等时线年龄为225.2±2.4Ma,与花岗岩U-Pb年龄(225Ma)一致。主成矿阶段流体温度为342~583℃,盐度为15.67%~16.53%]NaCl,属高温、中等盐度热液;晚阶段流体具中低温(142-306℃)、中低盐度(12.62%~15.66%NaCl)特征。矿石硫化物δ34S值范围为3.3‰~3.9‰(除一个样品为负值外),暗示矿石硫主要来自岩浆,有少量地层组份的贡献。
     4)花牛山铅锌银矿床产在岩体与地层接触部位,矿体呈脉状、透镜状;矿体中心到边部,由块状矿石向浸染状矿石过渡。成矿流体属中高温(276-362-C)、中等盐度(10.23%~21.11%NaCl)热液。闪锌矿形成于高温条件。矿石S、Pb同位素组成较为复杂,一矿区(主矿区)矿石矿δ34S值均为负值,范围是-10.1‰~3.68‰;三矿区范围是δ34S值0.71‰-4.82‰。综合矿床地质特征及成因研究认为,花牛山铅锌银矿床属于岩浆中高温热液矿床,但成矿物质具有继承性。蓟县纪区域处于海底火山喷发和稳定沉积交替环境,大量成矿物质在地层中预富集,形成原始矿源层或矿胚。晚三叠世花岗质岩浆活动促使成矿元素不断活化、迁移、富集成矿。
     整体上,花牛山矿田金、钼、铅锌多金属成矿作用与花牛山钾长花岗岩存在密切的时间、空间及成因联系,岩浆侵位为成矿提供了丰富的热能、流体和成矿物质。不同矿床之成矿流体构成一个与岩浆热液有关的流体演化系统。成岩-成矿作用发生在三叠纪造山后伸展环境,幔源岩浆底侵诱发地壳物质部分熔融和花岗岩浆上侵,继而导致金多金属成矿作用发生。
     3、金多金属成矿系列与成矿规律研究
     以区域成矿学为理论指导,对北山南带金多金属矿床成矿系列进行了研究,将其划分为:①与志留纪-泥盆纪沟弧盆体系有关金铜成矿系列;②与石炭纪-早三叠世岩浆弧体系有关金铜(铁)成矿系列;③与二叠纪强应变构造带有关的金(铜)成矿系列;④与三叠纪造山后中酸性岩浆活动有关金钼铅锌(钨)成矿系列。分别对其成矿时间、地质特征和成矿地质条件进行了探讨,并建立了成矿模式。
     初步构建了区域金多金属矿床的时空分布格架,指出晚泥盆世、二叠纪和三叠纪是金成矿的主要峰期。不同地质体边缘、构造体制转换环境是金成矿有利条件。对地球动力学演化过程与金成矿作用之间关系进行了探讨。对北山南带金矿床的成矿远景进行了评价,指出二叠纪绿岩带型金矿床和三叠纪与岩浆热液有关金钼多金属矿床具有较好的找矿潜力,花牛山-金场沟找矿远景区和小西弓-乌龙泉找矿远景区具有明显的化探异常和较好成矿条件。
The Central Asian Orogenic Belt (CAOB), situated between the Siberian, North China, Tarim and East European cratons, represents one of the most important sites of juvenile crustal growth in the Phanerozoic. The interaction between mantle and crust and multiple metallogeny in the processes of the continental growth have attracted many people's attention.The South Beishan area is located at the south margin of CAOB. It has experienced complicated geological process with multiple accretion and collision events, and hosts a large number of porphyry copper, orogenic gold, magmatic copper-nickel, and epithermal gold deposits.
     In this paper, the Shijinpo gold deposit, Xiaoxigong gold deposit and Huaniushan gold-polymetallic ore district are detailed studied. On the basis of the accurately age dating, combined with the geology and geochemistry analysis, the genesis of these granitoids and gold deposits, and their temporal and spatial relationships have been evaluated. The main results and conclusions are summarized as following:
     1. Magmatic formation and geodynamic evolution
     LA-ICP-MS U-Pb Zircon dating yields the age of Xiaoxigong K-feldspar granite(841Ma), Huitongshan granite (424.4±2.5Ma), Shijinpo granite (405.5±1.8Ma)、Baishantang rhyolite-porphyry (374.9±2.3Ma), Shibanquan granite (280.5±5.5Ma), Xiaoxigong quartz synenite (246.4±2.5Ma), and Huaniushan granite (225.6±2.2Ma), respectively. Though geochemistryand Sr-Nd-Pb isotope analysis, petrogenesis and tectonic implications of these granitoids have been discussed. Based on the geochronological and geochemical data concerning the other Paleozoic magmatic rocks from the South Beishan area, this paper outlines the evolved geodynamic scenarios inherent in these magmatic sequences. The generation of syn-and post-orogenic granitoids represents horizontal (lateral) and vertical crustal growth. And four magmatic activities stages have been yielded, such as:(1) Neoproterozoic (ca.880Ma to840Ma),(2) Ordovician to Devonian (ca.451Ma to374Ma),(3) Carboniferous to Permian (ca.310Ma to270Ma),(4) Triassic (ca.240Ma to220Ma). The detailed research can be described as follows:
     ⅰ. Petrology, major and trace elements data all indicate that the Xiaoxigong K-feldspar granite (841Ma) is typical A-type granite which intruded in a post-collisional extensional tectonic setting. It is the oldest A-type granitic pluton in the Beishan area. Combined with the Gubaoquan elogite which has an eclogite-facies metamorphic age of857±71Ma, it indicates an important subduetion-collision and post-collision extension event in the Neoproterozoic.
