用户名: 密码: 验证码:
水氮耦合对日光温室独本菊‘神马’生长影响的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干物质生产与分配是观赏植物外观品质形成的基础。水分和氮素都是影响植物干物质生产和分配的重要营养元素。为定量研究水氮耦合对日光温室独本菊生长的影响,本研究以秋菊品种‘神马’(Chrysanthemum morifolium'Jinba')为试验材料,于2006年8月-2008年7月在北京日光温室内进行了不同定植期和不同水分、氮素及水氮耦合的栽培试验,以冠层吸收的生理辐热积为预测指标,分别定量分析了水分、氮素对独本菊叶片最大总光合速率、叶面积指数和干物质分配指数动态的影响,在此基础上确定了水氮耦合方式水氮耦合系数。分别建立了水分、氮素及水氮耦合对日光温室独本菊生长影响的模拟模型,并用与建立模型相独立的数据对模型进行了检验。结果表明,以上模型对日光温室独本菊叶面积指数、总干重以及地上部各器官干重预测结果较好。本研究建立的模型为日光温室中秋菊品种‘神马’生产中的水氮管理提供理论依据和决策支持。
     (1)水分对日光温室独本菊‘神马’生长影响的模拟。定量分析了水分对叶面积指数,叶片最大总光合速率及对日光温室独本菊地上部以及地上部各器官的干物质分配指数动态的影响。结果表明,当土壤水势高于或者等于-20kPa时,叶面积指数,叶片光合速率及干物质分配,维持在较高的水平且无明显变化;但是当土壤水势低于-20kPa时,则随土壤水势降低而显著地线性递减。因此-20kPa可以作为北京日光温室独本菊‘神马’水分管理的临界水势。
     以冠层吸收的生理辐热积为预测指标,建立了水分对日光温室独本菊干物质生产及分配影响的模拟模型,并结合已有的光合驱动的作物生长模型,预测了不同水分条件下的植株干物质量及各器官干重,并用与建立模型相独立的数据对模型进行了检验。结果表明,模型对日光温室独本菊叶面积指数和总干重及各器官的干重预测结果较好,在叶面积指数、植株干物质量及地上部分干重以及叶、茎、花干重的预测中,预测值与实测值基于1:1线的决定系数(r2)值分别为0.91、0.84、0.85、0.85、0.86、0.83;相对回归估计标准误(rRMSE)分别为0.25、0.32、0.29、0.29、0.28、0.16。
     (2)氮素对日光温室独本菊‘神马’干物质生产及分配影响的模拟。定量分析了氮素对叶面积指数,叶片最大总光合速率及对日光温室独本菊地上部以及地上部各器官的干物质分配指数动态的影响。结果表明,当花芽分化期的叶片累积氮含量高于或等于1.70g m-2时,叶面积指数及干物质分配指数,维持在较高的水平且无明显变化;但是当叶片累积氮含量低于1.70g m-2时,冠层叶面积指数及干物质分配指数则随叶片累积氮含量降低而显著地线性递减。干物质分配指数的变化趋势同叶面积指数、叶片光合速率的变化趋势相似。随着叶片累积氮含量的增加叶片最大总光合速率增大,最大总光合速率与叶片累积氮含量呈指数的关系。因此,根据试验结果,花芽分化期的叶片累积氮含量1.70g m-2可以作为北京地区日光温室独本菊生产中的氮肥管理指标。
     以冠层吸收的生理辐热积为预测指标,建立了氮素对日光温室独本菊干物质生产及分配影响的模拟模型,并结合已有的光合驱动的作物生长模型,预测了不同氮素条件下的植株干物质量及各器官干重,并用与建立模型相独立的数据对模型进行了检验。模型对日光温室独本菊叶面积指数和总干重及各器官的干重预测结果较好,结果表明,在叶面积指数、植株干物质量及地上部分干重、叶、茎、花干重的预测中,预测值与实测值基于1:1线的决定系数(r2)值分别为0.92、0.89、0.90、0.88、0.85、0.89;相对回归估计标准误(rRMSE)分别为0.21、0.26、0.26、0.25、0.25、0.06。
     (3)水氮耦合对日光温室独本菊‘神马’干物质生产及分配影响的模拟。通过定量分析水分、氮素对日光温室独本菊生长的影响,确定水氮耦合条件下水氮耦合方式水氮耦合系数。本试验结果确定的水氮耦合方式,为水分影响因子、氮素影响因子及水氮耦合系数的乘积。当水氮耦合系数大于1时,土壤水势或者叶片累积氮含量与该参数的变化是正相关,且耦合系数越大时,说明该参数受到水氮耦合效应影响越大,如采收时的叶分配指数,地上分配指数的增加速率;当水氮耦合系数小于1时,土壤水势或者叶片累积氮含量与该参数的变化是负相关,当耦合系数越小时,说明该参数受到水氮耦合效应影响越大,如采收时的茎分配指数,叶分配指数的增加速率。
     以冠层吸收的生理辐热积为预测指标,建立了水氮耦合对日光温室独本菊生长影响的模拟模型,并结合已有的光合驱动的作物生长模型,预测了不同水氮耦合条件下的植株干物质量及各器官干重,并用与建立模型相独立的数据对模型进行了检验。模型对日光温室独本菊叶面积指数和总干重及各器官的干重预测结果较好,结果表明,在叶面积指数、植株干物质量及地上部分干重、叶、茎、花干重的预测中,预测值与实测值基于1:1线的决定系数(r2)值分别为0.89、0.84、0.83、0.84、0.82、0.85;相对回归估计标准误(rRMSE)分别为0.33、0.34、0.31、0.30、0.32、O.10。
     本研究建立的模型可以根据定植期、定植密度、冠层封行日期、短日照开始处理日期、土壤水势、叶片累积氮含量和日光温室内太阳辐射和温度信息等资料,动态预测日光温室独本菊‘神马’叶面积指数、植株干物质量及各器官的干重。可以为我国温室独本菊‘神马’生产的水氮管理提供理论依据和决策支持。
Dry matter production and dry matter partitioning is the base of external quality formation of ornamental plants. Water and nitrogen are the important factors affecting dry matter production and dry matter partitioning of plants. The aim of this study is to quantitatively investigate the effects of water and nitrogen coupling on the growth of solar greenhouse standard cut chrysanthemum in solar greenhouse. Experiments of standard cut chrysanthemum (Chrysanthemum morifolium'Jinba') with different planting dates and different levels of water levels and nitrogen application rates were conducted in a solar greenhouse in Beijing during August,2006 and July,2008. The integrated photo-thermal index (PTI), defined as the daily average normalized thermal time multiplies by the daily total PAR intercepted, was used to describe the changes of leaf area index (LAI), the maximum leaf gross photosynthetic rate (Pg.max) and the partitioning indices of leaf, stem and flower with development stages. Also the way of water and nitrogen coupling and coefficients of water and nitrogen coupling were confirmed. Effects of the soil water potential, accumulated leaf nitrogen content, water and nitrogen coupling on the dynamics of the maximum leaf gross photosynthetic rate, canopy LAI and the partitioning indices of leaf, stem and flower were respectively quantified based on experimental data. Based on these quantitative relationships, models for predicting the effects of water, nitrogen, water and nitrogen coupling on dry matter production and partitioning of standard cut chrysanthemum in solar greenhouse were developed. Independent experimental data were used to validate the model. The results showed that the model developed in this study can predict canopy LAI, total dry weight, dry weight of stem, leaf and flower of the standard cut chrysanthemum plants grown in the solar greenhouse satisfactorily, hence, can be used for optimization water and nitrogen management for solar greenhouse standard cut chrysanthemum production.
