用户名: 密码: 验证码:
根区土壤水肥空间耦合对冬小麦生长及水分养分利用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水分和养分是作物生长的基础条件,是影响我国农业,特别是旱地农业可持续发展的主要因素。从水分和养分之间的关系看,水分和养分又是一对耦联因子,水肥之间存在较大的交互作用。过去人们对水肥与产量之间的相互关系进行了大量研究,取得了重要进展。但研究主要集中在水肥数量和时间的耦合方面,而对空间耦合研究资料相对较少。
     本研究针对陕西关中地区的农业水资源现状、现有灌水量和方式,通过管栽土柱试验,以冬小麦为指示作物,以土垫旱耕人为土(塿土)为供试土样,采用隔层管栽土柱试验,模拟土壤水分、养分空间分布的几种状况,研究根区土壤不同湿润方式(整体湿润、上湿下干、上干下湿)和施肥方式(整体施肥、上层施肥、下层施肥)空间耦合对冬小麦生长发育、光合特性、根系活力、养分分配利用、水分利用效率和产量及构成的影响。通过研究,获得以下主要结论:
     (1)与整体湿润和上湿下干处理相比,上干下湿处理显著降低了扬花-灌浆期冬小麦的株高;从不同施肥方式看,下层施肥处理降低了拔节期前的株高和叶面积,但在扬花-灌浆期,不同施肥方式处理之间的差异较小,且各施肥方式处理的叶面积均在该时期达到最大值。不同水肥耦合处理对冬小麦的生物量及器官分配影响不一,上湿下干处理显著增加了地上部干重和总生物量,但根干重和根冠比以上干下湿处理最大;上层施肥和整体施肥处理的地上部干重、根系干重和总生物量均大于下层施肥处理,而根冠比没有差异。
     (2)光合速率与气孔导度呈显著正相关关系,维持较高的光合速率是以水分散失为代价的。光合速率与籽粒产量之间也存在显著正相关关系,尤其以开花后的光合速率对产量的影响最大,二者的相关性达到P<0.01极显著水平,较高光合速率是作物高产的基础。上干下湿处理不同程度降低了冬小麦的产量和收获指数,但水分利用效率有较大幅度提高;上层施肥方式处理的籽粒产量和水分利用效率均高于下层施肥处理;不同水肥耦合处理主要通过影响单穗粒数来影响产量。
     (3)扬花-灌浆期,整体湿润处理的根鲜重分别较上湿下干和上干下湿处理增加了5.63%和18.09%。整体湿润与上湿下干处理的根系活力差异不显著,但二者均显著高于上干下湿处理;从不同施肥方式来看,在分蘖期和拔节期,上层施肥和整体施肥处理的根鲜重、干重及根系活力高于下层施肥处理。但在扬花-灌浆期,下层施肥处理的根系活力降幅小于其它两种施肥方式。
     (4)冬小麦不同部位的氮、磷含量表现为:成熟期前,茎叶>根系;成熟期,籽粒>茎叶>根系。茎叶和根系的氮、磷含量随着生育进程的推进,呈逐渐减小的趋势。上干下湿处理不同程度降低了分蘖期和拔节期的茎叶和根系的氮、磷含量,但在杨花-灌浆期则高于其他两种湿润方式处理,成熟期不同湿润方式对茎叶和根系氮、磷含量的影响不一。下层施肥处理的茎叶和根系氮、磷含量在不同生育时期均较低,整体施肥处理更有利于茎叶和根系维持较高的氮、磷含量。
     (5)不同水肥耦合方式对铵态氮的分布影响较小,且不同生育时期各土层的铵态氮含量差异不大;但不同施肥方式对硝态氮和有效磷在土层中的分布影响显著,土层中的硝态氮和有效磷含量与该土层施肥量密切相关。
     (6)从整个生育期来看,上层施肥处理的株高、叶面积、光合特性、根系活力及生物量和籽粒产量的值均显著高于下层施肥处理,与整体施肥处理差异不显著。但上层施肥处理减少了硝态氮和有效磷在下层土壤中的残留,从而有利于下茬作物根系的吸收和因淋溶污染地下水。从生产实际角度考虑,在石灰性土壤中肥料氮的终产物以硝态氮为主,且容易移动,而磷肥不易在土壤中迁移这一特点,无论对整体湿润,还是最常见的上干下湿土壤水分分布状况,氮磷配施时,仍以施入0-35cm土层较好。
Water and nutrient are the basic conditions for crops growth, and the main factors for the agricultural sustainable development in China. There is interaction function between water and nutrient, which is a pair of coupling factors. Over the past years, Lots of researches on water and fertilizer coupling in quantity and time had been made and many important results had been acquired, but research on water and fertilizer spatial coupling are relatively insufficient.
