用户名: 密码: 验证码:
三峡库区鱼类时空分布特征及与相关因子关系分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区地理位置和自然条件独特,鱼类资源丰富,是许多珍稀鱼类栖息、索饵和繁殖的最佳场所,在物种多样性、代表性和特殊性方面有重要的科学价值和生态、社会、经济价值,三峡库区渔业资源的保护和利用己成为社会公众关注的热点之一
     由于三峡工程巨大的调蓄作用,导致库区生态环境发生改变,鱼类分布格局也将发生变化。对三峡水库不同蓄水位下鱼类资源及其分布特征进行研究,并分析分布特点和相关环境、水文因子的关系,对三峡库区渔业资源的利用和保护具有重要意义。
     本文以三峡库区秭归至重庆江段为研究对象,通过水声学监测的方法,对三峡库区鱼类的时空分布特征进行研究。在三峡库区的巫山、万州、忠县和长寿江段分别设站点,进行渔获物调查,对水声学监测数据进行了对比分析。在水声学监测的同时,对各江段的环境因子进行了测定,分析了各环境因子和鱼类密度之间的相关性。采用MIKE11水动力学模型,对三峡库区在调查期间的水深、流速、流量等因素进行了模拟,并分析了这些因素对鱼类密度分布的影响。本文主要研究结论如下:
     1)三峡库区干流鱼类密度变化特点如下:时间上,同一季节比较,三峡库区干流鱼类密度呈逐年增加的趋势,并且,冬季的鱼类密度平均值大于同年春季鱼类密度的平均值。空间上,水平方向表现为从下游到上游越来越大;冬季,鱼类密度最大值位于忠县附近,2009年冬季鱼类聚集于丰都上游江段,而在春季,鱼类喜居于上游的长寿至重庆江段。垂直方向,不同江段的特征不一。支流(库湾)鱼类密度变化特点为:时间上,各支流冬季鱼类密度均大于春季的鱼类密度,并且冬季支流鱼类密度的平均值明显大于干流鱼类密度的平均值,而春季则相反;空间上,冬季鱼类密度最大的支流为大宁河,春季则为梅溪河、朱衣河和磨刀溪。
     2)2006-2010年间,分别在三峡库区的库首、库中和库尾选择了巫山、万州、忠县和长寿江段进行渔获物调查,结果发现:不同江段的渔获物优势种不同,共有鲢、南方鲶、鲫、鲤、铜鱼、长鳍吻鮈和圆口铜鱼7种,并且渔获物优势种的生活习性和三峡库区水声学监测获得的鱼类分布特征相吻合。此外,监测期间,万州江段渔获物总量和日均单船产量基本都呈逐年增加的趋势,和水声学监测结果呼应。
     3)测定水质因子包括水温、溶解氧、电导率、电阻、盐度、总溶解性固体和pH。其中,水温对春季鱼类密度分布有显著影响,而各水质因子和冬季鱼类的分布无相关性。其中,春季水温从库首到库尾逐渐增加的特点,是造成库尾江段春季鱼类密度最大的一个重要因素;所测定的环境因子都不是冬季三峡库区鱼类分布特征的限制因子。
     4)模拟的各水文因子,包括水深、流量、流速、过水面积和水面宽。通过对各因子和相应江段的鱼类密度相关性分析发现,流速、水深和过水面积和春季鱼类密度的相关性极显著,水面宽和冬季鱼类的密度分布显著相关。春季鱼类繁殖对水流流速的要求,是造成库尾江段春季鱼类密度最大的又一个重要因素;而模拟的各水文因子都不是造成冬季鱼类聚集忠县及丰都江段的原因。
     5)综合分析表明,三峡库区鱼类资源量的增加趋势以及分布特征是水温、水流流速、水深、流态、鱼类生活习性、营养物质和保护政策共同作用的结果。
The Three Gorges Reservoir is the best habitat, foraging and spawning grounds for many rare, unique and economic fishes, fishery resource in which is very ample. Hence, the scientific, ecological, social and economic value of the reservoir is important and the protection and utilization of fishery resource in the Three Gorges Reservoir is a hot point.
     The ecology environment of the Three Gorges Reservoir was inevitably changed as the huge storage and discharge. Therefore, the distribution of fish in the reservoir would change correspondingly. To study the fishery resource and its distribution characteristic under different water level and analysis the relationship between fish density and relative environmental and hydrologic factors is significant to fish protection and utilization of the Three Gorges Reservoir.
     In this study, the studied area was from Zigui to Chongqing. First, we detected the fish distribution in this area using hydroacoustic equipment. Second, we investigated fish catch at Wushan, Wanzhou, Zhongxian and Changshou sections and compared the fish catch data with the hydroacoustic data. Third, we monitored some environmental factors and analysis the dependency of these factors and fish density. Finally, we imitated the water depth, water velocity and water volume of the Three Gorges Reservoir using the model MIKE11and analysis the influence of these factors to the fish distribution.