     (1) Quantifying the effects of soil water potential on the growth of standard cut Chrysanthemum 'Jinba' in solar greenhouse.The aim of the study was to quantitatively investigate the effects of water on canopy LAI,Pg,max and dry matter partitioning of solar greenhouse standard cut chrysanthemum. The results showed that canopy LAI, Pg,max and dry matter partitioning indices kept at more or less the same level when soil water potential was equal or above -20kPa, but decreased linearly with the decrease of soil water potential when soil water potential was below -20kPa. So the critical soil water potential for the growth of standard cut chrysanthemum crops was determined as-20 kPa.
     With PTI as the predicting index, a model for predicting the effects of soil water potential on the growth of standard cut chrysanthemum in solar greenhouse was developed. Integrated with the crop growth model, the model predicted dry matter production and different organs dry weight. Independent experimental data were used to validate the model. The model developed gives satisfactory predictions of canopy LAI, dry matter production and different organs dry weight of standard cut chrysanthemum The result showed that the coefficient of determination (r2) between the predicted and measured values of LAI, dry matter production, dry weight of shoot, leaf, stem, flower based on the 1:1 line were 0.91, 0.84,0.85,0.85,0.86,0.83, respectively; and the relative root mean squared error (rRMSE) between the predicted and the measured values were 0.25,0.32,0.29,0.29,0.28,0.16.
     (2) Quantifying the effects of nitrogen on the growth of standard cut Chrysanthemum 'Jinba' in solar greenhouse. The aim of the study was to quantitatively investigate the effects of nitrogen on canopy LAI, Pg;max and dry matter partitioning of solar greenhouse standard cut chrysanthemum. The results showed that canopy LAI and dry matter partitioning indices kept at more or less the same level when the accumulated leaf nitrogen content at flower initiation stage was equal or above 1.70 g m-2, but decreased linearly with the decrease of the maximum leaf nitrogen content when the accumulated leaf nitrogen content was below 1.70 g m-2. The leaf gross photosynthetic rate increased with the increase of the accumulated leaf nitrogen content and their relationship was exponential. So the critical the accumulated leaf nitrogen content at flower initiation stage for the growth of standard cut chrysanthemum crops was determined as 1.70 g m-2.
     With PTI as the predicting index, a model for predicting the effects of nitrogen on the growth of standard cut chrysanthemum in solar greenhouse was developed. Integrated with the crop growth model, the model predicted dry matter production and different organs dry weight. Independent experimental data were used to validate the model. The model developed gives satisfactory predictions of canopy LAI, dry matter production and different organs dry weight of standard cut chrysanthemum. The result showed that the coefficient of determination (r) between the predicted and measured values of canopy LAI, dry matter production, dry weight of shoot, leaf, stem, flower based on the 1:1 line were 0.92,0.89, 0.90,0.88,0.85,0.89, respectively; and the relative root mean squared error (rRMSE) between the predicted and the measured values were 0.21,0.26,0.26,0.25,0.25,0.06.
     (3) Quantifying the effects of water and nitrogen coupling on the growth of standard cut Chrysanthemum 'Jinba' in solar greenhouse. Based on quantificationally analysis of the effects of water, nitrogen on the growth of standard cut Chrysanthemum 'Jinba' in solar greenhouse, the way of water and nitrogen coupling and coefficients of water and nitrogen coupling were confirmed. Water limit factors, nitrogen limit factors and coefficients of water and nitrogen coupling were multiplied as the way of water and nitrogen coupling. When coefficient of water and nitrogen coupling was above 1, the change of the parameter was positive with soil water potential or leaf nitrogen content. The larger of the coefficient of water and nitrogen coupling of the parameter, the stronger of the effect of water and nitrogen coupling was shown on the parameter, such as the leaf partitioning index on harvesting date, the increasing rate of shoot partitioning index. When coefficient of water and nitrogen coupling was below 1, the change of the parameter was negative with soil water potential or leaf nitrogen content. The smaller of the coefficient of water and nitrogen coupling of the parameter, the stronger of the effect of water and nitrogen coupling was shown on the parameter, such as the stem partitioning index on harvesting date, the increasing rate of leaf partitioning index.