     The studied carried out the pipe string experiment and took the winter wheat as indicator crop and the Lou soil as tested soil according to the status quo of agricultural water resources, the irrigation quantity and irrigation methods in the central of Shaanxi plain. The spatial distribution statuses of water, soil and nutrient were simulated by the barrier pipe string experiment in this study. The pipe consisted of two layers with each layer of 35cm depth and a 2cm layer of coarse sand between soil layers for obstructing water and nutrients exchange. The effect of the spatial coupling between the wetting modes (the overall soil wetting, the upper soil wetting, and the lower soil wettings) and fertilization modes (the overall soil fertilization, the upper soil fertilization and the lower soil fertilization) on winter wheat growth, photosynthetic characteristics, root vigor, nutrient distribution and utilization, water use efficiency, yield and composition was studied. The main results are shown as follows:
     (1) Compared to the overall soil wetting treatment, the upper soil wetting and lower soil drying treatment made the height of winter wheat decreased significantly during the flowering-filling stage; viewing from the different fertilization modes, the lower soil fertilization made the height and leaf areas decreased before jointing stage, while during the flowering-filling stage, there were no significant differences between the fertilization treatments and the leaf areas reached to the maximum; different water-fertilizer coupling had different effects on the distribution of biomass and organs for winter wheat. The upper soil wetting and lower soil drying treatment increased the above ground parts dry matter and the total biomass, while the maximum root dry matter and ratio of root cap was attributed to the upper soil dry and lower soil wetting; compare to the upper soil fertilization treatment and the overall soil fertilization treatment, the lower soil fertilization treatment was the minimum in terrestrial dry matter, root dry matter and total biomass, while there were no significant differences in root-shoot ratios.
     (2) There was significantly positive correlation between photosynthetic rate and stomata conductance, and a higher photosynthetic rate was at the expenditure of water vapor. There was also significantly positive correlation between photosynthetic rate and grain yield, especially, after flowering, the effect of photosynthetic rate on yield reached to maximum and the correlation (P<0.01) was extremely significant level. A higher photosynthetic rate was the base of a higher yield. The upper soil drying and lower soil wetting treatment decreased the yield and harvest index of the winter wheat, while increased the water use efficiency greatly; compared to the lower soil fertilization, the yield and water use efficiency in the upper soil fertilization treatment were higher. The water-nutrient coupling treatment affected the yield by single grain number.
     (3) Compared to the upper soil wetting and lower soil drying treatment and the upper soil drying and lower soil wetting treatment, the overall soil treatment increased the root fresh weight by 5.63% and 18.09% respectively. There were no significant differences in root vigor between the overall treatment and the upper soil wetting and lower soil drying during the flowering-grouting stage, but both of them were significantly higher than the lower soil treatment. Viewing from the fertilization methods, during the filleting stage and jointing stage, the root fresh weight, dry matter and root vigor were lowest in the lower soil fertilization treatment compared to the upper soil fertilization treatment and the overall soil fertilization treatment. But during the flowering-filling stage, the decreasing amplitude of root activity in the lower soil fertilization treatment was the lower than the other fertilization treatments.
     (4) In different parts of winter wheat, the contents of N, P were just as follow: before the maturing stage, the content in stem and leaf was greater than the one in root; during the maturity, the contents in the order grain>stem and leaf >root. In stem and leaf and root, the content of N, P decreased gradually with growth process. During the tillering stage and jointing stage, the upper soil drying and lower soil wetting decreased the contents of N, P in stem and leaf and root. But during the flowering-filling stage, the contents of N, P in stem and leaf and root in this treatment was higher compared with the other wetting treatments. During the maturity, different wetting treatment had different effects on the contents of N, P in stem and leaf and root. In the lower soil fertilization treatment, the contents of N, P in stem and leaf and root were lowest in different growth periods. The overall soil fertilization treatment could maintain the contents of N, P in stem and leaf and root better.