     The conclusions are as following.
     The fish density in the main stream of the Three Gorges Reservoir was increasing year by year when we compared the data in same season and the fish density in winter was always higher than the value in spring of the same year. Furthermore, the fish density in the upper reach was almost higher than that in the lower reach of the reservoir. In winter, fishes like to live at the section around Zhongxian and in spring, fishes apt to live at the section from Changshou to Chongqing. To the branches of the reservoir, we found the fish density of every branch in winter was almost higher than that in spring and also higher than that in the main stream. In winter, the highest fish density was detected in the Daning River and in spring, the highest density was found in the Meixi River, Zhuyi River and Modao River.
     Fish catch investigations were conducted in Wushan, Wanzhou, Zhongxian and Changshou section from2006to2010, the results showed that different section had different dominant species and silver carp, southern catfish, crucian, common carp, copper fish, rhinogobio ventralis and coreius guichenoti were dominant species of the whole reservoir. The habits of the dominant species were coincided with the fish distribution characteristics in the hydroacoustic detection. The fish catch and average daily output at the Wanzhou section were increasing year by year, which was similar to the hydroacoustic data.
     The detected environmental factors included water temperature, dissolved oxygen, salinity, conductivity, resistance, total dissolved solid and pH. During the seven factors, water temperature was significant correlated with the fish distribution in spring, but all of the environmental factors has no correlation with the fish distribution in winter. In spring, the water temperature was increasing from lower to upper reach of the reservoir which resulted in the fish density in the upper reach was the highest. In winter, the tested environmental factors were not limiting factor for fish distribution in the Three Gorges Reservoir.
     The imitated hydrologic factors included water depth, discharge, water velocity, flow area and flow width. The relationship between hydrologic factors and fish density of different section was analyzed, the results showed that water velocity, water depth and flow area were highly siginificant correlated with fish density in spring and flow width was significant correlated with fish density in winter. The demand of water velocity was another important reason for fish distribution in spring. In winter, the imitated hydrologic factors were not limiting factor for fish distribution.
     Finally, we summaried the reasons for fish amount increasing and distribution characteristics in the Three Gorges Reservoir and considered water temperature, water velocity, water depth, flow state, living habit of fish and protection policy were the main factors.
引文
1. Albert Getabu, Rhoda Tumwebaze, David N. MacLennan. Spatial distribution and temporal changes in the fish populations of LakeVictoria[J]. Aquatic Living Resources, 2002,16(2003):159-165.
    2. Ali., M.A., Vision in Fishes:New Approaches in Research, Plenum Press, New York, 1975:313-335
    3. Allem, K.R., Relation between production and biomass, J. Fish. Res. Bd. Can.28,1971: 1573-1581
    4. American rivers and trout unlimited. Dam removal success stories:Restoring rivers through selective removal of dams that don't make sense. In:American rivers. Washington D.C., PP53
    5. Anonymous (Eds.). Ecosystem approaches for fisheries management. University of Alaska Sea Grant, Fairbanks (AK-SG-99-01).1999.
    6. Backiel, T. and E. D. Le Cren, Some density relationship for fish population parameters, in Ecology of Freshwater Fish Production, ed. S. D. Gerking, Blackwell, Oxford, 1978,279-302
    7. BALK H. Sonar4, Sonar5, Sonar6-pro post-processing systems manual version 5.97[EB/OL]. Norway:2008. http://www.fys.uio.no/-hbalk/.
    8. Balon, E. K., Reproductive guilds of fishes:a proposal and definition, J. Fish. Res. Bd. Can.,1975,32:821-864
    8. Berg O K, Arnekleiv J V, Lohrmann A. The influence of hydroelectric power generation on the body composition of juvenile Atlantic salmon[J]. River research application,2006, 22(9):993-1008.
    9. Bodholt H.Fish density derived from echo-integration and in-situ target strength measurements[R]. Int.Coun.Explor Sea CM,1990/B,11,10.
    10. Bond, C. E., Biology of Fishes, Saunders, Philadelphia,1979
    11. Brede R, Kristensen F H, Solli H, et al.Target tracking with a split beam echo sounder[J]. Fish Acoustic,1990,189:254-263.
    12. Brehmer, P., Gerlotto, F., Guillard, J., Sanguinede, F., Guennegan, Y., and Buestel D. (2003) New applications of hydroacoustic methods for monitoring shallow water aquatic ecosystems:the case of mussel culture grounds. Aquatic Living Resources 16,333-338
    13. Close, T.L., Yule, D., and Siesennop, G.D. Hydroacoustic methods to estimate stream trout abundance in Minnesota lakes. Minnesota Department of natural resources. Investigational report.2006:534.