     With PTI as the predicting index, a model for predicting the effects of water and nitrogen coupling on the growth of standard cut chrysanthemum in solar greenhouse was developed. Integrated with the crop growth model, the model predicted dry matter production and different organs dry weight. Independent experimental data were used to validate the model. The model developed gives satisfactory predictions of LAI, dry matter production and different organs dry weight of standard cut chrysanthemum. The result showed that the coefficient of determination (r2) between the predicted and measured values of LAI, dry matter production, dry weight of shoot, leaf, stem, flower based on the 1:1 line were 0.89, 0.84,0.83,0.84,0.82,0.85, respectively; and the relative root mean squared error (rRMSE) between the predicted and the measured values were 0.33,0.34,0.31,0.30,0.32,0.10.
     In this study, the model was developed for predicting canopy leaf area index, dry matter production and different organs dry weight by inputting the data of planting date, planting density, the date when the canopy of the crop was closed, the start date of short day, soil water potential, accumulated leaf nitrogen content, air temperature and PAR in the greenhouse. The model can be used for optimizing water and nitrogen management for standard cut Chrysanthemum 'Shenma' in solar greenhouse.
引文
[1]Wenlong Li, Weide Li, Zizhen Li. Irrigation and fertilizer effects on water use and yield of spring in semi arid region [J]. Agricultural Water Management,2004,67:35-46.
    [2]文宏达,刘玉柱.水氮耦合与旱地农业持续发展[J].土壤与环境,11(3):315-318.
    [3]穆新民.水氮耦合效应与协同管理[M].北京:中国林业出版社,1999:44-46.
    [4]Chowdary V M et al. A coupled soil water and nitrogen balance model for flooded rice fields in India [J]. Agriculture, Ecosystems and Environment,2004,103:425-441.
    [5]Garabet S et al. Nitrogen and water effects on wheat yield in a Mediterranean-type climate [J]. Agricultural Water Management,1998,57:309-318.
    [6]刘晓宏,肖洪浪.不同水肥条件下春小麦耗水量和水分利用率[J].干旱地区农业研究,2006,24(1):60-63.
    [7]李世清,李生秀.水肥配合对玉米产量和肥料效果的影响[J].干旱地区农业研究,1994,12(1):47-53.
    [8]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [9]Stewar C R. Role of carbohydratesin in protine accumulation in willed barley leaves [J]. Plant Physiology,1978,61:775-778.
    [10]Kramer P J, Kozlowski T T;汪振儒译.木本生理学[M].北京:中国林业出版社,1985.
    [11]汤章城.植物干旱生态生理研究[J].生态学报,1983,3(3):196-204.
    [12]柯世省.水分胁迫对夏腊梅气孔行为的影响[J].河北师范大学学报,2007,31(6):797-801.
    [13]Yang X H, Chen X Y, Ge Q Y, Li B, Tong Y P, Zhang A M, Li Z S, Kuang T Y, Lu C M. Tolerance of photosynthesis to photoinhibition, high temperature and drought stress in flag leaves of wheat:A comparison between a hybridization line and its parents grown under field conditions [J]. Plant Science,2006,171:389-397.
    [14]段学芬,郭婧,孙福江,郭宝林.水分胁迫对美国黑莓光合特性的影响[J].河北农业大学学报,2009,32(2).
    [15]Ramanjulu S, Sreenivasulu N, Sudakra C,1998. Effects of water stress on photosynthesis in two mulberry genotypes with different drought tolerance [J]. Photosynthetica 35:279-283.
    [16]Peri P L, Moot D J, McNeil D L,2003. A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes [J]. Grass and Forage Science,58,416-430.
    [17]付秋实,李红岭,崔健,赵冰,郭仰东.水分胁迫对辣椒光合作用及相关生理特性的影响[J].中国农业科学,2009,42(5):1859-1866.
    [18]Ferreyra R A, Dardanelli J L, Pachepsky L B, Collino D J, Faustinelli P C, Giambastiani G, Reddy V R, Jones J W. Nonlinear effects of water stress on peanut photosynthesis at crop and leaf scales [J]. Ecological Modelling,2003,169:57-76.
    [19]Alt C, Kage H, Stutzel H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L.botrytis) [J]. Annals of Botany,2000,86:963-973.
    [20]Ploeg A, van der Kularathne R J K N, Carvalho S M P, Heuvelink E. Variation between cut chrysanthemum cultivars in response to suboptimal temperature [J]. Journal of the American Society for Horticultural Science,2007,132:1,52-59.
    [21]Larsen R U, Nothnagl M. Re-constructing data of leaf area increment in the greenhouse pot chrysanthemum cultivar'Lompoc'[J]. Scientia Horticulturae,2008,117:63-68.
    [22]Hand DW, Langton F A, Hannah M A, Cockshull K E. Effects of humidity on the growth and flowering of cut-flower chrysanthemums (Dendranthema grandiflora Tzvelev) [J]. Journal of Horticultural Science,1996,71(2):227-234.
    [23]Leiv M Mortensen. Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species [J]. Scientia Horticulturae,2000,86:299-310.
    [24]Jensen C R., Mogensen V O., Mortensen G., Andersen M N., Schjoerring J K., Thage J H., Koribidis J. Leaf photosynthesis and drought adaptation in field-grown oilseed rape(Brassica napus L.) [J]. Plant Physiol.,1996,23:631-644.
    [25]Pierre Casadebaig, Philippe Debaeke, Jeremie Lecoeur. Thresholds for leaf expansion and transpiration response to soil water deficit in a range of sunflower genotypes [J]. European Journal of Agronomy,2008,28:646-654.
    [26]Jeremie Lecoeur, Lydie Guilioni. Rate of leaf production in response to soil water deficits in field pea [J]. Field Crops Research,1998,3:219-328.
    [27]周艳宝,戴剑锋,林碌,等.水分对日光温室独本菊生长动态影响的模拟[J].农业工程学报,2008,24:11.
    [28]Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the whole plants [J]. Experimental Botany,1996,47:1281-1291.
    [29]Brouwer R, De Wit C T. A simulation model of plant growth with special attention to root growth and its consequences. In:Whittington, W. J. (Ed.), Root growth. Butterworth, London, 1969:224-244.
    [30]刘铁梅.小麦光合生产与物质分配的模拟模型[D].南京:南京农业大学农学院,2000.
    [31]Wardlaw I F. The control of carbon partitioning in plants [J]. New Phytology,1990,116:341-381.