     (5) Different water-fertilizer coupling treatments had little effect on the distribution of NH4+-N, and during the different growth periods, the contents of NH4+-N in soil layers were no significant changes; different fertilization treatments had significant effects on the distribution of nitrate-N and available-P in soil layers. The contents of nitrate-N and available-P were revelation with the fertilization amount in the soil layers.
     (6) Viewing from the over whole growth period, the crop height, leaf area, photosynthetic characteristics, root activity, biomass and grain yield in the upper soil fertilization treatment were significantly higher than those in the lower fertilization treatment, while compared to the overall soil fertilization treatment, there were no significant differences. The upper soil fertilization treatment reduced the residual content of the nitrate -N and available-P in the next soil layers, which was benefit for the crop root absorption and kept the ground water from being contaminated resulting in leaching. On the production practice point of view, in the calcareous soil, the N fertilization finally formed the nitrate-N, which is movable easily. P is hard to transfer in soils, so it would be better to put the P fertilizer in the soil layer ranged from 0 cm to 35 cm.
引文
[1]中国工程院重大咨询项目组.中国水资源现状评价和供需发展趋势分析[M].北京:中国水利水电出版社,2001.
    [2]中华人民共和国科学技术部农村与社会发展司与中国农村技术开发中心.中国节水农业发展战略研究与实践-中国节水农业科技发展论坛文集[M].北京:中国农业科学技术出版社,2006.
    [3]中国工程院重大咨询项目组.中国农业需水与节水高效农业建设[M].北京:中国水利水电出版社,2001.
    [4]康绍忠等.我国现代农业节水高薪技术发展战略的思考[J].中国农村水利水电,2001,10:23-29.
    [5]水利部农村水利司,中国灌溉排水发展中心.农业节水探索[M].北京:中国水利水电出版社,2001.
    [6]杜太生,康绍忠,魏华.保水剂在节水农业中的应用研究现状与展望[J].农业现代化研究,2000,21 (5):317-320.
    [7]张富仓.土壤-根系统养分迁移机制及其数值模拟[M].西北农林科技大学,2001.
    [8]张璐,沈善敏,宇万太.不同降水年景作物产量对施肥的反应和水肥交互作用[J].应用生态学报,14 (12):2205-2207.
    [9]杜建军,廖宗文.高吸水性树脂胞膜尿素的结构特征及养分控/缓释性能[J].中国农业科学,2007,40 (7):1447-1455.
    [10]汪德水.旱地农田肥水关系原理与调空技术[M].北京:中国农业出版社,1995,246-254.
    [11]张雷明.旱地小麦群体生理变量对氮素供应量的响应[J].中国生态农业学报,2000,11(3):63-65.
    [12]山仑.宁南山区主要粮食作物生产力和水分利用的研究[J].中国农业科学,1988,21(2):9-16.
    [13]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(6):47-53.
    [14] Rhoads FM, Mansell RS, Hammond LC. Influence of water and fertilizer management on yield and water input efficiency of corn [J]. Agronomy Journal, 1978, 70:305-308.
    [15] Bremner JM. 1983. Nitrogen availability indices// Black CA, ed. Methodsof Soil Analysis.Part 2: Chemical and microbiological properties [C]. Madison,Wisconsin: Ameri-can Society of Agronomy: 1324-1345.
    [16] Campbell CA, Paw EA. Effects of fertilizer N and soil moisture on mineralization, N recovery and A-value under spring wheat grown in small lysimeters [J]. Canada Journal of Soil Science,1978,58: 39-51.
    [17] Keeney DR, Nelson DW. 1982. Non exchangeable ammonium// Page AL, ed. Methods of Soil Analysis. Madison: American Society of Agronomy [C]. Phosphorus nutrition under water stress in maize soil.
    [18] Smith KA, Scot A. Continuous-flow and discrete analysis// Smith KA, ed. Soil Analysis [C].New York: MarcelDekker.1983, 21(5):291-294.