     ⅱ. The Paleozoic granitoid intrusions in the Beishan area are mainly I-type granite, with some adakites, Nb-enriched basalts and A-type granite,suggesting subducted oceanic slab-melting was frequent during451Ma to270Ma.
     iii. Triassic granitic plutons have also been identified, such as the Huaniushan granite(225.6±2.2Ma), Xiaoxigong quartz synenite(246.4±2.5Ma),and Jingchanggou granite. They belong to the high-K calc-alkaline and shoshonitic series and have alkalic and alkali-calcic characteristics, and are weakly peraluminous-metaluminous. These granitoids are mainly highly fractionated I-type granite and A-type granite, suggesting a post-orogenic extensional setting during the Triassic.
     2. Ore genesis studies of gold-polymetallic deposits
     The Shijinpo gold deposit is hosted in the early Devonian granite, and consists primarily of auriferous quartz veins that confined to the EW-trending faults.Laser incremental heating40Ar/39Ar analysis of hydrothermal sericite yields a plateau age of364.6±3Ma (2σ), which suggests that the gold mineralization took place in the late Devonian. A comprehensive fluid inclusion study shows that in the early stage there are three major types of fluid inclusions: liquid-rich, gas-rich aqueous fluid inclusions and CO2-bearing fluid inclusions, with intermediate homogenization temperature (270℃to340℃), and low salinity (4.65%to9.21%NaCl). Fluid boiling are evidenced by the co-existence of three types of fluid inclusions with similar homogenization temperatures. Fluid pressures declined from ca.113MPa to ca.11MPa through the early stage to the late stage, and the ore-forming fluids are assumed to undergo boiling in a transitional setting (from compression to extension). Oxygen and hydrogen isotopes for ore fluids range from1.39‰to3.39‰and-71‰to-99‰, respectively, suggesting that the ore fluids are mainly sourced from metamorphic water, and mixed with meteoric water later. Measured δ34S values for sulfide minerals range from4.44%o to11.33‰. Both Precambrian basement and granite might be the sulfur sources with respect to the sulfur isotopic composition of the ores, Precambrian metamorphic basement and Paleozoic granites. On the basis of our researches and the regional geology, we propose that the Shijinpo gold deposit is an orogenic gold deposit.
     The Xiaoxigong gold deposit is hosted in Mesoproterozoic metamorphic rock and Neoproterozoic granite, related to shear zone. Fluid inclusions in quartz of the major metallogenic stage are mainly two-phase vapor-liquid inclusions with small amount of CO2phase. The ore-forming fluids are CO2-H2O-CH4-NaCl system with intermediate homogenization temperature (281℃to325℃), and low salinity (3.2%to9.2%NaCl). Oxygen and hydrogen isotopes for ore fluids range from-2.95%o to13.79%o and-72.5%o to-107‰, respectively, suggesting that the ore fluids are mainly sourced from metamorphic water, and mixed with meteoric water later. Measured δ34S values for sulfide minerals range from1.2%o to12.7‰, suggesting that both Precambrian basement and granite might be the sulfur sources. We further propose that the Xiaoxigong gold deposit was formed in the late-collisional setting during the middle Permian.
     The Huaniushan gold-polymetallic ore district consists mainly of magmatic-hydrothemal and skarn Au, Mo, Pb-Zn ores, occur in the contact zone of the Huaniushan granite, respectively. LA-ICP-MS zircon U-Pb dating constrains the crystallization of the granite at225.6±2.2Ma (1δ). Five molybdenite samples from the magmatic-hydrothemal molybdenum ores yield Re-Os isochron age of225.2±2.4Ma (2δ), while a molybdenite sample from the skarn gold ores yields a Re-Os model age of143.0±0.3Ma and an isochron age of221.0±3.4Ma, indicating the gold-polymetallic mineralization occuring in a post-orogenic setting during the late Triassic.
     1)The Huaniushan skarn gold deposit controlled by EW trending faults. The auriferous quartz veins were deposited at intermediate-high temperature conditions (280℃to425℃) from aqueous or aqueous-carbonic fluids with moderate salinity (6.59%to14.04%NaCl equiv). Oxygen and hydrogen isotopes for ore fluids range from-0.01‰to+0.29‰and-109‰to-116‰, respectively, compatible with mixing of magmatic and meteoric components. Measured δ34S values for sulfide minerals are predominantly+4.2l‰to+6.53%o, indicating a deep-seated sulfur source of magmatic origin
     2) The Huaxishan magmatic-hydrothemal gold deposit was occurring in the Huaniushan granite and along the contact with the Mesoproterozoic clastic rock. The homogenization temperatures and salinities of inclusions in major stage vary from246℃to334℃,16.24%to9.86%NaCl equivalent, and in late auriferous mineralization vary from154℃to214℃,2.41%-6.88%NaCl equivalent. Measuredδ34S values for sulfide minerals are predominantly+2.6%o to+4.25%o, indicating a deep-seated sulfur source of magmatic origin.