    [32]Wilson J B. A review of evidence on the control of shoot:root ratio, in relation to models [J]. Annals of Botany,1988,61:433-449.
    [33]Setter T L. Transport/harvest index:photosynthate partitioning in stressed planta. In:Cumming, J R(Ed.), Stress Response in Plants:Adaption and Acclimation Mechanisms. Wiley-Liss, Inc, New York, pp:17-36.
    [34]胡继超,曹卫星,姜东,等.小麦水分胁迫影响因子的定量研究Ⅰ.干旱和渍水胁迫对光合,蒸腾及干物质积累与分配的影响[J].作物学报,2004,30(4):315-320.
    [35]Kage H., Kochler M., Stutzel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation [J]. European Journal of Agronomy,2004, 20:379-394.
    [36]王焱,毕建杰,刘建栋.水分胁迫对冬小麦干物质分配的影响[J].安徽农业科学,2009,37(15):7039-7042.
    [37]Kage H., Kochler M, Stutzel H. Root growth and dry matter partitioning of cauliflower under drought stress conditions:measurement and simulation [J]. European Journal of Agronomy,2004, 20:379-394.
    [38]浙江农业大学.植物营养与肥料[M].北京:农业出版社,1995,43.
    [39]Chen Lisong, Cheng Lailiang. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation [J]. Journal of Horticultural&Biotechnology,2004, 79(6):923-929.
    [40]Gerik T J., Oosterhuis D M., Torbert H A. Managing cotton nitrogen supply [J]. Adv. Agron., 1998:115-147.
    [41]Le Bot J., Adamowicz S., Robin p. Modelling plant nutrition of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:47-82.
    [42]Muchow R C., Sinclair T R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown Maize and Sorghum [J]. Crop Science,1994,34:721-727.
    [43]Evans J R. Nitrogen and photosynthesis in the flag leaf of wheat(Triticum aestivum L.) [J]. Plant Physiology,1983,72:297-302.
    [44]陈永山,戴剑锋,罗卫红,等.叶片氮浓度对温室黄瓜花后叶片最大总光合速率影响的模拟[J].农业工程学报,2008,24(7):13-19.
    [45]Vos J., van der Putten P E L. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato [J]. Field Crops Research,1998,59:63-72.
    [46]Connor D J. et al. Effect of nitrogen content on the photosynthetic characteristics of sunflower leaves [J]. Plant physiol,1993,20:251-263.
    [47]Zhao D., Reddy K R., Kakani V G., Reddy V R. Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,22:391-403.
    [48]Reddy K R., Hodges H F., McKinion J M. Crop modeling and applications:a cotton example [J]. Adv. Agron.,1997a,59:225-290.
    [49]Roggatz U., Mcdonald A J S., Stadenberg L., Schurr U. Effects of nitrogen deprivation on cell division and expansion in leaves of Ricinus communis L [J]. Plant Cell Environment,1999, 22:81-89.
    [50]Nora Trapani, Antonio J., Hall, Marc Weber. Effects of constant and variable nitrogen supply on sunflower (Helianthus annuus L.) leaf cell number and size [J]. Annals of Botany,1999, 84:599-606.
    [51]McDonald A J S., Davies W J. Keeping in touch:responses of the whole plant to deficits in water and nitrogen supply. Adv. Bot. Res.,1996,22:229-300.
    [52]Soltani A., Robertson M J., Manschadi A M. Modeling chickpea growth and development, nitrogen accumulation and use [J]. Field Crops Research,2006,99:24-34.
    [53]Depinheiro Henriques A R., Marcelis L F M. Regulation of growth at steady-state nitrogen nutrition in Lettuce Lactuca sativa L:Interactive effects of nitrogen and irradiance [J]. Annals of Botany, 2000,86:1073-1080.
    [54]Xinyou Yin, Egbert A. Lantinga, AD H C M. Schapendonk, Xuhua Zhang. Some quantitative relationships between leaf area index and canopy nitrogen content and distribution [J]. Annals of Botany,2003,91:893-903.
    [55]Yin X Y, AD H C M. Schapendonk, Martin J. Kropff, Marcel Van Oijen, Prem S. Bindtaban. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence [J]. Annals of Botany,2000,85:579-585.
    [56]Reddy K J., Satyasai K Matcha. Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis [J]. Industrial Crops and Products,2010,31:185-191.
    [57]Harmens H., Stirling C M., Marshall C. et al. Is partitioning of dry weight and leaf area with Dactylis glomerata affected by N and CO2 enrichment? [J]. Annals of Botany,2000,86:833-839.
    [58]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [59]李俊娇.氮素对冬小麦灌浆期间同化产物运作、分配的调控[硕士论文].河南农业大学,2008.
    [60]蔡柏岩,葛菁萍,曲文章.氮素水平对甜菜干物质积累与分配的影响[J].中国糖料,2004,2.
    [61]Dingkuhn M L. Modeling concepts for the phenotypic plasticity of dry matter and nitrogen partitioning in rice [J]. Agricultural Systems,1996,52:383-397.
    [62]韩利,戴剑锋,罗卫红,等.氮素对温室黄瓜开花后干物质分配和产量影响的模拟研究[J].农业工程学报,2008,24(6).
    [63]米晓洁,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J].植物生态学报,2009,33(1):108-117.
    [64]Thomas Katterer, Henrik Eckersten, Olof Andren, et al. Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes:application of a crop growth model [J]. Ecological Modelling,1997,102:301-314.
    [65]汪德水.旱地农田肥水关系原理与调控技术[M].北京:中国农业科技出版社,1995.111-115.246-254.
    [66]Banziger M., Feil B., Stamp P. Competition between nitrogen accumulation and grain growth for carbohydrates during grain filling of wheat. Crop Science,1994,35(2):433-450.
    [67]上官周平,刘文兆.旱作农田冬小麦水肥耦合增产效应[J].水土保持研究,1999,(1);103-106.
    [68]金柯,汪德水,蔡典雄.旱地农田水肥耦合效应及其模式研究[J].中国农业科学,1999,32(5):13-16.