    [19]张依章,张秋英.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究.2006,24(2):57-60.
    [20]潘瑞炽,董愚得.植物生理学(上册)[M].北京:高等教育出版社,1979:48-54.
    [21]梁银丽,陈培元.土壤水分和磷营养对小麦根系生长生理特性的影响[J].西北植物学报,1994,14 (5):56-60.
    [22] Arnon I. Physiological principles of dry and crop production [A].In Gupta US.Physiological Aspects of Dry-land Farming [C].New York: Universal Press.1975,3-124.
    [23]于亚军,李军,贾志宽.旱作农田水肥耦合研究进展[J].干旱地区农业研究,2005,23(3):121-124.
    [24]马强,宇万太.旱地农田水肥研究进展[J].应用生态学报,2007,18(3):665-673.
    [25] Paez A,Gonzalezm E,Yrausquin X.Water stress and clipping management effects on guinea grass. II: growth and biomass allocation [J].Agronomy Journal,1995,87:698-706.
    [26]鲍巨松,杨成书,薛吉全,等.不同生育期水分胁迫对玉米生理特性的影响[J].作物学报,1991,17(4):261-265.
    [27]张永强,毛学森,孙宏勇.干旱胁迫对冬小麦叶绿素荧光的影响[J].中国生态农业学报,2002,10(4): 13-15.
    [28] Ogren E Evaluation of chlorophyll fluorescence as a probe for drought stress in willow leaves [J]. Plant Physiology,1990,93:1280-1285.
    [29] Balota M, Lichtenthaler H K. Red chlorophyll fluorescence as an ecophysiological method to assess the behavior of wheat genotypes under drought and heat [J].Cereal Research Communication,1999, 27:179-187.
    [30] Xu CH, Li DQ.Effect of drought on chlorophyll fluorescence and xanthophyll cycle components in winter wheat leaves with different ages [J].Acta Phytophysiologica Sinica,1999,25(1):29-37.
    [31]李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1): 22-28.
    [32]王邦锡,何均贤,黄久常,等.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报, 1992,18(1):77-84.
    [33] Dressman DC.Expression of genes encoding Rubisco in sugar beet(Beta Vulgaris L)Plant subjected to gradual desiccation [J].Plant and Cell Physiol,1994,35(4):645-653.
    [34] Angelopoulis K, Dichio B, Xiloyannis C.Inhibition of photosynthesis in olive trees(Olea europawa L.)during water stress and rewatering [J].J Exp Bot,1996,47:1093-1100.
    [35] Hall AJ, Connor DJ, Whitfield DM Root respiration during grain filling in sunflower:The effects of water stress [J].Plant and Soil,1990,121:57-66.
    [36]郑昭佩,刘作新.水肥耦合与半干旱区农业可持续发展[J].农业现代化研究,2000,21(5):15-21.
    [37]张国盛.水分胁迫下氮磷营养对小麦根系发育的影响[J].甘肃农业大学学报,2001,36(2):163-167.
    [38] Stanford G, Epstein E. Nitrogen mineralization ater relations in soils [J]. Soil Science Society of America Proceedings,1974,38:103-106 .
    [39]程宪国,汪德水.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29 (4): 67-74.
    [40]徐明岗,姚其华,吕家珑.土壤养分运移[M].中国农业科技出版社,2000.
    [41]汪德水,程宪国,姚晓晔.水肥对半干旱地区小麦产量的影响[J].土壤肥料,1994,(2):1-4.
    [42] Viets F G. Water deficits and nutrient availability [C].USA:A cad press ,1972,217-247.
    [43] Shimshi D. The effects of nitrogen supply on the transpiration and stomatal behavior of beans [J].New Phy-tologist, 1970,69:405-412.
    [44]曹一平,徐永泰.小麦根系钾分配的研究[J].北京农业大学学报,1991,17(2):69-73.
    [45]张岁歧,李秧秧.施肥促进作物水分利用机理及对产量的影响研究[J].水土保持研究,1996,第三卷第一期:185-191.
    [46]何华,康绍忠.灌溉施肥部位对玉米同化物分配和水分利用的影响[J].西北植物学报,2003,23(8): 458-461.
