用户名: 密码: 验证码:
福建土壤中的氟及其向作物的转移
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文调查了福建省8个县区的12个作物品种及相应的表层土壤中的含氟状况、研究了酸性土壤中有效氟的提取方法、土壤氟的有效度及其影响因素以及土壤氟向作物可食用部分的转移规律。主要研究结果如下:
     1.研究区域土壤全氟量变化范围在177.65~1010.74mg.kg~(-1)之间,平均值为475.67mg.kg~(-1)。土壤全氟与土壤有机质、游离铁及<0.002mm粘粒含量之间呈显著正相关,说明土壤有机质、游离铁和粘粒含量的升高有利于氟在土壤中的累积。
     2.在稀盐酸、氯化钙和水三种浸提剂中,水是酸性土壤有效F的最佳浸提剂水浸提时最合适的提取条件为:液土比10:1,转速180转/分,提取温度25℃,振荡时间60分钟。以此方法测定的采样区土壤有效氟的含量变化在0.92~25.56mg.kg~(-1)之间,平均值为8.51mg.kg~(-1)。
     3.供试土壤氟的有效度(有效氟含量/全氟含量)变化在0.33%~12.72%之间,平均为1.81%。土壤氟有效度随土壤全氟含量的升高而降低、与土壤pH值呈极显著正相关、与土壤有机质含量和<0.002mm粘粒含量呈负相关,说明土壤pH值的升高会提高土壤氟的有效性,而土壤全氟量、土壤有机质和粘粒含量的升高会降低土壤氟的有效性。
     4.12个作物可食用部分氟含量为0.08-6.87mg.kg_(-1)(鲜基,仅糙米为风干基),平均值为0.87mg.kg~(-1)分别以土壤氟全量和有效量为基础计算了土壤氟向各种蔬菜可食用部分的表观转移系数。12种作物氟全量基表观转移系数介于0.0003~0.0130之间,氟有效量基表观转移系数介于0.012~0.914之间。大多数作物的氟表观转移系数随土壤有效氟含量的升高而呈幂函数形式降低。
     5.以回归估算法估算了各供试作物的表观有效量基转移系数(估算的有效F浓度点为=8mg.kg~(-1)),各作物的表观有效量基转移系数依次为:糙米(0.914)>蒜(0.105)>芥菜(0.103)>白菜(0.088)>空心菜(0.087)>芹菜(0.070)>韭菜(0.057)>大白菜(0.056)>芋(0.049)>地瓜(0.047)>苦瓜(0.044)>茄子(0.043)>四季豆(0.039)>花菜(0.9037)>豇豆(0.035)>包菜=萝卜(0.034)>茭白(0.032)>丝瓜(0.025)>姜(0.020)>葱(0.012)。
Investigated in this paper were the fluorine contents of 12 crops and the corresponding surface soils which were collected from the suburbs of 8 counties of Fujian province. The extraction method for available F in acid soil, the F availability and its influencing factors, and the transfer characteristics of F from soils to the edible parts of the crops were studied. The main results were as follows:
    1. The contents of the total F in the surface soils ranged between 177.65 and 1010.74 mg.kg~(-1) with an average being 475.67mg.kg~(-1). There were significant correlations with the total soil F and the contents of soil organic matter, free iron and clay (<0.002mm), showing that the increase in soil organic matter, free iron and clay favoures the accumulation of F in the soils.
    2. Among the three extractants, HC1, CaCl_2 and H_2O, deionized water was found to be best for extracting available F in acid soils. The suitable conditions for the H_2O extraction were set as fllows: ratio of solution to soil = 10:1, shaking time = 60 minutes, shaking velocity = 180 rpm, extraction temperature = 25 °C. The water-extractable F in the soils varied from 0.92 to 25.56mg.kg~(-1) with an average of
    3. The availability degree of soil F (ratio of water-extractable F to total F) was in the range between 0. 33% and 12. 72% with a mean of 1.81%. The water-extractable F decreased with the increase of total F and the contents of organic matter and clay, while increased with increasing soil pH, indicating that the increase in soil pH promotes soil F availability whereas the increase in total soil F, organic matter and clay inhibits it.