    [69]薛青武,陈培元.土壤干旱条件下氮素营养对小麦水分状况和光合作用的影响[J].植物生理学报,1990,16(1):49-56.
    [70]李卫民,周凌云.水肥(氮)对小麦生理生态的影响(Ⅰ)水肥(氮)条件对小麦光和蒸腾与水分利用的影响[J].土壤通报,2004,35(2):136-142.
    [71]张雷明,杨君林,上官周平.旱地小麦群体生理变量对氮素供应量的影响[J].中国生态农业学报,2003,7:63-65.
    [72]李生秀,李世清,高亚军,等.施用氮肥对提高旱地作物利用土壤水分的作用机理和效果[J].干旱地区农业研究,1994,12(1):38-46.
    [73]Hamblin A., Tennant D., Perry M W. The cost of stress:Dry matter partitioning with seasonal supply of water and nitrogen of dry land wheat. Plant soil,1990,122:47-58.
    [74]Meyer R D., Marcum D B. Potato yield, petiole nitrogen and soil nitrogen response to water and nitrogen. Agro J.,1998:420-429.
    [75]穆新民.旱地作物生育对土壤水肥耦联的响应研究进展[J].旱地农业研究,1997,7(1):43-46.
    [76]山仑,陈培元主编.旱地农业生理生态理论基础[M].北京:科学出版社,1998,233-246.
    [77]陈碧华,郜庆炉,杨和连,等.日光温室膜下滴灌水肥耦合技术对番茄生长发育的影响[J].广东农业科学,2008,8(12):63-67.
    [78]Goos R J., Schimelfenig J A., Bock B R et al. Response of spring wheat to nitrogen fertilizer of different nitrification rates [J]. Agron J.,1999,91:287-293.
    [79]戴鸣钧,彭琳,余存祖.土壤水分养分协调与制约的试验研究[M].北京:科学技术出版社,1990:183-188.
    [80]周瑞.不同水肥耦合处理下冬小麦光合产物分配格局和动态研究[D].河南大学,2009.
    [81]张凤翔,周明耀,徐华平,等.水肥耦合对冬小麦生长和产量的影响[J].水利与建筑工程学报,2006,3(2):22-24.
    [82]Hebbar S S., Ramachandrappa B K., Nanjappa H V. Studies on NPK drip fertigation in field grown tomato (Lycopersicon esculentum Mill) European Journal of Agronomy,2004,21(1):117-127.
    [83]姜东,于振文,李永庚,余松烈.冬小麦叶茎粒可溶性糖含量变化及其与籽粒淀粉积累的关系[J].麦类作物学报,2001,21(3):38-41.
    [84]肖自添.温室基质培番茄水氮耦合效应研究[D].中国农业科学院,2008.
    [85]Keulen H VAN. Modelling the interaction of water and nitrogen [A]. In:JOHN MONTEITH, COLIN WEBB, eds. Soil water and nitrogen in Mediterranean-type environment[C].1981:205-229.
    [1]Xu R., Dai J., Luo W., Yin X., Li Y., Tai X., Han L., Chen Y., Lin L., Li G., Zou C., Du W., Diao M. A photothermal model of leaf area index of greenhouse crops [J]. Agricultural and Forest Meteorology,2010,150:541-552.
    [2]鲍士旦,土壤农化分析[M].北京:科技出版社,1996:50-100.
    [3]米晓洁,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J].植物生态学报,2009,33(1):108-117.
    [4]丁琪峰,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’外观品质影响的模拟[J].中国农业科学,2009,42(1):363-369
    [1]Lee J H. Analysis and simulation of growth and yield of cut chrysanthemum. Wageningen Agriculture University, The Netherlands,2002.
    [2]Boase, M R, Miller, R, Deroles, S C. Chrysanthemum systematics, genetics, and breeding [J]. Plant Breeding Reviews,1997,14,321-361.
    [3]马亚教.全年均衡供货是加速我国切花菊出口日本的关键[J].中国花卉园艺,2007,5:20-21.
    [4]陈林.日本菊花市场调查与分析[J].农村实用工程技术:温室园艺,2005,6:18-20.
    [5]Luo, W H. Roles and prospects of models in traditional Chinese solar greenhouse crop and climate management [J]. Acta Horticulturae,2006,718:245-253.
    [5]Osorio J., Osorio M L., Chaves M M, Pereira J S. Water deficits are more important in delaying growth than in changing patterns of carbon allocation in Eucalyptus globulus [J]. Tree Physiology, 1998,18:363-373.
    [6]Peri P L, Moot D J, McNeil D L. A canopy photosynthesis model to predict the dry matter production of cocksfoot pastures under varying temperature, nitrogen and water regimes [J]. Grass and Forage Science,2003,58:416-430.
    [7]Albert Olioso, Toby N Carlson, Nadine Brisson. Simulation of diurnal transpiration and photosynthesis of a water stressed soybean crop [J]. Agricultural and Forest Meteorology,1996,81: 41-59.
    [8]Ferreyra R A, Dardanelli J L, Pachepsky L B, Collino D J, Faustinelli P C, Giambastiani G, Reddy V R, Jones J W. Nonlinear effects of water stress on peanut photosynthesis at crop and leaf scales [J]. Ecological Modelling,2003,169:57-76.
    [9]Wang J, Yu Q, Li J, Li L, Li X, Yu G, Sun X.,2006. Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration [J]. Agricultural and Forest Meteorology 137:194-219.
    [10]Jamieson P D, Martin R J, Francis G S, Wilson D R. Drought effects on biomass production and radiation-use efficiency in barley [J]. Field Crops Research,1995,43:77-86.
    [11]Arora V K, Gajri P R. Evaluation of a crop growth-water balance model for analyzing wheat responses to climate-and water-limited environments [J]. Field Crops Research,1998,59: 213-224.
    [12]Arora V K, Gajri P R. Assessment of a crop growth-water balance model for predicting maize growth and yield in a subtropical environment [J]. Agricultural Water Management,2000,46: 157-166.
    [13]Jose O Payero, David D Tarkalson, Suat Irmak, Don Davison, James L P etersen. Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate [J]. Agricultural Water Management, 2008,95:895-908.