    14. Coll, C., Morasi, L.D., Lae, R. Leboruges-Dhaussy, A., Simier, M., Guillard, J., Josse, E., Ecoutin, J.M., Albaret, J.J., Raffray, J. and Kantoussan, J. Use and limits of three methods for assessing fish size spectra and fish abundance in two tropical man-made lakes. Fisheries Research,2007,83:306-318.
    15. Cont, S.G, and Roux, P. Acoustical nonitoring of fish density, behavior, and growth rate in a tank [J]. Aquaculture,2006,251:314-323.
    16. Cushing D.H.. Echo surveys of fish, J. cons, ciem,1952,18 (1):45-60
    17. D. Chen, X.. Zhang, X. Tan, et al. Hydroacoustic study of spatial and temporal distribution of Gymnocypris przewalskii (Kessler,1876) in Qinghai Lake, China. Environ. Biol. Fish. 2009,84:231-239.
    18.DHI WATER, ENVIRONMENT. MIKE 11-A Modeling system for river and channels user guide[R]. DHI Softerware,2000,2001.
    19. Dos Santos, GM. amd De Oliveira, A.B. A Pesca no Reservatorio da Higreletrica de Balbina (Amazonas, Brasil). Acta Amazonica,1999,29,145-163
    20. Dragesund, O. et al. On the possibility of estimating yearclass strength by measuring echo abundance of 0-group fish. Fisker. dir. skr. (Havurunders.),1965,13 (8):47-71
    21. Duan, X.B., Chen, D.Q., Liu, S.P., Chi, C.G and Yang, R.H. Studies on status of fishery resources in three Gorges Reservoir reaches of the Yangtze River. Acta Hydrobiologica Sinica.2002,11:605-611.
    22. Duan, X.B. and Xiong, F. A preliminary study of the fisheries biology of main commercial fishes in the middle and upper reaches of the Yangtze River. Acta Hydrobiologica Sinica. 2002,11:618-622.
    23. Duncan A, Kubecka J. Hydroacoustic methods of fish surveys. National Rivers Authority, 1993,196:136
    24. Duncan A, Kubecka J. Hydroacoustic methods of fish surveys. National Rivers Authority, 1994,32:52
    25. Eble, J.W., Becker, C.D., Mullan, J.W. and Raymond, H.L. The Columbia River-Toward a Holistic Understanding. In:Proceedings of the International Large River Symposium (ed. D.P. Dodge). Canadian Special Publication of Fisheries and Aquatic Sciences 106, Ottawa,.1989, pp.205-209
    26. Edwards, R. W. et al., An assessment of the importance of temperature as a factor controlling the growth rate of brown trout in streams, J. Anim. Ecol.,1979,48: 501-507Chen, D.Q, Liu, S.P.,
    27. Elliott J M, Fletcher J M. A comparision of three methods for assessing the abundance of Arctic Charr, Salvelinus alpinus, in Windermere (northwest England). Fisheries Research, 2001,53(1):39-46
    28. Eschmeyer, R.W. and L.F. Miller. Fishing in TVA tailwaters. Tennessee valley authority. Knoxville, Tennessee (USA):pp9
    29. FAO. Fisheries acoustic:A practical manual for aquatic biomass estimation.1983,1-2
    30. Foote, K. G. Fish target strengths for use in echo integrator surveys. J. Acoust. Soc. Am. 1987,981-987
    31. Foote K G. Fish target strengths for use in echo integrator surveys. Journal of the Acoustical Society of American,1987,82(3):981-987.
    32. Foote, K. G. Linearity of fisheries acoustic, with addition theorems. J. Acoust. Soc.Am.73, 1983,1932-1940
    33. Foote,K.G. Importance of the swimbladder in acoustic scattering by fish:A comparison of gadoid and mackerel target strengths.J.Acoust.Soc.Am.1980,2084-2089
    34. Frouzova J.,Kubecka J.,Cech M. Bubbled ensity in open water of freshwater reservoir: consequence for fish stock studies. In:Proceedings of the Fourth European Conferenceon Underwater Acoustic. Italian National Research Council, Institutodi Acustica "O.M.Corbino", Rome, Italy,1998:281-286.
    35. Fry, J.P.. Harvest of fish from tailwaters of three large impoundments in Missouri. Proceedings of the annual conference southeastern association of game and fish commissioners,1965,16 (1962):405-411
    36. Getabu, A., Tumwebaze, R. and Maclennan, D.N. Spatial distribution and temporal changes in the fish populations of Lake Victoria. Aquatic Living Resources,2003,16: 159-165.
    37. Gill, A.S. Effect of Dams and Water-ways on Fish Fauna in Rivers of Punjab. In:Status of Wildlife in Punjab. Indian Ecological Society, Ludhiana, India,1984, pp.125-126
    38. Helg Balk, Torfinn Lindem. Improved fish detection in data from split beam transducers. Aquat. Living Resource [J].2000,13(5):297-303
    39. Huang, M.G., Qiu, S.L., Chen, D.Q. and Liu, S.P. The Three Gorges project and the fishery resource in the reservoir. Freshwater Fishery.1998,26:7-9.