     3) The Huaheitan magmatic-hydrothemal molybdenum deposit was hosted in the granite and along the contact with the Mesoproterozoic hornfels. Fluid inclusion studies suggest that the molybdenum-quartz veins were deposited at high temperature conditions (342℃to583℃) from aqueous or aqueous-carbonic fluids with moderate salinity (15.67%to16.53%NaCl equiv). Measured δ34S values for sulfide minerals are predominantly+3.3‰to+3.9‰, also indicating a deep-seated sulfur source of magmatic origin.
     4) The Huaniushan Pb-Zn ore bodies occur in the contact zone between the granite and the marine carbonates. The ore bodies occurred mainly in terms of massive ores in big veins and lenticular ore bodies. Fluid inclusion studies suggest that the veins were deposited at intermediate-high temperature conditions (276℃to362℃) from aqueous or aqueous-carbonic fluids with moderate salinity (10.23%to21.11%NaCl equiv). Measuredδ34S values for sulfide minerals from NO.2mining area are predominantly-10.1%o to-3.68%o, which is quite different from the other Au, Mo deposits related to the granite. And δ34S values for sulfide minerals from NO.3mining area vary from0.71‰to4.82‰. According to the deposit geology characteristics, we propose that the Huaniushan Pb-Zn deposit was formed by multiple stage:a) the "ore source-bed" was formed by submarine exhalation-sedimentation in Late Mesoproterozoic, b) the magmatic-hydrothemal processes determine the Pb-Zn enrichment and mineralization in Late Triassic.
     3. Metallogenic series and metallogenic regularity
     In South Beishan area, there are mainly four gold-polymetallic metallogenic series. They are the Cu-Au series formed in the island arc setting during the Silurian to Devonian, the volcano-subvolcano Cu-Au-Fe series formed in continental marginal volcanic arc setting during the Carboniferous to early Permian, the shear zone related Au(Cu) series formed in late-collisional setting during the middle-late Permian, and the potassium granite related Au-Mo-Pb-Zn-(W) series occured in the post-orogenic extensional setting during the late Triassic.
     By summarizing the regional metallogenic conditions and the temporal and spatial distribution regularities, the regional gold-polymetallic metallogenic model have been proposed. The geochronology study indicates that the Devonian, Permian and Triassic are the main gold mineralization epochs in this area. Five gold-polymetallic ore prospecting areas have been divided, and recommendations on the deployment of prospective areas have been put forward.
引文
[1]杨合群,李英,杨建国,等.北山造山带的基本成矿特征.西北地质,2006,39(2):78-95.
    [2]许荣科.甘蒙北山铜金矿床成矿规律及成矿预测.[学位论文].武汉:中国地质大学,2010,1-63.
    [3]刘雪亚,王荃.中国西部北山造山带的大地构造及其演化.地学研究,1995,第28号:37-47.
    [4]左国朝,何国琦.北山板块构造及成矿规律.北京:北京大学出版社,1990.1-210.
    [5]左国朝,刘义科,刘春燕.甘新蒙北山地区构造格局及演化.甘肃地质学报,2003,12(01):1-14.
    [6]龚全胜,刘明强,李海明,等.甘肃北山造山带类型及基本特征.西北地质,2002,35(3):28-34.
    [7]龚全胜,刘明强,梁明宏,等.甘肃北山造山带大地构造相及构造演化.西北地质,2003,36(1):11-17.
    [8]何世平,周会武,任秉琛,等.甘肃内蒙古北山地区古生代地壳演化.西北地质,2005,38(3):6-15.
    [9]聂凤军,江思宏,白大明,等.北山地区金属矿床成矿规律及找矿方向.北京:地质出版社,2002.1-400.
    [10]江思宏.北山地区岩浆活动与金的成矿作用.[学位论文].北京:中国地质科学院,2004.
    [11]胡朋.北山南带构造岩浆演化与金的成矿作用.[学位论文].北京:中国地质科学院,2008.
    [12]肖文交,舒良树,高俊,等.中亚造山带大陆动力学过程与成矿作用.新疆地质,2008,23:599-603.
    [13]毛启贵.北山及邻区古生代-早中生代增生与碰撞大地构造格局.[学位论文].北京:中国科学院地质与地球物理研究所,2008.
    [14]Xiao W J, Windley B F, Huang B C, et al. Paleozoic multiple accretionary and collisional processes of the Beishan orogenic collage. American Journal of Science,2010,310: 1553-1594.
    [15]Xiao W J, Windley B F, Huang B C, et al. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids:implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. Journal of Asian Earth Sciences.2008,32:102-117.
    [16]Xiao W J, Windley B F, Badarch G, et al. Palaeozoic accretionary and convergent tectonics of the southern Altaids:implications for the lateral growth of Central Asia. Journal of the Geological Society,2004,161:339-342.