    [14]Folkard Asch, Michael Dingkuhn, Abdoulaye Sow, Alain Audebert. Drought-induced changes in rooting patterns and assimilate partitioning between root and shoot in upland rice [J]. Field Crops Research,2005,93:223-236.
    [15]Inman-Bamber N G, Smith D M. Water relations in sugarcane and response to water deficit [J]. Field Crops Research,2005,92:185-202.
    [16]Kumar R, Sarawgi A K, Ramos C, Amarante S T, Ismail A M, Wade L J. Partitioning of dry matter during drought stress in rainfed lowland rice [J]. Field Crops Research,2006,96:455-465.
    [17]Larsen R U, Persson L. Modelling flower development in greenhouse chrysanthemum cultivars in relation to temperature and response group [J]. Scientia Horticulturae,1999,80:73-89.
    [18]Shumin Li, Nihal C Rajapakse, Roy E Young, Ryu Oi. Growth responses of chrysanthemum and bell pepper transplants to photoselective plastic films [J]. Scientia Horticulturae,2000,84: 215-225.
    [19]Heuvelink, E, Lee J H, Buiskool R P M, Ortega L. Light on cut chrysanthemum:measurement and simulation of crop growth and yield [J]. Acta Horticulturae,2002,580:197-202.
    [20]Lee J H, Heuvelink E. Simulation of leaf area development based on dry matter partitioning and specific leaf area for cut chrysanthemum [J]. Annals of Botany,2003,91:319-327.
    [21]Ploeg A, Heuvelink E. The influence of temperature on growth and development of chrysanthemum cultivars:a review [J]. Journal of Horticultural Science and Biotechnology,2006, 81(2):174-182.
    [22]Ploeg A, van der Kularathne R J K N, Carvalho S M P, Heuvelink E. Variation between cut chrysanthemum cultivars in response to suboptimal temperature [J]. Journal of the American Society for Horticultural Science,2007,132:1,52-59.
    [23]Larsen R U, Nothnagl M. Re-constructing data of leaf area increment in the greenhouse pot chrysanthemum cultivar'Lompoc'[J]. Scientia Horticulturae,2008,117:63-68.
    [24]Hand DW, Langton F A, Hannah M A, Cockshull K E. Effects of humidity on the growth and flowering of cut-flower chrysanthemums (Dendranthema grandiflora Tzvelev) [J]. Journal of Horticultural Science,1996,71(2):227-234.
    [25]Leiv M Mortensen. Effects of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species [J]. Scientia Horticulturae,2000,86:299-310.
    [26]Farias M F de, Saad J C C, Boas R L V. Commercial quality of pot chrysanthemum, cultivar Puritan, irrigated at different substrate water tension in a greenhouse [J]. IRRIGA-.,2003,8: 160-167.
    [27]Farias M F de, Saad J C C, Boas R L V. Irrigation schedule in pot chrysanthemum, cultivar rage, grown in greenhouse [J]. Engenharia-Agricola,2004,24:51-56.
    [28]Farias M F de, Saad J C C, Boas R L V. Growth and quality of chrysanthemum produced in greenhouse [J]. Horticultura-Brasileira,2005,23:740-742.
    [29]Blom Zandstra M, Metselaar K. Infrared thermometry for early detection of drought stress in chrysanthemum [J]. HortScience,2006,41:136-142.
    [30]Goudriaan J, Van Laar H H. Modeling Potential Crop Growth processes [J]. Amsterdam:Kluwer Academic Publishers,1994.
    [31]Dayan E., Van Keulen H., Jones J. W., et al. Development, calibration and validation of a greenhouse tomato growth model:I. Description of the model [J]. Agricultural Systems,1993, 43:145-161.
    [32]Yin X. and van Laar, H H. Crop Systems Dynamics, An Ecophysiological Simulation Model for Genotype-by-Environment Interactions,2005, Wageningen Academic Publishers.
    [33]Liu F., Stutzel H. Leaf expansion, stomatal conductance, and transpiration of vegetable amaranth {Amaranthus sp.) in response to soil drying [J]. HortScience,2002b,127:878-883.
    [34]Yin C Y., Wang X., Duan B L., Luo J X., Li C Y. Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress [J]. Environmental and Experimental Botany,2005,53:315-322.
    [35]Martin P J., Stephens W. Willow growth in response to nutrients and moisture on a clay landfill cap soil. I. Growth and biomass production [J]. Bioresour Technol,2006,97:437-438.
    [36]Erice G, Irigoyen, Perez P., Martinez-Carrasco R., Sanchez-Diaz M. Effect of elevated CO2, temperature and drought on dry matter partitioning and photosynthesis before and after cutting of nodulated alfalfa [J]. Plant Science,2006,170:1059-1067.
    [37]Jones H G. Plants and Microclimate,2nd ed. Cambridge University Press,1992, New York, pp 163-214.
    [38]Comic G., Massacci A. Leaf photosynthesis under drought stress. In:Baker, N.R. (Ed.), Photosynthesis and the Environment. Kluwer Academic Publishers,1996, The Netherlands, pp.347-366.
    [39]Liu F., Stutzel H.,2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth(Amaranthus sp.) in response to water stress [J]. Scientia Horticulturae,2004, 102:15-27.
    [40]Chapman S C., Hammer G L., Meinke H. A sunflower simulation model:I. Model development [J]. Agronomy Jouranl,1993,85:725-735.
    [41]Connor D J., Fereres E. A dynamic model of crop growth and partitioning of biomass. Field Crops Research,1999,63:139-157.
    [42]Jean Claude Maihol, Ayorinde A. Olufayo, Pierre Ruelle. Sorghum and sunflower evapotranspiration and yield from simulated leaf area index [J]. Agricultural Water Management, 1997,35:167-182.
    [43]Bechir Ben Nouna, Nader Katerji, Marcello Mastrorilli. Using the CERES-Maize model in a semi-arid Mediterranean environment. New modeling of leaf area and water stress functions. European Journal of Agronomy,2003,19:115-123.