    40. Huang, Z.L. Investigation and protection of zoology and environment of the Three Gorges project. Three Gorgers press of China, Beijing,2003:23-34.
    41. ICES (International Council for the Exploration of the Sea). Ecosystem effects of fishing. Proceedings of an ICES/SCOR Symposium held in Montpellier, France,16-19 March 1999. ICES J. Mar. Sci.2000,57:465-792.
    42. ISSN 1090-1051. A standard procedure for Great Lakes Acoustics[S].
    43. J.L. Martin, F.H. Page, A. Hanke, et al. Alexandrium fundyense vertical distribution patterns during 1982,2001 and 2002 in the offshore Bay of Fundy, eastern Canada. Deep-Sea Research,2005,52:2569-2592
    44. Ji, Q. and Yu, M. Study on parameters setting of ordinary cokriging interpretation to average annual temperature. Journal of Capital Normal University (Natural Sciences Edition),2010,31:81-87.
    45. John, E.E. and Tracey, W.S. Improved technique for studying the temporal and spatial behavior of fish in a fixed location. ICES Journal of Marine Science,2003,60:700-706.
    42. Kemp J L, Harper D M, Crosa G A. The habitat-scale ecohydraulics of river[J]. Ecological engineering,2000,16(1):17-29.
    46. Kevin M. Boswell, Matthew P.Wilson, Charles A.Wilson. Hydroacoustics as a Tool for Assessing Fish Biomass and Size Distribution Associated with Discrete Shallow Water Estuarine Habitats in Louisiana[J]. Estuaries and Coasts,2007,30(4):607-617.
    47. Kieser R., T.J. Mulligan. Analysis of echo counting data:A model. Can J. fish. Aquat. Sci., 1983,41:451-458.
    48. Knudsen F R, Fosseidengen J E, Oppedal F, Karlsen O, Ona E. Hydroacoustic monitoring of fish in sea cages:target strength (TS) measurements on Atlantic salmon (Salmosalar). Fisheries Research,2004,69(2):205-209.
    49. Kubecka, J. and Ducan, A. Acoustic size vs. real size relationship for common species of riverine fish. Fishery Research,1998,35:107-113.
    50. KUZNETSOV V V, GRUZEVICH A K. Monitoring of walleye Pollack stock status[J]. Rybn-Khoz-Mosc,2000, no.2:22-24.
    51. Lae, R., Ecoutin, J.M. and Kantoussan, J. The use of biological indicators for monitoring fisheries exploitation:application to man-made reservoirs in Mali. Aquatic Living Resource 2004,17:95-105.
    52. Li, H.W., Chen, Z.L., Wang, J., Xu, S.Y., Shi, G.T., Zhang, J. and Wang, L. Research of spatial variability of heave metal pollution of dust in Shanghai urban area based on the GIS. Acta Scientiae Circumstantiae,2007,27:803-809.
    53. Looy K V, Jochems H, Vanacker S, et al. Hydropeaking impact on a riparian ground beetle community [J]. River research application,2007,23(2):223-233
    54. Mason, D.M., Johnson, T.B., Harvey, C.J., Kitchell, J.F., Schram, S.T., Bronte, C.R., Hoff, M.H., Lozano, S.J., Trebitz, A.S., Schreiner, D.R., Lamon E.C. and Hrabik T. Hydroacoustic estimates of abundance and spatial distribution of pelagic prey fishes in western lake Superior. Journal of Great Lakes Research,2005,31:426-438.
    55. Miller, L.F. and C.J. Chance. Fishing in the tailwaters of T.V.A. dams. Progressive fish culturist,1954,16(1):3-9
    56. Nowbray, F. Changes in the Vertical Distribution of Capelin (Mallotus villous) off Newfoundland. ICES Journal of Marine Science,2002,59:942-949
    57. Ohshimo S, Mitani T, Honda S. Acoustic Surveys of Spawning Japanese Sardine, Sardinops melanostictus, in the Waters off Western and Southern Kyushu[J]. Fisheries Science,1998,64(5):665-672.
    58. Paramo J, Quinones R A, Ramirez A, et al Relationship Between Abundance of Small Pelagic Fishes and Environmental Factors in the Colombian Caribbean Seaan Analysis Based on Hydroacoustic Information. Aquatic Living Resources,2003,16(3):239-245
    59. Peltonen H, Balk H. The acoustic target strength of herring (Clupea harengus L) in the northern Baltic Sea[J]. ICES Journal of Marine Science,2005,62(4):803-808.
    60. Qing, D. The River Dragon Has Come! The Three Gorges Dam and the Fate of China's Yangtze River and Its People. M.E. Sharpe, Inc., Armonk, NY.1998:181.