    [17]Mao Q G, Xiao W J, Windley B F.,et al. The Liuyuan complex in the Beishan, NW China:a Carboniferous-Permian forearc sliver in the Southern Altaids. Geological Magazine,2012, 149(03):483-506.
    [18]Mao Q G, Xiao W J, Fang T H, et al. Late Ordovician to early Devonian adakites and Nb-enriched basalts in the Liuyuan area, Beishan, NW China:Implications for early Paleozoic slab-melting and crustal growth in the southern Altaids. Gondwana Research, 2012,22(2):534-553.
    [19]Zhang W, Pease V, Wu T R. Discovery of an adakite-like pluton near Dongqiyishan (Beishan, NW China)—Its age and tectonic significance. Lithos,2012,142(143):148-160.
    [20]Li S, Wang T, Wilde A S, et al. Geochronology, petrogenesis and tectonic implications of Triassic granitoids from Beishan, NW China. Lithos,2012,134:123-145.
    [21]Guo Q Q, Xiao W J, Brian F, et al. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China:Implications for the Late Paleozoic accretionary tectonics of the southern Altaids. Journal of Asian Earth Sciences,2012,49:54-68.
    [22]Zhang Y Y, Dostal J, Zhao Z H, et al. Geochronology, geochemistry and petrogenesis of mafic and ultramafic rocks from Southern Beishan area, NW China:Implications for crust-mantle interaction. Gondwana Research,2011,20:816-830.
    [23]顾连兴,张遵忠,吴昌志,等.关于东天山花岗岩与陆壳垂向增生的若干认识.岩石学报,2006,22(05):1103-1120.
    [24]郭召杰,史宏宇,张志诚,等.新疆甘肃交界红柳河蛇绿岩中伸展构造与古洋盆演化过程.岩石学报,2006,22(1):95-102.
    [25]王涛,李伍平,李金宝,等.东天山东段同造山到后造山花岗岩幔源组分的递增及陆壳垂向生长意义—Sr、Nd同位素证据.岩石学报,2008,24(4):762-772.
    [26]李舢,王涛,童英,等.北山柳园地区双峰山早泥盆世A型花岗岩的确定及其构造演化意义.地球学报,2009,28(5):407-422.
    [27]李舢.北山造山带早中生代花岗岩的确定、成因和构造意义及其邻区早中生代花岗岩时空分布探讨.[学位论文].北京:中国地质科学院,2009.
    [28]刘畅,赵泽辉,郭召杰.甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论.岩石学报,2006,22(5):1294-1306.
    [29]任纪舜,姜春发,张正坤,等.中国大地构造及其演化(1:4000 000中国大地构造图简要说明).北京:科学出版社,1980.1-124.
    [30]徐志刚.中国成矿域及成矿构造环境.见:陈敏川.等,中国成矿体系与区域成矿评价.北京:地质出版杜,2006.62-169.
    [31]游小毛.甘肃北山铜矿床成矿学研究.[学位论文].长沙:中南大学,2002.
    [32]赵泽辉,郭召杰,王毅.甘肃北山柳园地区花岗岩类的年代学、地球化学特征及构造意义.岩石学报,2007,23(8):1847-1860.
    [33]冯继承,张文,吴泰然,等.甘肃北山桥湾北花岗岩体的年代学、地球化学及其地质意义.北京大学学报(自然科学版),2012,48(01):61-70.
    [34]张文,冯继承,郑荣国,等.甘肃北山音凹峡南花岗岩体的锆石LA-ICP-MS定年及其构造意义.岩石学报,2011,27(6):1649-1661.
    [35]赵泽辉,郭召杰,韩宝福,等.新疆东部-甘肃北山地区二叠纪玄武岩对比研究及其构 造意义.岩石学报,2006,22(5):1279-1293.
    [36]赵泽辉,郭召杰,张志诚,等.新甘交界红柳河地区下二叠统玄武岩地球化学特征及其形成的构造背景.高校地质学报,2004,10(4):545-553.
    [37]潘金花,郭召杰,刘畅,等.新甘交界红柳河地区二叠纪玄武岩年代学、地球化学及构造意义.岩石学报,2008,24(4):793-802.
    [38]郭召杰,韩宝福,张元元.中亚造山带中新生代壳幔相互作用特征与过程—新疆北部幔源岩浆岩系对比研究.岩石学报,2010,26(2):431-439.
    [39]陈富文,李华芹,蔡红,等.新疆东部金窝子金矿成因讨论—同位素地质年代学证据.地质论评,1999,45(03):247-254.
    [40]王清利,陈文,韩丹,等.新疆金窝子金矿床形成时代研究及成因机制讨论.中国地质,2008,35(02):286-291.
    [41]安国堡.甘肃北山拾金坡金矿床地质特征及成因分析.矿床地质,2006,25(4):483-490.
    [42]辛存林,孙柏年,张祥年,等.甘肃拾金坡金矿床地质特征及成矿作用.兰州大学学报(自然科学版),2009,45(01):1-7.