    4. The F concentration of the edible parts of the crops were between 0.08-6.87 mg.kg~(-1) (fresh weight basis for vegetables,dry weight basis for rice) with a mean of 0.87 mg.kg~(-1). Both the apparent transfer factors based on total F (TF_(total)) and available F (TF_(avail)) were calculated. The TF_(total) values ranged between 0.0003 and 0.0130 while the TF_(avail) were between 0.012 and 0.914. The TF_(total) values tended to decrease with the increase of soil available F.
    5. The representative apparent TF_(avail) values for each crop were estimated based on the regression equations between the TF_(avail) values and soil available F and at the point of 8 mg·.kg~(-1) of available F. The apparent TF_(avail) values of the crops were in the following order: rice (0.914)>garlic(0.105)>leaf
引文
[1] Loganthan P, Hedley M j. Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine: a review, Australian Journal of Soil Research[J], 2003, 41: 501-532
    [2] 中国环境监测总站,中国土壤元素背景值[M].北京:中国环境科学出版社,1990:188-230
    [3] 王云,魏复盛.等.土壤环境元素化学[M].北京:中国环境科学出版社,1995:129-141
    [4] Saggar S, Maekey A D, Hedley M J. Anutrient transfer model to explain the fate of pHospHorus and sulpHur in a grazed hill country pasture[J]. Agriculture, Ecosystems and Environment, 1990, 30: 295-315
    [5] 氟的发现[EB/OL].http://www.shenzhong.net, 2005, 8, 15
    [6] 张乃明.山西土壤氟含量分布及影响因素研究[J].土壤学报,2001,138(2):284-289
    [7] 张晓平.西藏土壤中氟的含量及其分布[J].环境科学,1998,19(1):66-68
    [8] 王五一,李永华.大巴山区土壤中硒、氟的地球化学特征[J].地理研究,2003,22(2):177-184
    [9] 周世厥,张冬英.安徽省土壤中氟分布的研究[J].农村生态环境,1999,15(4):34-36
    [10] 李永华,王五一.大巴山区土壤中的硒和氟[J].土壤学报,2004,141(1):61-67
    [11] 谢忠雷,邱立民.茶叶中氟含量及其影响因素[J].吉林大学自然科学学报,2001,4(2):81-84
    [12] 何振立。污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998:307-310
    [13] 陈庆沐,刘玉兰.氟的土壤地球化学与地方性氟中毒[J].环境科学,1979,2(6):39-53
    [14] 李日邦,王丽珍.等.我国不同地理条件下耕作土中的氟及其与地方性氟中毒的关系[J].地理研究,1985,4(1):30-40
    [15] 王五一,李永华.氟与健康的环境流行病学研究[J].土壤与环境,2002,11(4):383-387
    [16] Gilpin L, Johnson A H. Fluoride in the agricultural soils of southerstern pennsyvania[J]. Soil soc Am j, 1980, 44: 255-258
    [17] 吴卫红,谢正苗.不同土壤中氟赋存形态特征极其影响因素[J].环境科学,2002,23(2):104-108
    [18] 陈怀满(主编).环境土壤学[M].北京:科学出版社,2005
    [19] 周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27
    [20] 陈国阶,余大富著.环境的氟[M].北京:科学技术出版社,1990:64-83
    [21] 王艳萍.陕西渭南地区土壤中的氟[J].土壤通报,1998:42-43
    [22] 焦有.土壤的氟吸收特性及影响因素[J].土壤通报,1997,28(3):116-118
    [23] 焦有,宝德俊.氟的土壤地球化学.土壤通报[J],2000,31(6):251-254
    [24] Farrah H, et al. Fluoride aorption by components calcum cartmate Humic Acid manganese Di oxide and Silka [J]. Aust. Soil Res, 1985, 23: 429-439
    [25] 万红友,黎成厚.几种土壤的氟吸附特性研究[J].农业环境科学学报,2003,22(3):329-332