    [44]Boote K J., Jones J W., Hoogenhoom G., Wilkerson G G., Jagtap S S. PNUTGRO v.1.02. Peanut Crop Growth Simulation Model. User's Guide. Florida Agricultural Experimental Station Journal Series No.8420.1989, University of Florida, Gainesville, FL.
    [45]Hiroyuki Shimono, Toshihiro Hasegawa, Shigeto Fujimura, Kazuto Lwama. Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages [J]. Field Crops Research,2004,89:71-83.
    [46]Gomes-Laranjo J., Coutinho J P., Galhano V., Cordeiro V. Responses of five almond cultivars to irrigation:Photosynthesis and leaf water potential [J]. Agricultural Water Management,2006, 83:261-265.
    [47]Pilar Baeza, Patricia Sanchez-de-Miguel, Ana Centeno, Pedro Junquera, Ruben Linares, Jose Ramon Lissarrague. Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling [J]. Scientia Horticulturae,2007,114:151-158.
    [48]Lizaso J I., Bathelor W D., Westgate M E. A leaf area model to simulate cultivar-specific expansion and senescence of maize leaves [J]. Field Crops Research,2003 80,1-17.
    [49]Yang Y., Timlin D J., Fleisher D H., Kim S H., Quebedeaux B., Reddy V R. Simulating leaf area of corn plants at contrasting water status [J]. Agricultural and Forest Meteorology,2009,149: 1161-1167.
    [50]Wilson J B. A review of evidence on the control of shoot:root ratio, in relation to models [J]. Annals of Botany,1988,61:433-449.
    [51]Heuvelink E. Dry matter partitioning in tomato:validation of a dynamic simulation model. Annals of Botany,1996,77:71-80.
    [52]Kage H., Stutzel H. A simple empirical model for predicting development and dry matter partitioning of cauliflower (Brassica oleracea L. botrytis) [J]. Scientia Horticulturae, 1999,80:19-38.
    [53]Hopkins J C., Leipold R J. On the dangers of adjusting the parameters values of mechanism-based mathematical model [J]. Journal of Theoretical Biology,1996,183:417-427.
    [54]Hunt H W, Morgan J A., Read J J. Simulating growth and root-shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress [J]. Annals of Botany,1998,81:489-501.
    [55]Marcelis L F M. Sink strength as a determinant of dry matter partitioning in the whole plant [J]. Journal of Experimental Botany,1996,47:1281-1291.
    [56]Minchin P E H., Thorpe M R. Sink strength:a misnomer, and best forgotten [J]. Plant, cell and Environmet,1993,16:1039-1040.
    [57]Minchin P E H., Thorpe M R. What determines carbon partitioning between competing sinks [J]? Journal of Experimental Botany,1996,47:1293-1296.
    [58]Minchin P E H., Thorpe M R., Farrar J F. A simple mechanistic model of phloem transport which explains sink priority [J]. Journal of Experimental Botany,1993,44:947-955.
    [59]Kiniry J R., Blanchet R., Williams, J R., Texier V, Jones C A., Cabelguene M. Sunflower simulation using the EPIC and ALMANAC models [J]. Field Crops Research,1992,30:403-423.
    [60]Kleemola J., Teitinnen M., Karvonen T. Modelling crop growth and biomass partitioning to shoots and roots in relation to nitrogen and water availability, using a maximization principle [J]. Plant and Soil,1996185:101-111.
    [1]马亚教.全年均衡供货是加速我国切花菊出口日本的关键[J].中国花卉园艺,2007,5:20-21.
    [2]Wilhelm W W. Dry matter partitioning and leaf area of winter wheat grown in a long-term fallow tillage comparisons in the US Central Great Plains [J]. Soil&Tillage Research,1998,49:49-56.
    [3]李悦,张涛,齐秀兰.切花菊氮、磷、钾营养特性的研究进展[J].安徽农业科学,2005,33(8):1486-1487.
    [4]Alt C., Kage H.,Stutzel L H. Modelling nitrogen content and distribution in cauliflower (Brassica oleracea L. botrytis) [J]. Annals of Botany,2000,86:963-973.
    [5]Daia T., Wiegert R G.A field study of photosynthetic capacity and its response to nitrogen fertilization in Spartina Alterniflora, Estuarine [J]. Coastal and Shelf Science,1997,45:273-283
    [6]Le Bot J., Adamowicz S., Robin p. Modelling plant nutrition of horticultural crops:a review [J]. Scientia Horticulture,1998,74:47-82.
    [7]Yin X Y. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence [J]. Annals of Botany,2000,85:579-585.
    [8]孟亚利,曹卫星,柳新伟,等.水稻地上部干物质分配动态模拟的初步研究[J].作物学报,2004,30(4):376-381.
    [9]Dingkuhn ML. Modeling concepts for the phenotypic plasticity of dry matter and nitrogen partitioning in rice [J]. Agricultural Systems,1996,52:383-397.
    [10]Thomas Katterer, Henrik Eckersten, Olof Andren, et al. Winter wheat biomass and nitrogen dynamics under different fertilization and water regimes:application of a crop growth model [J]. Ecological Modelling,1997,102:301-314.
    [11]米晓洁,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J].植物生态学报,2009,33(1):108-117.
    [12]Goudriaan J., Van Laar H H. Modeling potential crop growth processes [M]. Kluwer Academic Publishers, the Netherlands,1994:149-165.
    [13]Hanan J J., Holley W D., Kenneth L. Greenhouse management. Springer-Verlag [M], New York, 1978:294-30
    [1]陈林.日本菊花市场调查与分析[J].温室园艺,2005,(3):14-16.
    [2]马亚教.全年均衡供货是加速我国切花菊出口日本的关键[J].中国花卉园艺,2007,5:20-21.
    [3]李悦,张涛,齐秀兰.切花菊氮、磷、钾营养特性的研究进展[J].安徽农业科学,2005,33(8):1486-1487.
    [4]穆兴民,徐学选,陈国良,等.水肥耦合效应与协同管理[M].北京:中国林业出版社,1999.