    [43]刘伟,潘小菲.新疆-甘肃北山金矿南带的成矿流体演化和成矿机制.岩石学报,2006,22(1):171-188.
    [44]徐志刚,陈毓川,王登红,等.中国成矿区带划分方案.北京:地质出版社,2008,1-110.
    [45]朱永峰.新疆的印支运动与成矿.地质通报,2007,26(05):510-519.
    [46]Zhu J, Lv X B, Cao X F, et al. U-Pb zircon geochronology, geochemistry and kinetics of the Huaniushan A-type granite in northwest China. Chinese Journal of Geochemistry,2012,31: 85-94.
    [47]于海峰,陆松年,梅华林,等.中国西部新元古代榴辉岩-花岗岩带和深层次韧性剪切带特征及其大陆再造意义.岩石学报,1999,15(4):532-538.
    [48]杨经绥,吴才来,陈松永,等.甘肃北山地区榴辉岩的变质年龄:来自锆石的U-Pb同位素定年证据.中国地质,2006,3(2):317-325.
    [49]Liu X C, Chen B L, Bor-ming J, et al. Early Paleozoic (ca.465 Ma) eclogites from Beishan (NW China) and their bearing on the early evolution of the southern Central Asia Orogenic Belt. Journal of Asian Earth Sciences. in press. doi:10.1016/j.jseaes.2010.10.017.
    [50]Qu J F, Xiao W J, Windley B F, et al. Metamorphic evolution and P-T trajectory of eclogites from the Chinese Beishan:implications for the Paleozoic tectonic evolution of the southern Altaids. Journal of Metamorphic Geology, in press. doi:10.1111/j.1525-1314.2011.00942.x.
    [51]张元元,郭召杰.甘新交界红柳河蛇绿岩形成和侵位年龄的准确限定及大地构造意义.岩石学报,2008,24(4):804-829.
    [52]梅华林,李惠民,陆松年,等.甘肃柳园地区花岗质岩石时代及成因.岩石矿物学杂志,1999,18(1):14-17
    [53]杨建国,王磊,王小红,等.甘肃北山地区黑山铜镍矿化基性-超基性杂岩体SHRIMP锆石U-Pb定年及其地质意义.地质通报,2012,31(2~3):448-454.
    [54]郭谦谦,肖文交,侯泉林,等.北山南部墩墩山弧的识别及充填层序厘定.见:第五届全国构造地质与地球动力学学术研讨会摘要集.2012,83-84.
    [55]李向民,余吉远,王国强,等.甘肃北山红柳园地区泥盆系三个井组和墩墩山群 LA-ICP-MS锆石U-Pb测年及其意义.地质通报,2011,30(10):1501-1507.
    [56]王伏泉.白山堂铜矿床两期有关岩体的Rb-Sr等时线年龄及其稀土配分特征.矿物岩石地球化学通报,1996,15(3):187-190.
    [57]李舢,王涛,童英,等.北山辉铜山泥盆纪钾长花岗岩锆石U-Pb年龄成因及构造意义.岩石学报,2011,27(10):3055-3070.
    [58]毛启贵,肖文交,韩春明,等.北山柳园地区中志留世埃达克质花岗岩类及其地质意义.岩石学报,2009,26(2):584-896.
    [59]陕亮.甘肃北山白山堂铜矿床地质地球化学特征及成因研究.[学位论文].武汉:中国地质大学,2009.
    [60]蒋云林.甘肃北山地区金矿床地质.北京:地质出版社,1996,1-104.
    [61]周济元,崔炳芳,肖惠良,等.甘新北山东段裂谷演化及金矿成矿规律.火山岩地质与矿产,2000,21(1):7-17.
    [62]Eby G N. Chemical subdivision of the A-type granitoids; petrogenetic and tectonic implications. Geology,1992,20:641-654.
    [63]Whalen J B, Currie K L, Chappell B W. A-type granites:geochemical characteristics, discrimination and petrogenesis. Contribution to Mineralogy and Petrology, 1987,95(4):407-419.
    [64]刘昌实,陈小明,陈培荣,等.A型岩套的分类、判别标志和成因.高校地质学报,2003,09(04):573-591.
    [65]吴锁平,王梅英,戚开静.A型花岗岩研究现状及其述评.岩石矿物学杂志,2007,26(01):57-66.
    [66]Watson E B, Harrison T M. Zircon saturation revisited:Temperature and composition effects in avariety of crustal magma types. Earth Planet Sci. Lett,1983,64:295-304.
    [67]King P L, White A J R, Chappell B W. Characterization and origin of aluminous A type granites of the Lachlan Fold Belt, southeastern Australia. J Petrol,1997,36:371-391.
    [68]Kerrich R, Wyman A P D, Hollings P. Trace element systematics of Mg-to Fe-tholeiitic basalt suites of the superior province:implications for Archean mantle reservoirs and greenstone belt genesis. Lithos,1999,46(1):163-187.
    [69]赵振华.微量元素地球化学原理.北京:科学出版社,1997,1-204.
    [70]Gerdes A, Worner G, Henk A. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating:the Variscan South Bohemian Batholith. Journal of the Geological Society,2000,157:577-587.