    [26] Davison A W, Takmaz, NIsancioglu S. The dynamics of fluoride accumulation by vegetation[R]. International society for fluoride research conference 13, New Dehli, Nov, 13-17, 1983: 30-46
    [27] 唐文伟,顾国维.等.燃煤电厂氟污染规律研究[J].重庆环境科学,1999,21(4):39-42
    [28] 王沙生.大气氟污染对生物的危害途径[J].环境科学,1978(4):8-12
    [29] 汪嘉熙,李正方.大气污染的作物监测[J].环境科学,1978(2):2-12
    [30] 安连荣,尹家凤.大气氟污染与几种树木叶片及土壤和水中氟含量的相关系分析[J].河北林果研究,2000,15(3):227—233
    [31] 陈志伟,贾秀英.大气氟污染对蚕桑生产的影响[J].农业环境保护,1998,17(6):278-280
    [32] 黎南华.不同生态环境的茶叶氟含量浅析[J].福建茶叶,1994(2):21-23
    [33] Brane S N, Weinstein L H. Uptake of fluoride and aluminium by plants grown in contaminated soil[J]. Water Air Soil pollut, 1985(24): 215-225
    [34] Singh B R. Cadmium and fluoride uptakes by oats and rape from pHospHate fertilizers in two different soil [J], Norw J Agric Sci, 1990(4): 239-249
    [35] 山内正见,吉田弘一.土壤氟浓度和水稻生长的关系[z].谢国禄译自日作纪,2001,70(3):437-443
    [36] 山内正见,吉田弘一.等.不同生长期氟素处理和水稻生长的关系[z].谢国禄译自日作纪,2001,70(3):444-448
    [37] 马立锋,阮建云.中国茶叶中的氟近十年来的研究进展[J].生态环境,2003,12(3):342-345
    [38] Galina A, Evdokimova. Fluorine in the Soils of the white Sea Basin and bioindication of pollution[J]. Chemosphere, 2001 (42): 35-43
    [39] 沙济琴,郑达贤.福建主要茶区茶叶含氟量与茶区环境及土壤含氟量[J].福建师范大学学报,1996,12(1):105-112
    [40] 陆景冈,赵小敏.茶园土壤发育与土壤及茶叶含氟量的关系[J].茶叶科学,1992,12(1):33-38
    [41] Arnesen A K M. Availability of fluoride to Plants grown in contained Soil. Plant and Soil[J], 1997, 191: 13-25
    [42] 杨杰文,蒋新.AL与F的络合作用对土壤吸附AL和F的影响[J].环境科学学报,2002,22(2):161-165
    [43] 魏宗仁,李洪杰.土壤、粮食氟含量与地方性氟中毒的相关分析[J].浙江学报,1996,30(1):61-62
    [44] 沈阿林,崔转玲.几种土壤对氟的吸附和解吸[J].作物营养与肥料学报,1997,3(1):9-13
    [45] 郑路.安徽省长江以北地区土壤水溶性氟含量及分布特征[J].农村生态环境,1997,13(3):25-27
    [46] 藏继祥.等.安徽省地方性氟中毒[J].北京学院出版社,1990
    [47] 尹国勋,付新峰.永城矿区高氟地下水的氟源及其其他地质构造因素[J].焦作工学院学报,2002,21(2):110-113
    [48] 李绍生。永城矿区地方性氟病调查与饮用水除氟途径[J].煤矿环境保护,1992,(5):44-45
    [49] Waghmare S P, Ssdekoir R D. investigation on Fluurine levens in Soil Water. Fodder and Blood in university farms[J]. Indian vet. med. Hour, vol. 26, September, 2002: 215-216
    [50] 周启星,宋玉芳.等.污染土壤修复原理与方法[M],北京:科学出版社,2004
    [51] Arocena J M, Rutherford P M. Heterogeneous distribution of trace elements and fluorine in phosphogypsum by-product[J]. The science of the total Environment, 1995, 162: 149-160
    [52] 姚同山.氟在中南地区几种土壤上的吸附和解吸及其与磷、硫的竞争吸附[D].武汉:华中农业大学,1988:35-40
    [53] 中华人民共和国国家标准[M].土壤环境质量标准,国家环境保护局发布,1997
    [54] 杨惠芬,李明元.食品卫生理化检验标准手册[M],北京:中国标准出版社,1997
    [55] 鲁东霞,王伟.离子选择电极法测定土壤中水溶性氟的研究[J].土壤,1998(3):165-167
    [56] 黄昌勇(主编).土壤学[M],中国农业出版社,1999
    [57] 徐莉英,刑光熹.土壤中的氟[J].土壤,1995,27(4):191-194
    [58] 邓瑞文.作物生态学与地作物学丛刊[J].1985,9(2):132-141
    [59] Davison A W. Uptake, transport and accumulation of soil and airborne fluoride by vegetation. In: Shupe JL (ed): Fluoride effects on vegetation, animals and humans[J]. Salt Lake City, Paragon Press, 1983: 21-52.