    [47]瞿丙年,李生秀.不同水分状况下施氮对夏玉米水分利用效率的影响[J].植物营养与肥料学报, 2005,11(4):473-480.
    [48] Labiri AN 1980. Interaction of water stress and mineral nutrition on growth and yield//TumerNC,ed Adapta-tion of Plants to Water and High Temperature Stress New York:Wiley-interScience.
    [49] Nielsen DC, Halvorson AD.Nitrogen fertility influence on water stress and yield on winter wheat [J]. Agronomy Journal,1991,83:1065-1070.
    [50] Camara KM, Payne WA, Rasmussen PE. Long-term effects of tillage,nitrogen and rainfall on winter wheat yields in the Pacific Northwest [J].Agronomy Journal,2003,95:22-25.
    [51] Boland AM, Jerie PH, Mitchell PD.The effect of a saline and non-saline water table on peach tree water use, growth, productivity and ion uptake [J].Australian Journal of Agricultural Research, 1996,47(1):121-139.
    [52] Ruan JY, Zhang FS, Wong M.H. Effect of nitrogen form and phosphorus source on the growth,nutrient uptake and rhizosphere soil property of Camellia sinensis L [J].Plant and Soil,2000,223:63-71.
    [53] Ming F, Mi GH. Differential response of rice plants to low-phosphorus stress and its physiological adaptive mechanism [J].Journal of Plant Nutrition,2002,25(6):1213-1224.
    [54] Sun HG, Zhang FS, Li L,et al.The morphological changes of wheat genotypes as affected by the levels of localized phosphate supply [J].Plant and Soil,2002,245:233-238.
    [55]梁银丽,康绍忠,张成娥.不同水分条件下小麦生长特性对氮磷营养的调节作用[J].干旱地区农业研究,1999,17(4):58-63.
    [56]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,36(1):104-111.
    [57] Rodriguez D, Goudriaan J, Oyazabal M. Phosphorous nutrition and water stress tolerance in wheat plants [J].J.Plant Nutr,1996,19(l):29-39.
    [58] Jawson MD, Franzluebbers AJ, Glusha DK. Soil fumigation within monoculture and rotation response of corn and mycorrhizae [J].Agron J,1993,85:1174-1180.
    [59] Hedley MJ, Stewart JWB, Chauhan BS. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation [J].Soil Sci Soc Am J,1982,46:970-975.
    [60] Uwasawa M, Sangton P, Cholitk W. Behavior of phosphorous in paddy soils of Thailand.II.Fate of phosphorous during rice cultivation in some representative soils [J].Soil Sci Plant Nutr,1988,34 (2): 183-194.
    [61]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996,16(3):258- 264.
    [62] Heitholt J. Stomatal limitation to carbon dioxide assimilation in nitrogen and drought stressed wheat [J].Crop Sci,1991,31:135-139.
    [63] Mahler RL, Koehler FE, Lutcher LK. Nitrogen source,timing of application,and placement effects on winter production [J].Agron J,1994,86:637-642.
    [64] Rez-Boem FH, Thomas GW. Phosphorus nutrition affects wheat response to water deficit [J].Agron J,1998,90:166-171.
    [65]郭天财,方保停,王晨阳,等.水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响[J].干旱地区农业研究,2005,23(2):6-10.
    [66]吴海卿,杨传福,孟兆江,等.以肥调水提高水分利用效率的生物学机制研究[J].灌溉排水,1998,17(4):6-10.
    [67]赵立新,荆家海.水分胁迫条件下施肥对盆栽冬小麦的产量反应及对养分的吸收特征[J].土壤学报,1995,26(1):6-8.
    [68]梁银丽,康绍忠.坡地施肥水平对谷子根系生长和生产力的作用[J].干旱地区农业研究,1998,16 (2):53-57.
    [69]穆兴民.旱地作物生育对土壤水肥耦联的响应研究进展[J].生态农业研究,1999,7(1):43-46.
    [70]汪德水,程宪国,姚晓晔,等.半干旱地区麦田水肥效应研究[J].土壤肥料,1994,2:1-4.
    [71]谷洁,程逵.向日葵的水肥效应与合理施肥研究[J].干旱地区农业研究,1997,15(3):48-51.