    [71]Dewey J F. Extensional collapse of orogens. Tectonics,1988,7:1123-1139.
    [72]Turner S P, Sandiford M, Foden J. Some geodynamic and compositional constraints on "postotogenic" magmatism. Geology,1992,20:931-934.
    [73]曹晓峰.新疆库鲁克塔格地块新元古代-早古生代构造热事件与成矿.[学位论文].武汉:中国地质大学,2012,1-143.
    [74]Foster D A, Schafer C, Fanning C M, et al. Relation between crystal partial melting, plutonism, orogeny, and exhumation:Idaho Bitterroot batholith. Tectonophysics,2001,342 (3-4):313-350.
    [75]Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution. Oxford: Blackwell,1985:91-92.
    [76]Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology,1995,120:347-359.
    [77]Bea F, Arzamastsev A, Montero P, et al. Aonmalous alkaline rocks of Soustov, Kola: evidence of mantle-drived matasomatic fluids affecting crustal materials. Contributions to Mineralogy and Petrology,2001,140:554-566.
    [78]张旗,王焰,李承东,等.花岗岩的Sr-Yb分类及其地质意义.岩石学报,2006,22(9):2249-2269.
    [79]杨建国,翟金元,杨宏武,等.甘肃北山地区花牛山铅锌矿区玄武岩锆石LA-ICP-MSU-Pb定年及其地质意义.地质通报,2010,29(7):1017-1023.
    [80]吴福元,Bor-ming J,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义.科学通报,1997,42(20):2188-2192.
    [81]Wu F Y, Bor-ming J, Simon W, et al. Phanerozoic crustal growth:U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics,2000,328:89-113.
    [82]Rudnick R L, Gao S. Composition of the continental crust. In:Rudnick RL (ed.). The Crust,Treatise in Geochemistry,2003,3:1-64.
    [83]Turner S P, Foden J D, Morrison R S. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway ridge, South Australia. Lithos,1992,28: 151-179.
    [84]King P L, White A J R, Chappell B W, et al. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt,Southeastern Australian. Journal of Petrology,1997,38:371-391
    [85]Long L L, Gao J, Reiner K, et al. Geochemical and geochronological studies of granitoid rocks from the Western Tianshan Orogen:Implications for continental growth in the southwestern Central Asian Orogenic Belt. Lithos,2011,126:321-340.
    [86]张晓晖,翟明国.华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应.岩石学报,2010,26(5):1329-1341
    [87]吕新彪,朱江,曹晓峰,等.北山南部柳园地区古生代-早中生代大陆地壳增生过程中的岩浆活动与成矿效应.地质科技情报,2012,05:119-127.
    [88]Taylor B, Haves D E. Origin and history of the south China Sea basin. in:Haves D E. The Tectonic and Geological Evolution of Southeast Asian Seas and Islands (Part 2) Washington DC:AGL,1983.23-56.
    [89]Johan Z. Alaskan-type complexes and their platinum-group element mineralizaiton. In: Cabri L.J. (Ed.), Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-group Elements. Canadian:Institute of Mining, Metallurgy and Petroleum,2002.669-719.
    [90]陈衍景,翟明国,蒋少涌.华北大陆边缘造山过程与成矿研究的重要进展和问题.岩石学报,2009,25(11):2695-2726.
    [91]李继亮.增生型造山带的基本特征.地质通报,2004,23(9-10):947-951.
    [92]张达玉.新疆东天山觉罗塔格地区成岩成矿作用及地球动力学过程.[学位论文].合肥:合肥工业大学,2012.
    [93]翟裕生,邓军,李晓波,等.区域成矿学.北京:地质出版社,1992.
    [94]翟裕生,姚书振,崔彬,等.成矿系列研究.武汉:中国地质大学出版社,1996.
    [95]陈衍景,倪培,范宏瑞,等.不同类型热液金矿系统的流体包裹体特征.岩石学报,2007,23(9):2085-2108.
    [96]孙卫东,凌明星,杨晓勇,等.洋脊俯冲与斑岩铜金矿成矿.中国科学:地球科学.2010,40(2):127-137.
    [97]Bodnar R J. A Method of Calculating Fluid Inclusion Volumes Based on Vapor Bubble Diameters and PVTX Properties of Inclusion Fluids. Economic Geology,1983,78:535-542.
    [98]刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999.1-290.
    [99]Benning L G, Seward T M. Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150-400℃ and 500-1500 bar. Geochimica et Cosmochimica Acta,1996,60:1849-1871.
    [100]Hayashi K, Ohmoto H. Solubility of gold in NaCl- and H2S- bearing aqueous solutions at 250-350 ℃. Geochimica et CosmochimicaActa,1991,55:2111-2126.
    [101]Shenberge D M, Barnes H L. Solubility of gold in aqueous sulfide solutions from 150 to 350℃. Geochimica et Cosmochimica Acta,1989,53:269-278.
    [102]Loucks R R, Mavrogenes J A. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science,1999,284:2159-2163.