    61. Rashid, M.M. Some Additional Information on Limnology and Fisheries of Lakes Nasser (Egypt) and Nubia (Sudan). In:Current Status of Fisheries and Fish Stocks of the Four Largest African Reservoirs:Kainji, Kariba, Nasser/Nubia and Volta (eds R.C. Crul and F.C. Roest). CIFA Technical Paper No.30. FAO, Rome,1995, pp.81-109
    62. Ryder G and Barber M. Damming the Three Gorges:1920-1993, in Damming The Three Gorges:What Dam Builders Don't Want You To Know. Earthscan, London. Sharma VK.2001. Post impoundment changes in river Beas after Pong Dam emergence. Applied Fisheries and Aquaculture.1990,1:9-12.
    63. Schlesinger, D.A. and Regier, H.A. Climatic and morphoedaphic indices of fish yields from natural lakes. Transactions of the American Fisheries Society,1982,111,141-150
    64. S. Oesmann. Vertical, lateral and diurnal drift patterns of fish larvae in a large lowland river, the Elbe. J. Appl. Ichthyol,2003,19:284-293
    65. Sugunan, V.V. Fisheries management of small water bodies in seven countries in Africa, Asia and Latin American. FAO fisheries circular No.933, Rome,1997:ppl49
    66. Tan Xichang, Chang Jianbo, Tao Jiangping et al. Survey on fish distribution in the forequarter of the Three Gorges Reservoir using EY60 split-beam echosounder. Ecological Science,2008,10:329-334.
    67. Tao, J.P., Chen, Y.B., Qiao, Y., Tan, X.C. and Chang, J.B. Hydroacoustic surveys on spatial distribution of fishes in the three Gorges Reservoir during the first impoundment. Journal of Hydroecology.2008,9:25-33.
    68. Tolmazin, D. Black Sea-Dead Sea. New Scientist,1979,84,767-769
    69. Traynor J J, Ehrenberg J E. Fish and standard sphere measurements obtained with a split-beam/dual-beam system [J]. Fish Acoustic,1990,189:325-335.
    70. T Torgersen, S Kaartvedt. In situ swimming behaviour of individual mesopelagic fish studied by split-beam echo target tracking[J].ICES Journal of Marine Science, 2001,58:346-354.
    71. Vemula, VG, Hamid MN, Kaplan A, Phiromchai S, Price R, Lei G, Yu X. Development of an Integrated River Basin Strategy in the Yangtze River Basin. UNITAR Hiroshima Office for Asia and the Pacific, Series on Biodiversity, Kushiro, Japan,29 November to 3 December 2004
    72. Vladykov, V.D. Inland Fisheries Resources of Iran, Especially of the Caspian Sea with Special Reference to Sturgeon. Report No.1818. FAO, Rome,1964, pp.51
    73. Vogel S. Life in moving fluids:the physical biology of flow[M]. New Jork:Princeton University Press,1983.
    74. Wang, Y. and Dai, H.C. Effects of water temperature delamination in large-scale reservoir and protection methods. Journal of China Three Gorges University (Natural Sciences), 2009,12:11-15
    75. Wang ZY, Lee JW, Cheng DS. Impacts of the TGP project on the Yangtze River ecology and management strategies. Intl. J. River Basin Management,2005,3(4):237-246
    76. Wanzenbock, J., Mehner, T., Schulz, M., Gassner, H. and Winfield, I.J. Quality assurance of hydroacoustic surveys:the repeatability of fish-abundance and biomass estimate in lakes within and between hydroacoustic systems. ICES Journal of Marine Science,2003, 60:486-492.
    77. Wu JG, Huang JH, Han XG, Xong ZQ, Gao XM. Three-Gorges Dam-Experiment in Habitat Fragmentation Science,2003,300:1239-1240
    78.班璇.中华鲟产卵栖息地的生态需水量[J].水利学报,2011,42(1):47-55.
    79.蔡晓明.生态系统生态学[M].北京:科学出版社,2003.
    80.蔡玉鹏,万力,杨宇,张晓敏,李益进.基于栖息地模拟法的中华鲟自然繁殖适合生态流量分析[J].水生态学杂志,2010,3(3):1-6.
    81.程香菊,陈永灿.大坝泄洪下游水体溶解气体超饱和理论分析及应用[J].水科学进展,2007,18(3):346-350.
    82.曹玉琼.异鳔鳅鮀的年龄与生长、繁殖生物学研究[D].武汉:华中农业大学硕士论文,2003.
    83.长江三峡工程生态与环境监测公报2007,中华人民共和国环境保护部
    84.长江三峡工程生态与环境监测公报2008,中华人民共和国环境保护部
    85.长江三峡工程生态与环境监测公报2009,中华人民共和国环境保护部
    86.长江三峡工程生态与环境监测公报2010,中华人民共和国环境保护部
    87.长江水系渔业资源协作组.长江水系渔业资源[M].北京:海洋出版社,1990,280-282.