    [72]徐学选,陈国良,穆兴民.春小麦水肥产出协同效应研究[J].水土保持学报,1994,8(4):72-78.
    [73]吕殿青,张文孝,谷洁,等.渭北东部旱源氮磷水三因素交互作用与藕合模型研究[J].西北农业学报,1994, 3(3):27-32.
    [74]刘作新,尹光华,孙中和,等.低山丘陵半干旱区春小麦田水肥耦合作用的初步研究[J].干旱地区农业研究,2000,18(3):20-25.
    [75]孟兆江,刘安能,吴海卿.商丘试验区夏玉米节水高产水肥耦合数学模型与优化力案[J].灌溉排水,1997,16(4):18-21.
    [76]陈尚漠.旱区施肥量与农田水分利用率关系的研究[J].中国农业气象,1994,15(4):12-151.
    [77]张镜清.冬小麦耗水强度与施肥灌水的关系[A].汪德水.旱地农田肥水关系原理与调控技术研究[C].北京:中国农业科学技术出版社,1995,229-232.
    [78]唐玉霞,孟春香,贾树龙,等.冬小麦对水肥反应差异与节水冬施肥技术[J].干旱地区农业研究,1996, 14(2):36-40.
    [79]兰晓泉.半干旱黄土丘陵区农田水肥效应研究[J].土壤通报,1998,29(4):161-163.
    [80]李祖荫,吕家珑.早地小麦磷肥施用方法的探讨[J].干旱地区农业研究,1991,3:22-26.
    [81]赵立新.旱地冬小麦施肥效应研究[J].干旱地区农业研究,1991,4:46-51.
    [82] Li D,Zhang J. Effect of upper soil drying on water efficiency of maize plants [J].Acta Phytobiological Sinica,1994,4(2):19-25.
    [83] Adetunji MT. Nitrogen application and underground water contamination in some agricultural soil of South Western Nigeria [J].Fertilizer Research,1994,37:159-163.
    [84] Sharma BR, Chaudhary TN. Wheat root growth,grain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sand soil [J].Agriculture Water Management, 1983, 6: 365-373.
    [85]苏德纯,任春玲,王兴仁.不同水分条件下施磷位置对冬小麦生长和磷营养的影响[J].中国农业大学学报,1998,3(5):55-60.
    [86]马瑞昆,骞家利,贾秀领.供水深度与冬小麦根系发育的关系[J].干旱地区农业研究,1991,(3):1-9.
    [87]王同朝,李凤民,王俊,等.分层供水施磷对春小麦光合性能、同化产物流向和水分利用效率的影响[J].植物生态学报,1999,23(2):177-185.
    [88] Alston AM. Effects of depth of fertilizer placement on wheat grown under three water regimes [J]. Australian Journal of Agricultural Research,1976,27(1):1-10.
    [89]李秧秧,邵明安.小麦根系对水分和氮肥的生理生态反应[J].植物营养与肥料学报,2000,6(4):383- 388.
    [90]上官周平,周维.栽培条件对冬小麦叶片水分利用效率的影响[J].植物营养与肥料学报,1998,4(3): 23-236.
    [91]高亚军,立生秀.北方旱区农田水肥效应分析[J].中国工程科学,2002,4(7):74-80.
    [92]李玉山,张孝中.黄土高原南部作物水肥产量效应的田间研究[J].土壤学报,1990,27(1):1-7.
    [93]李开元.黄土高原南部农田水分条件及产量效应[J].水土保持通报,1995,15(5):6-10.
    [94]李世娟,周殿玺等.限水灌溉条件下不同氮肥用量对小麦产量及氮素分配利用的影响[J].华北农学报,2001,16(3):86-91.
    [95]程宪国,汪德水.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学,1996,29 (4):67-74.
    [96]韩晓增,裴宇峰.水氮耦合对大豆生长发育的影响-水氮耦合对大豆生理特征的影响[J].大豆科学,2006,25(2):78-83.
    [97]张风翔,周明耀.不同氮素水平下孕穗开花期土壤水分对冬小麦产量效应的研究[J].农业工程学报,2006,22(7):25-30.