    [5]梁银丽,康绍忠.限量灌水和磷营养对冬小麦产量及水分利用的影响[J].土壤侵蚀与水土保持学报,1997,3(1):60-67
    [6]Morgan J A. Interaction of water supple and N in wheat [J]. Plant Physiol,1984,76:112-117.
    [7]陈碧华,郜庆炉,杨和连,等.日光温室膜下滴灌水肥耦合技术对番茄生长发育的影响[J].广东农业科学,2008,8(12):63-67.
    [8]张岁歧,李秧秧.施肥促进作物水分利用机理对产量的影响的研究[J].水土保持研究,1996,3(1):185-191.
    [9]李世清,田霄鸿,李生秀.养分对旱地小麦水分胁迫的生理补偿效应[J].西北植物学报,2000,20(1):22-28.
    [10]李卫民,周凌云.水肥(氮)对小麦生理生态的影响(Ⅰ)水肥(氮)条件对小麦光和蒸腾与水分利用的影响[J].土壤通报,2004,35(2):136-142.
    [11]肖自添.温室基质培番茄水氮耦合效应研究[D].中国农业科学院,2008.
    [12]周瑞.不同水肥耦合处理下冬小麦光合产物分配格局和动态研究[D].河南大学,2009.
    [13]周艳宝,戴剑锋,林琭,罗卫红,等.水分对日光温室独本菊生长动态的影响[J].农业工程学报,2008,24.
    [14]米晓洁,戴剑锋,罗卫红,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟[J].植物生态学报,2009,33(1):108-117.
    [15]Goudriaan J., Van Laar H H. Modeling potential crop growth processes [M].Kluwer Academic Publishers, the Netherlands,1994:149-165.
    [16]刘庚山,郭安红,任三学,等.人工控制有限供水对冬小麦根系生长及土壤水利用的影响[J].生态学报,2003,23:2342-2352.
    [17]刘坤,陈新平,张福锁.不同灌溉策略下冬小麦根系的分布与水分养分的空间有效性[J].土壤学报,2003,40:697-703.
    [18]苗果园,高志强,张云亭,等.水肥对小麦根系整体影响及其与地上部相关的研究[J].作物学报,2002,28:445-450.
    [1]Yin X Y. A generic equation for nitrogen-limited leaf area index and its application in crop growth models for predicting leaf senescence [J].Annals of Botany,2000,85:579-585.
    [2]Marcelis L F M., Heuvelink E., Goudriaan J. Moodelling biomass production and yield of horticultural crop:a review [J]. Scientia Horticulture,1998,74:83-111.
    [3]李永秀,罗卫红,倪纪恒,陈永山,等.基于辐射和温度热效应的温室水果黄瓜叶面积[J].植物生态学报,2006,30(5):861-867.
    [4]杨再强,罗卫红,陈发棣,等.基于光温的温室单头切花菊外观品质预测模型的研究[J].应用生态学报,2007,18(4):877-882.
    [5]刁明,罗卫红等.温室甜椒叶面积指数形成模拟模型[J].应用生态学报.2008,19(10):2277-2283.
    [6]Xu R., Dai J., Luo W., Yin X., Li Y, Tai X., Han L., Chen Y, Lin L., Li G., Zou C., Du W., Diao M. A photothermal model of leaf area index of greenhouse crops [J]. Agricultural and Forest Meteorology,2010,150:541-552.
    [7]Ferreyra R A, Dardanelli J L, Pachepsky L B, Collino D J, Faustinelli P C, Giambastiani G, Reddy V R, Jones J W. Nonlinear effects of water stress on peanut photosynthesis at crop and leaf scales [J]. Ecological Modelling,2003,169:57-76.
    [8]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:高等教育出版社,2003.
    [9]王畅,林秋萍,等.夏玉米的干旱适应性及其生理机制的研究[J].玉米科学,1995,3(2):54-57.
    [10]王邦锡,何军贤,等.水分胁迫导致小麦叶片光合作用下降的非气孔因素[J].植物生理学报,1992,18(1):77-84.
    [11]Farias M F de, Saad J C C, Boas R L V. Commercial quality of pot chrysanthemum, cultivar Puritan, irrigated at different substrate water tension in a greenhouse [J]. IRRIGA-.,2003,8: 160-167.
    [12]Farias M F de, Saad J C C, Boas R L V. Irrigation schedule in pot chrysanthemum, cultivar rage, grown in greenhouse [J]. Engenharia-Agricola,2004,24:51-56.
    [13]Farias M F de, Saad J C C, Boas R L V. Growth and quality of chrysanthemum produced in greenhouse [J]. Horticultura-Brasileira,2005,23:740-742.
    [14]Johnson I R., Thornley J H M. A model of shoot:root partitioning with allocation in relation to water stress [J]. Annals of Botany,1987,60:133-142.
    [15]Chen J L., Reynolds J F. A coordination model of whole plant carbon allocation in relation to water stress [J]. Annals of Botany,1996,80:45-55.
    [16]Hanan J J., Holley W D., Kenneth L. Greenhouse management. Springer-Verlag [M], New York, 1978:294-300
    [17]米晓洁,戴剑锋,罗卫红,丁琪峰,陈永山,等.氮素对日光温室独本菊品种‘神马’干物质分配影响的模拟.植物生态学报,2009,33(1):108-117.
    [18]Chen Lisong, Cheng Lailiang. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation[J]. Journal of Horticultural&Biotechnology, 2004,79(6):923-929.
    [19]吴良欢,陈峰,方萍,等.水稻叶片氮营养对光合作用的影响[J].中国农业科学,1995,28:104-107.
    [20]Le Bot J., Adamowicz S., Robin p. Modelling plant nutrition of horticultural crops:a review [J]. Scientia Horticulturae,1998,74:47-82.
    [21]Levin S A., Mooney H A., Field C. The dependence of the plant root:shoot rations on internal nitrogen concentration [J]. Annals of Botany,1989,64:71-75.
    [22]Dingkuhn M L. Modeling concepts for the phenotypic plasticity of dry matter and nitrogen partitioning in rice [J]. Agricultural Systems,1996,52:383-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700