    [103]安国堡.甘肃北山拾金坡花岗岩特征及其与金成矿的关系.甘肃地质,2007,16(03):19-25
    [104]Zweng P L, Mortensen J K. Dalrymple G B. Thermochronology of the Camflo Gold Deposit, Malartic, Quebec:implications for magmatic underplating and formatiom of gold-bearing quartz veins. Econ. Geol,1993,88:1700-1721.
    [105]姚凤良,刘连登,孔庆存,等.胶东西北部脉状金矿.长春:吉林科学技术出版社,1989,126-186.
    [106]刘连登.论中国最主要的脉状金矿床的成因.长春地质学院学报,1987,17(4):373-382.
    [107]王秀璋,程景平.国内外太古宇中金矿床的地质及地球化学特征对比兼成因分析.地球化学,1994,23(3):211-225.
    [108]王秀璋,程景平,张宝贵,等.中国改造型金矿床地球化学.北京:科学出版社,1992,36-169.
    [109]Jemielita R A, Devil D W, Krong T E. U-Pb evidence for Abitibi gold mineralization postdating greenstone magmatism and metamorphism. Nature,1990,346:831-834.
    [110]Wong L, Davis D W, Krong T E, et al. U-Pb zircon and rutile chronology of Archean greenstone formation and gold mineralizetion in the Vald'Or region. Quebec. Earth Planet. Sci. Lett.,1991,104:325-336.
    [111]Liu M, Furlong K P. Intrusion and unerplating of mafic magmas:thermal rheological effects and implications for Tertiary tectonomagmatism in the North American Cordilera. Tectonophysics,1994,237:175-187.
    [112]邓杰.甘肃北山白山堂铜多金属矿床成因及成矿模式.[学位论文].武汉:中国地质大学, 2011,1-63.
    [113]薛春纪,姬金生,杨前进.新疆磁海铁(钴)矿床次火山热液成矿学.矿床地质,2000,19(02),156-164.
    [114]陈升平,朱云海.新疆北山石炭纪、二叠纪火山岩岩石化学及其构造环境分析.地球科学:中国地质大学学报,1992,17(6):647-656.
    [115]Cooke D R, Simmons S F. Characteristics and genesis of epithermal gold deposits. Reviws in Economic Geology,2000,13:221-244.
    [116]吕新彪,姚书振,林新多.湖北大冶铜山口矽卡岩-斑岩复合型铜相矿床地质特征和成矿机制.地球科学-中国地质大学学报,1992,17(2):171-180
    [117]王少怀,裴荣富,曾宪辉,等.再论紫金山矿田成矿系列与成矿模式.地质学报,2009,83(2):145-157.
    [118]梁俊红,金成洙,王建国.延边地区浅成低温热液-斑岩型金矿成矿系列的氢、氧同位素特征.地质找矿论丛,2003,18(2):108-112.
    [119]奚小双.甘肃新金厂金矿伸展滑覆构造及其控矿作用.有色金属矿产与勘查,1994,3(1):22-27.
    [120]陈毓川,李兆鼐,毋瑞身,等.中国金矿床及其成矿规律.北京:地质出版社,2001,1-411
    [121]肖惠良,周济元,王鹤年,等.新疆红十井金矿床特征及成因.矿床地质,2003,22(1):32-40.
    [122]侯增谦,潘桂棠,王安建,等.青藏高原碰撞造山带:II晚碰撞转换成矿作用.矿床地质,2006,25(5):521-543.
    [123]侯增谦,杨竹森,徐文艺,等.青藏高原碰撞造山带:I主碰撞造山成矿作用.矿床地质,2006,25(4):337-357.
    [124]王义天,毛景文,李晓峰,等.与剪切带相关的金成矿作用.地学前缘,2004,11(2):393-399.
    [125]陈柏林,吴淦国,叶得金,等.北山南带韧型剪切带构造与金矿成矿动力学.北京:地质出版社,2003,1-109.
    [126]周济元,张斌,张朝文,等.东天山古大陆及其边缘银、铼钼、金和铜矿地质.北京:地质出版社,1996,1-191.
    [127]郭晓东,金宝义,徐燕夫,等.甘肃小西弓金矿地质特征及成因探讨.黄金地质,2002,8(3):33-37.
    [128]Robert F, Boullier A M, Firdaous K. Gold quartz veins in metamorphic terranes and their bearing on the role of fluids in faulting. J Geophysical Research (B), 1995,100:12861-12879.
    [129]Sibson R H, Robert F, Poulsen K H. High angle reverse faults,fluid pressure cycling,and mesothermal gold quartz deposits, Geology,1988,16:551-555.
    [130]Bonnemaison M, Marcoax M. Auriferous mineralization in some shear zones:A three-stage model of metallogenesis. Mineralium Deposita,1990,25:96-104.
    [131]吴华.东天山地壳演化及内生金属成矿作用.[学位论文].北京:中国地质大学(北京),2008.
    [132]李华芹,陈富文.中国新疆区域成矿作用年代学.北京:地质出版社,2004,1-391.
    [133]张达玉,周涛发,袁峰,等.新疆东天山地区白山铝矿床的成因分析.矿床地质,2009,28(5):663-672.