    [98]孙志强.陇东旱地水肥产量效应研究[J].干旱地区农业研究,1992,10(2):57-61.
    [99]穆兴民.水肥耦合效应与协同管理[M].北京:中国林业出版社,2000,45-47.
    [100]高亚军,李生秀,李世清.澄城高肥力田块小麦的水肥耦合效应[M].北京:中国农业科技出版社, 1995,259-264.
    [101]刘撰浩.对我国西北干旱地区农业若干规律性问题的探讨[J].干旱地区农业研究,2000,18(1):1-8.
    [102]高俊凤.植物生理学实验技术[M].世界图书出版社,2000年第一版.
    [103]邢维芹,王林权,骆永明等.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002,18 (6):46-49.
    [104] Longnecker N, Kirby E J M, Robson A. Leaf emergence, tiller growth and apical development of nitrogen deficient spring wheat [J].Crop Science,1993,33:154-160.
    [105]张凤翔,周明耀,徐华平等.水肥耦合对冬小麦生长和产量的影响[J].水利与建筑工程学报,2005,3 (2):22-24.
    [106] Rodriguez D,Goudriaan J. Effects of phosphorus and drought stress on dry matter and phosphorus allocation in wheat. Journal of Plant Nutrition,1995,18:2501-2517.
    [107]张兴义.水肥耦合对春小麦有效叶面积及产量的影响[J].生态学报,2000,8(4):37-39.
    [108]张凤翔.水肥耦合对冬小麦产量与品质的调控效应研究[D].扬州大学,2006.
    [109]王竹林,刘曙东,何培茹.K型杂交小麦籽粒灌浆特性研究[J].西北农业大学学报,1997,25(3):36 -40.
    [110]史志诚.陕西玉米小麦地膜覆盖栽培技术的应用与推广[J].西北农业大学学报,1998,26(6):75-79.
    [111] Sinclair TR. Historical changes in harvest index and crop nitrogen accumulation [J].Crop Science, 1998,38:638-634.
    [112]沈玉芳,李世清,邵明安.水肥空间组合对冬小麦光合特性及产量的影响[J].应用生态学报,2007, 18(10):2256-2262.
    [113] Sumio Itoh. In situ measurement of rooting density by micro-rhizotron [J].Soil Science and Plant nutrition,1985,31(4):653-656.
    [114]石岩,于振文,位东斌等.土壤水分胁迫对小麦根系与旗叶衰老的影响[J].西北植物学报,1998,18 (2):196-201.
    [115]程宪国,汪德水,张美荣等.不同土壤水分条件对冬小麦生长及养分吸收的影响[J].中国农业科学, 1996,4:67-73.
    [116]杨书运,严平,梅雪英等.土壤水分亏缺对冬小麦根系的影响[J].麦类作物学报,2007,27(2):309- 313 .
    [117]孙存化,白嵩,白宝璋等.水分胁迫对冬小麦幼苗根系生长和生理生态的影响[J].吉林农业大学学报,2003,25(5):485-489.
    [118]刘晓英,罗远陪.水分胁迫对冬小麦生长后效影响的模拟研究[J].农业工程学报,2003,19(4):28- 31.
    [119]胡田田,康绍忠.局部灌水方式对玉米不同根区土-根系统水分传导的影响[J].农业工程学报, 2007,23(2):11-16.
    [120]胡田田,康绍忠.局部灌水条件下不同根区在作物吸水中的作用[J].作物学报,2007,33(5):776- 781.
    [121]李志军,张富仓,康绍忠.控制性根区交替灌溉对冬小麦水分与养分利用的影响[J].农业工程学报, 2005,21(8):17-21.
    [122]梁银丽,陈陪元.土壤水分和氮磷营养对冬小麦根苗生长的效应[J].作物学报,1996,22(4):476- 481.
    [123]马强,宇万太,沈善敏等.旱地农田水肥研究进展[J].应用生态学报,2007,18(3):665-673.
    [124]汪德水,程宪国,张美荣.旱地土壤中的肥水激励机制[J].植物营养与肥料学报,1995,1(1):64-70.
    [125] Amon I. 1975. Physiological principles of dryland crop production // Gup ta US,ed. Physiological Aspects of Dryland Farming New Delhi : Oxford and IBH publishers Co.