    [60] 何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响[J].土壤学报,1990,27(4):377-384
    [61] 陈景奎,于群英.低分子有机酸对土壤氟吸附的影响[J].农村生态环境,2001,17(2):53-55
    [62] 徐仁扣,王亚云.低分子量有机酸对几种可变电荷土壤吸附氟的影响[J].环境科学学报,2003,23 (3):405-407
    [63] 焦有,杨占平.氟的危害及控制[J].生态学杂志,2003,19(5):67-70
    [64] 吴卫红,谢正苗,徐建民.环境中氟化物的迁移和转化及其生态效应[J].环境科学进展,1999,7(2):40-53
    [65] Amesen A K M, Abrahamsen G, Sandvik G. Aluminum smelters and fluoride pollution of soil and soil solution in Norway[J]. Sci Total Environ, 1995, 163: 39-53
    [66] 张冬英,周世厥.离子选择电极法测定土壤中水溶性氟[J].环境检测管理与技术,2002,8(5):48-49
    [67] 周清泽,申金山.等.氟离子选择电极法测定土壤中速溶性氟[J].河北师范大学学报,1991,(2):88-91
    [68] Polomski J, Flohler H, Blaser P. Accumulation of airborne fluoride in soils[J]. Environ Qual, 1982, 11(3): 457-461
    [69] 黄瑞卿,王果.等.酸性土壤有效砷提取方法研究[J].农业环境科学学报,2005,(3):610-615
    [70] 中华人民共和国国家标准[M].土壤环境质量标准.GB15618-1995,国家环境保护局发布
    [71] 朱法华,张景荣.徐州地氟病区作物中氟的分布及其环境意义[J].高校地质学报,2001,7(1):158-163
    [72] 任启勤,王超英.电厂灰场覆土后土壤和小麦中F污染的调查研究[J].安徽预防医学杂志,2000,6(4):252-253
    [73] 王艳萍.氟污染的研究综述[J].青海大学学报,1995,13(4):63-66
    [74] 中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1983:195-196.
    [75] Fung K F, Wong M H. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environ Pottut, 1999, 104(2): 197-204
    [76] Elraahidi M A, Linday W L. Chemical equibbria of fluorine in soils: a theoretical deveopment[J]. Soil Sci, 1986, 141: 274-280
    [77] 朱法华,张景荣.徐州地氟病区作物中氟的分布及其环境意义[J].高校地质学报,2001,7(2):158-163
    [78] 韩玉兰.林木净化大气氯、氟污染的作用[J].环境科学丛刊,1985,6(10):44-47
    [79] 孔庆芳.包头地区大气氟化物环境质量标准的研究[J].环境科学,1985,6(2):27-32
    [80] 江苏省环境质量报告书[R].江苏省农业厅,江苏省环保局,1990
    [81] 黄雅琴,杨在中.蔬菜对重金属的吸收累积特点[J].内蒙古大学学报(自然科学版),1995,26(5):608-615
    [82] 凌乃规.蔬菜品种重金属元素含量差异性分析[J].广西农业科学,2000,(1):13-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700