    88.陈大庆.三峡水利枢纽工程概况[J].三峡工程对长江主要经济鱼类资源影响及对策研究,1997,11:91-95.
    89.陈大庆,刘绍平,段辛斌,熊飞.长江中上游主要经济鱼类的渔业生物学特征[J].水生生物学报,2002,26(6):618-622.
    90.陈庚贵,王志坚,岳兴建.长薄鳅消化系统结构的研究[J].西北农业大学学报,2002,24(6):487-490.
    91.陈国宝,李永振,赵宪勇等.南海5类重要经济鱼类资源声学评估[J].海洋学报,2006,28(2):128-134.
    92.陈进.长江演变与水资源利用[M].武汉:长江出版社,2012:131-138
    93.戴建波.彩色垂直探鱼仪的开关电源[J].渔业机械仪器,1987,5:40-42
    94.邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社,2007.
    95.邓辉胜,何学福.长江干流圆筒吻胸的生物学研究[J].西南农业大学学报(自然科学版),2005,27(5):704-708
    96.段辛斌,陈大庆,刘绍平,邱顺林.长江渔业资源动态监测网数据的管理[J].水生生物学报,2002,26(6):712-715
    97.丁瑞华.四川鱼类志[M].成都:四川科学技术出版社,1994
    98.段辛斌,陈大庆,刘绍平,池诚贵,杨如恒.长江三峡库区鱼类资源现状的研究[J].水生生物学报,2002,26(6):605-61]
    99.段辛斌,陈大庆,刘绍平等.长江中游渔业资源现状研究[J].水生生物学报,2002,26(6):605~611
    100. 段中华,孙建贻,常剑波等.网湖鲫鱼的生长与资源评估[J].湖泊科学,1994,6(3):257-266.
    101. 段中华,常剑波,孙建贻.长鳍吻鮈年龄和生长的研究[J].淡水渔业,1991,2:11-13
    102. 付健,陈永灿,刘昭伟,等.水利枢纽下游水体溶解气体饱和度预测方法研究[J].科技导报,2008,17:76-81.
    103. 顾金海.水声学基础.国防工业出版社,1981,12
    104. 顾嗣明.探鱼仪的应用和维修[M].农业出版社,1987,28-29
    105. 国家水产总局长江水产研究所.长江家鱼产卵场调查技术参考资料.1981,3
    106. 郭胜,李崇明,郭劲松,张冕,张韵,封丽.三峡水库蓄水后不同水位期干流氮、磷时空分异特征[J].环境科学,2011,32(5):1266-1272
    107. 湖北省水生生物研究所鱼类研究室.长江鱼类.北京:科学出版社,1976
    108. 胡德高,柯福恩,张国良等.葛洲坝下中华鲟产卵场的调查研究[J].淡水渔业,1992,5:6-10.
    109. 华东师范大学等.动物生态学[M].人民教育出版社,1981
    110. 黄木桂.长江三峡水利枢纽与库区渔业资源[J].三峡工程对长江主要经济鱼类资源影响及对策研究,1 997,11:69-79
    111. 黄诱,邓中粪.宜昌葛洲坝下圆口铜鱼食性的研究[J].淡水渔业,1990,6:10-13
    112. 黄真理.论三峡工程生态与环境补偿问题.21世纪长江大型水利工程中的生态与环境保护.中国环境科学出版社,1998
    113. 加藤增夫(日)著,张占基译.探鱼仪的有效使用方法[M].农业出版社,1979
    114. 蒋玫,沈新强,王云龙等.长江口及邻近水域夏季鱼卵、仔鱼数量分布特征[J].海洋科学,2006,30(6):92-97
    115. 解振华.完成跨世纪的环保任务.科技日报,1999,9,28(1).
    116. 井文涌.采取有力措施,推进中国水环境保护:水工业与可持续发展[M].北京: 清华大学出版社,1998.
    117. 李翀,廖文根,陈大庆,徐天宝,刘绍平,刘建虎.三峡水库不同运用情景对四大家鱼繁殖水动力学影响[J].科技导报,2008,26(17):55-61
    118. 李大美.生态水力学[M].北京:科学出版社,2006.
    119. 李思忠.中国淡水鱼类区划[M].科学出版社,1981
    120. 李文静.厚颌鲂的个体生物学和种群生态研究[D].武汉:华中农业大学博士论文,2006
    121. 李晓路,胡振鹏,张文捷.大坝下游河道水温变化规律及其影响[J].江西水利科技,1995,21(3):167-173
    122. 李永和主编.工业酸度计[M].北京:化工出版社,1988.