    [134]李华芹,陈富文,李锦轶,等.再论东天山白山铼钼矿区成岩成矿时代.地质通报,2006,25(08):916-922.
    [135]黄超勇,郎岩峰,董理践,等.东天山东戈壁特大型钼矿床地质特征及成因研究.中国钼业,2011,35(3):8-17.
    [136]杨志强,吴邦友,郑松森,等.新疆东戈壁斑岩型钼矿床之斑岩体特征.华南地质与矿产,2011,27(3):208-214.
    [137]彭振安,李红红,屈文俊,等.内蒙古北山地区小狐狸山钼矿床辉钼矿Re-Os同位素年龄及其地质意义.矿床地质,2010,29(3):510-516.
    [138]Zhu J, Lv X B, Chen C, et al. U-Pb and Re-Os ages of the Huaheitan molybdenum deposit,NW China. Resource Geology,2013,63(3), in press.
    [139]Zhang L C, Xiao W J, Qin K Z, et al. Re-Os isotopic dating of molybdenite and pyrite in the Baishan Mo-Re deposit, eastern Tianshan, NW China, and its geological significance. Mineralium Deposita,2005,39:960-969.
    [140]涂其军,董连慧,王克卓.东天山东戈壁钼矿辉钼矿Re-Os同位素年龄及地质意义.新疆地质,2012,30(3):272-276.
    [141]聂凤军,张可,刘翼飞,等.华北克拉通北缘及邻区印支期岩浆活动与铝和金成矿作用.吉林大学学报:地球科学版,2011,41(6):1651-1665.
    [142]朱江,吕新彪,陈超,等.东天山东段-北山地区三叠纪铝矿床地质特征、时空分布及含矿花岗岩成岩-成矿构造背景.新疆地质,2013,01:21-28.
    [143]岳可芬,赫英,董振信,等.中国东部华北克拉通南缘和华南地块地幔岩中的钼含量及其意义.地球化学,2006,35(4):333-345.
    [144]Suzuki K, Shimizu H, Masuda A. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os system for molybdenite and the cooling history of molybdenum ore deposits. Geochim Cosmochim Acta,1996,60:3151-3159.
    [145]Stein H J, Markey R J, Morgan J W, et al. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova,2001,13:479-486.
    [146]张理刚.稳定同位素在地质科学中的应用—金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985,1-267.
    [147]Mao J W, Zhang Z C, Zhang Z H, et al. Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochim Cosmochim Acta,1999,63(11-12):1815-1818.
    [148]Zhu B Q, Zhang J L, Tu X L, et al. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration. Geochimica et Cosmochimica Acta,2001,65(15):2555-2570.
    [149]杨建国,任有祥,王小红,等.甘肃北山金银多金属矿田成矿规律与找矿预测.北京:地质出版社,2011,1-127.
    [150]Sawyer E W. Criteria for the recognition of partial melting. Phys. Chem. Earth(A),1999,24: 269-279
    [151]李华芹,陈富文,蔡红,等.新疆东部马庄山金矿成矿作用同位素年代学研究.地球科学,1999,34(2):251-256.
    [152]江思宏,聂凤军.甘肃北山红尖兵山钨矿床的40Ar-39Ar同位素年代学研究.矿床地质,2006,25(1):89-94.
    [153]聂凤军,屈文俊,刘妍,等.内蒙古额勒根斑岩型钼(铜)矿化区辉铝矿铼-锇同位素年龄及地质意义,2006,24(6):638-646.
    [154]Zhang X H, Su L, Cui X J, et al. Metallogenetic epoch and mechanism of the tungsten ore in Yushan, Beishan orogenic belt, Gansu. Chinese Science Bulletin,2008,53(8):1222-1230.
    [155]舒良树,卢华复,印栋浩,等.新疆北部古生代大陆增生构造.新疆地质,2001,19(1):59-63.
    [156]Su B X, Qin K Z, Sakyi P A, et al. Geochemistry and geochronology of acidic rocks in the Beishan region, NW China:Petrogenesis and tectonic implications,2011,41:31-43.
    [157]张铭杰,梁收运,吴茂炳.花牛山铅锌矿床成因的矿物学研究.甘肃地质学报,1998,7(2):93-97.
    [158]陈志军.多重分形局部奇异性分析方法及其在矿产资源信息提取中的应用.[学位论文].武汉:中国地质大学,2007.
    [159]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,1990,347:662-665
    [160]Peacock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet Sci Lett,1994,121:227-244
    [161]Liang H Y, Campbell IH, Allen C, et al. Zircon Ce4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineral Deposit,2006,41:152-159
    [162]Liang H Y, Sun W D, Su W C, et al. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol,2009,104: 587-596
    [163]张正伟,翟裕生,邓军,等.华北古大陆南缘的金属成矿作用.地球学报,2001,22(2):129-134.
    [164]李聪颖,孙卫东,凌明星,等.钼的地球化学性质—富集与成矿作用.矿物岩石地球化学通报,2011,30:203.
    [165]Sun S S, McDonough W F.1989.Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders A D and Norry M J. Magmatism in the Ocean Basins. London:Geological Society London Special Publication, 42,313-345.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700