    [126]石玉,于振文,李延奇等.施氮量和底肥比例对冬小麦产量及肥料氮去向的影响[J].中国农业科学,2007,40(1):54-62.
    [127] Shama BR, Chaudhary TN. Wheat root growth, grain yield and water uptake as influenced by water regime and depth of nitrogen placement in a sand soil [J].Agricultural Water Management,1983,6: 365-373.
    [128]赵秉强,张福锁,李增嘉等.间作冬小麦根系数量与活性的空间分布及变化规律[J].植物营养与肥料学报,2003,9(2):214-219.
    [129]黄高宝,张恩和.禾本科、豆科作物间套种植对根系活力影响的研究[J].草业学报,1998,7(2):18- 23.
    [130]黄高宝,张恩和.调亏灌溉条件下春小麦玉米间套农田水、肥与根系的时空协调性研究[J].农业工程学报,2002,18(1):53-57.
    [131]何华,康绍忠,曹红霞.灌溉施肥部位对玉米同化物分配和水分利用的影响[J].西北植物学报, 2003,23(8):1458-1461.
    [132]刑维芹.半干旱地区玉米的水肥空间耦合效应研究[J].农业工程学报,2002,18(6):46-49.
    [133]赵秉强,张福锁,李增嘉等.间套作条件下作物根系数量与活性的空间分布及变化规律研究Ⅱ间作早春玉米根系数量与活性的空间分布及变化规律[J].作物学报,2001,27(6):974-979.
    [134] Nielsen DC, Halvorson AD. Nitriogen fertility influence on water stress and yield on winter wheat [J]. Agronomy Journal,1991,83:1065-1070.
    [135] Heitholt J .Stomatal limitation to carbon dioxide assimilation in nitrogen and drought stressed wheat [J].Crop Sci,1991,31:135-139.
    [136] Lopes MS, Araus JL. Nitrogen source and water regime effects on durum wheat photosynthesis and able carbon and nitrogen isotope composition [J].Physiologia Plantarum,2006,126,435-445.
    [137]李远华,罗金翅主编.灌溉理论与技术[M].武汉:武汉大学出版社,2003,10.
    [138]金剑,刘晓冰,李艳华等.水肥耦合对春小麦灌浆期光合特性及产量的影响[J].麦类作物学报, 2001,21(1):65-68.
    [139]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,32 (4): 484-490.
    [140]徐祥玉,张敏敏,翟丙年等.不同夏玉米品种生育后期干物质及氮素积累分配的研究[J].西北植物学报,2006,26(4):0772-0777.
    [141]张鸿程,宝德俊,黄绍敏.冬小麦地上部器官氮磷钾的积累分配和运转的研究.土壤通报,2000,31 (4):177-179.
    [142]赵广才,张保明,王崇义.不同类型高产小麦氮素积累及施氮对策探讨[J].作物学报,1998,24 (6): 894-898.
    [143]王朝辉,李生秀.不同生育期缺水和补充灌水对冬小麦氮磷钾吸收及分配影响[J].植物营养与肥料学报,2002,8(3):265-270.
    [144]兰晓泉.半干旱黄土丘陵区农田水肥效应研究[J].土壤通报,1998,29(4):161-163.
    [145]吕世华,张福锁.重视土壤、水和肥料资源利用与保护新技术研究促进农业可持续发展.西南农业学报,1999,12:26-31.
    [146]汪建飞,邢素芝.农田土壤施用化肥的负效应及其防治对策.农业环境保护,1998,17(1):40-43.
    [147] Benjamin JG, Ahuja LR ,Allmaras RR. Modeling corn rooting patterns and their effects on water uptake and nitrate leaching [J]. Plant Soil,1996,179:223-232.
    [148]穆兴民.水肥耦合效应与协同管理.北京:中国林业出版社,1999,8-11,3-5,157-175.
    [149]汪德水.旱地农田肥水协同效应与耦合模式.北京:气象出版社,1999,44, 85.
    [150]沈玉芳,李世清,邵明安.水肥空间组合对成熟期冬小麦各器官氮磷养分分配的影响[J].西北植物学报,2008,28(6):1188-1195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700