    123. 梁银锉,胡小建.长薄鳅人工繁殖技术的研究[J].水生生物学报,2001,25(4):422-424
    124. 梁银锉,胡小建,黄道明,常剑波,方艳红,虞功亮.长薄鳅年龄与生长的研究[J].水利渔业,2007,27(3):29-31
    125. 梁银锉,胡小建,虞功亮,黄道明,常剑波.长薄鳅仔稚鱼发育和生长的研究[J].水生生物学报,2004,28(1):96-100
    126. 梁银锉,谢从新,胡小建.长薄鳅胚胎发育的观察[J].水生生物学报,1999,23(6):631-635
    127. 刘伯胜,雷家煜.水声学原理[M].哈尔滨:哈尔滨工程大学出版社,1997:7-8
    128. 刘广纯,Chon Tae-soo, Park Young-suk.污染水域微栖境中的无脊椎动物群落结构特征[J].沈阳农业大学学报,1999,30(3):273-276
    129. 刘健康.高级水生生物学[M].北京:科学出版社,2000:134-145
    130. 刘军,曹文宣,常剑波.长江上游主要河流鱼类多样性与流域特征关系[J].吉首大学学报(自然科学版),2004,25(1):42-47
    131. 刘绍平,陈大庆,段辛斌等.长江中上游“四大家鱼”资源监测与渔业管理[J].长江流域资源与环境,2004,13(2):183-186
    132. 马惠钦.长江干流圆筒吻鮈生物学的初步研究[D].西南师范大学,硕士论文,2001
    133. 马惠钦,何学福.长江干流圆筒吻鮈的年龄与生长[J].动物学杂志,2004,39(3):55-59
    134. 彭期冬,廖文根.大坝对鱼类影响的生态水力学研究浅述[A].黄真理,廖文根,刘德福等.中国环境水力学2006[C].北京:中国水利水电出版社,548-553
    136. 钱勇.现代废水处理新技术[M].北京:中国科学出版社,1993.
    137. 邱顺林,陈大庆.长江鲥鱼世代分析及资源量的初步评估[J].淡水渔业,1988,6:3-5.
    138. 邱顺林,陈大庆,黄木桂,刘绍平.三峡工程截流前长江渔业资源状况初析[J].淡水渔业,1998,28(2):3-6
    139. 上海水产学院主编:鱼类学和海水鱼类养殖[M].农业出版社,1982
    141. 史为良.内陆水域鱼类增殖与养殖学[M].北京:中国农业出版社,1994:59-79
    142. 四川省长江水产资源调查组.四川省长江干流鱼类及鱼类资源调查报告[R].四川省长江水产资源调查资料汇编.1975,1-22.
    143. 谭细畅,陶江平,李新辉等.回声探测仪在我国内陆水体鱼类资源调查中的初步应用[J].渔业现代化,2009,36(3):60-64.
    144. 谭细畅,夏立启,立川贤一,等.东湖放养鱼类时空分布的水声学研究.水生生物学报,2002,26(6):585-590
    145. 唐启升,王为详,陈毓桢,等.北太平洋狭鳕资源声学评估调查研究[J].水产学报,1995,19(1):8-20.
    146. 唐英民,黄德林,黄立章.青、草、鲢、鳙鱼鱼卵水力学特性试验及其在三峡库区孵化条件初步预测[J].渔业资源,1989,4:26-30
    147. 陶江平,陈永柏,乔晔,等.三峡水库成库期间鱼类空间分布的水声学研究[J].水生态学杂志,2008,9:25-33
    148. 陶江平,乔晔,谭细畅,等.中华鲟回声信号判别分析及其在葛洲坝产卵场的空间分布[J].科学通报,2009,54(1):1-8.
    ]49. T瑞安.水库泄放冷水对鱼类的影响[J].水利水电快报,2003,14,4-7
    150. 脱有才.三峡库区与下游水温预测及其对下游鱼类产卵场的影响研究[D].成都:四川大学[硕士学位论文],2006
    15]. 仝龄,庄通官.采用单片机进行回声信号预处理的YFR-90型浅水鱼类资源评估仪.海洋水产研究,1993,14:55-63
    152. 瓦斯涅错夫(B.B.Bвснецов),可志辉译.鱼类学和渔业问题[M].科学出版社,1955
    153. 王骥,梁彦龄.用浮游植物的生产量估算武昌东湖鲢鳙生产潜力与鱼种放养量的探讨,水产学报,1981,5(4):343-350
    154. 王珂,段辛斌,陈大庆,等.三峡库区大宁河鱼类的时空分布特征[J].水生生物学报,2009,5,516-521
    155. 王武.鱼类增养殖学[M].北京:中国农业出版社,2000:128-131
    156. 王远坤,夏自强,桑国庆,郭文献,杨宇.变流量条件下中华鲟产卵场涡强特征 研究[J].水力发电学报,2010,29(3):132-136.
    157. 魏卓,张先锋,王克雄,赵庆中,匡新安,王小强,王丁.长江江豚对八里江江段的利用及其栖息地现状的初步评价[J].动物学报,2003,49(2):163-170.
    158. 温龙岚,姚艳红,王志坚.吻鮈、圆筒吻鮈和福建纹胸鮡脾脏的组织学初步观察[J].遵义师范学院院报,2006,8(6):49-51
    159. 吴强,段辛斌,徐淑英,熊传喜,陈大庆.长江三峡库区蓄水后鱼类资源现状[J].淡水渔业,2007,3:70-75
    160. 严莉.长江铜鱼种群生物学及遗传多样性分析[D].华中农业大学,硕士论文,2005
    161. 杨德国,危起伟,陈细华,等.葛洲坝下游中华鲟产卵场的水文状况及其与繁殖活动的关系[J].生态学报,2007,27(3),862-869
    162. 杨宇,严忠民,乔晔.河流鱼类栖息地水力学条件表征与评述[J].河海大学学报(自然科学版),2007,35(2):125-130.
    163. 杨宇.中华鲟葛洲坝栖息地水力特性研究.南京:河海大学,2007.
    164. 易伯鲁,余志堂,梁秩樂.葛洲坝水利枢纽与长江四大家鱼[M].湖北科学技术出版社,1988
    165. 易伯鲁.鱼类生态学讲义[M].华中农学院,1982
    166. 殷名称.鱼类生态学[M].中国农业出版社,1993
    167. 殷名称.鱼类生态学在我国的发展和前景[R].上海水产学院科技文集,1985,10-30
    168. 于晓东,罗天宏,周红章.长江流域鱼类物种多样性大尺度格局研究[J].生物多样性,2005,13(6):473-495
    169. 余志堂,邓中粦,许蕴轩等.葛洲坝水利枢纽兴建后长江干流四大家鱼产卵场的现状及工程对家鱼繁殖影响的评价[M]//易伯鲁,余志堂,梁秩藜等.葛洲坝水利枢纽与长江四大家鱼.湖北:湖北科学技术出版社,1988:47-68
    170. 曾祥胜.人为调节涨水过程促进家鱼自然繁殖的讨论[J].生态学杂志,1990,9(4):20-23
    171. 张国华,但胜国,苗志国,邓书东.六种鲤科鱼类耳石形态以及在种类和群体识别中的应用[J].水生生物学报,1999,23(6):683-689
    172. 张辉,危起伟,杨德国,杜浩,张慧杰,陈细华.葛洲坝下中华鲟自然繁殖流速场的初步观测[J].中国水产科学,2007,14(2):183-191.
    173. 张慧杰,杨德国,危起伟,等.葛洲坝至古老背江段鱼类的水声学调查[J].长江流域资源与环境,2007,16(1):86-91
    174. 张觉民,何志辉.内陆水域渔业自然资源调查手册[M].北京:农业出版社,1991, 10-171
    175. 张美红,张月星,李英文.温度、pH值对圆口铜鱼蛋白酶活性影响的初步研究[J].重庆水产,2004,4:32-37
    176. 张松.长江上游合江江段渔业显著评估及长鳍吻鮈的资源评估[D].华中农业大学硕士论文,2003
    177. 张贤芳.圆口铜鱼卵巢发育及卵子发生的初步研究[D].西南师范大学,硕士论文,2003
    178. 张信.青海无裸鲤资源量的水声学评估[D].武汉:华中农业大学,2005.
    179. 张亚,高学平.生态水力学浅议[A].黄真理,李锦秀,廖文根,等.中国环境水力2002,北京:中国水利水电出版社,182-186
    180. 赵传因.鱼类的行动[M].农业出版社,1979
    181. 赵宪勇,陈毓桢.狭鳕(Theragra chalcogramma Palas)目标强度的现场测定[J].中国水产科学,1996,2(4):19-27.
    182. 中国科学院三峡工程生态与环境科研项目领导小组.长江三峡工程对生态与环境及其对策研究[M].北京:科学出版社,1988
    183. 周春晖主编.过程控制工程手册[M].北京:化工出版社,1992.
    184. 朱德山,lversen S A.黄、东海鲲鱼及其他经济鱼类资源声学评估的调查研究[J].海洋水产研究,1990,11:1-143.
    185. 朱光文.我国海洋探测技术五十年发展的回顾与展望(一)[J].海洋技术,1999,18(2):1-16
    186. 朱光文.我国海洋探测技术五十年发展的回顾与展望(二)[J].海洋技术,1999,18(3):1-13
    187. 朱光文.我国海洋探测技术五十年发展的回顾与展望(三)[J].海洋技术,2000,19(1):23-31
    188. 朱克俭.TCK-200型存贮中功率垂直探鱼仪海上试验使用报告[J].渔业机械仪器,1990,17(86):22-25
    189. 庄平,曹文宣.长江中、上游铜鱼的生长特征[J].水生生物学报,1999,23(6)577-583
    190. 庄通官,仝龄.YFR-90水库鱼类资源评估仪及其使用[J].渔业机械仪器,1991,95(18):38-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700