用户名: 密码: 验证码:
RTOS1蛋白与转录因子RAP2.6L调控拟南芥胁迫反应及促进开花的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RTOSl (response to oxidative stress1; At5g27830)编码含有一个叶酸受体功能域的功能未知蛋白。叶酸是维持动物免疫系统正常功能的必需物质,其可以通过生物合成、代谢等多个环节,尤其是叶酸介导的氧化还原作用,调节植物的生长发育过程。RAP2.6L (At5g13330)属于拟南芥AP2/ERF转录因子家族,其在植物生长和发育过程中起着非常重要的作用。本研究着重剖析RTOSl与RAP2.6L调控拟南芥抗病防卫反应、非生物胁迫反应及如何调节拟南芥开花的作用。
     1.RTOS1过量表达增强拟南芥对Pst DC3000抗病性
     叶酸是维持动物免疫系统正常功能的必需物质。叶酸可以通过生物合成、代谢等多个环节,尤其是叶酸介导的氧化还原作用,调节植物的生长发育过程。RTOS1编码含有一个叶酸受体功能域的功能未知蛋白,其在植物抗病防卫反应和生长发育中的功能还没有研究。在拟南芥野生型植株中,百草枯(Paraquat)和Pst DC3000处理可以诱导RTOS1基因的上调表达,说明RTOS1可能参与了氧胁迫和拟南芥抗病防卫反应过程。RTOS1的T-DNA插入突变体rtosl接种Pst DC3000后,与野生型相比,3d后叶片中病原菌数量显著增加,病害症状显著加重,水杨酸调控的PR-1基因表达减弱,同时生长相关的AtEXP-1表达增强。RTOS1过量表达植株接种Pst DC3000后,与野生型相比,3d后叶片中细菌数量显著减少,病害症状显著减弱,水杨酸调控的PR-1基因表达上调,生长相关的AtEXP-1表达下调。RTOS1还通过调控植株体内H2O2累积,细胞死亡,防卫相关基因的表达和脂膜的过氧化来调控植物防卫反应。我们的研究表明,RTOS1通过ROS勺产生和防卫基因的表达调控拟南芥对PstDC3000勺抗病性。
     2.RTOS1过量表达增强拟南芥对渗透压和氧胁迫的抗性
     非生物胁迫调节植物正常的生长和发育过程。非生物胁迫环境下,植物体内产生、积累的ROS对植物造成氧化胁迫。RTOS1编码含有一个叶酸受体功能域的功能未知蛋白,叶酸介导的氧化还原作用参与生物体内许多重要反应。RTOS1在非生物胁迫反应中的功能还没有研究。本论文中,ABA、渗透压和氧胁迫都能诱导RTOS1基因上调表达。洋葱表皮细胞定位分析表明RTOS1定位于细胞核和细胞外。RTOS1过量表达植株增强了对渗透压和氧胁迫的抗性,过量表达植株在氧胁迫和渗透压胁迫处理下,ABA含量升高,体内ROS的含量降低,ROS清除酶活性和ROS清除相关基因表达均增强。非生物胁迫反应诱导胁迫反应相关基因上调表达。ROS或ABA合成抑制剂处理都能显著抑制胁迫诱导的ROS的产生。上述研究表明RTOS1通过调控体内ROS的产生和ABA的含量来介导对渗透压和氧胁迫的抗性。
     3.RTOS1过量表达促进拟南芥植株开花
     开花是植物从营养生长向生殖生长转变的一个重要事件。拟南芥在其生长开花过程中,多达2000个基因的表达水平发生了改变,有超过80个基因直接参与其中。叶酸介导的氧化还原作用调节植物的生长发育过程。过量表达RTOS1植株在长日照和短日照下比野生型拟南芥都提前开花。RT-PCR检测结果表明,在过量表达植株中CO、FT、SOC1和CCA1基因上调表达,LFY基因下调表达。酵母双杂交,双分子荧光互补和拟南芥开花文库的筛选结果表明RTOS1能够与FT互作。进一步的遗传杂交的结果表明,FT基因的突变能显著延迟RTOS1过量表达引起的拟南芥早花。基于上述的分子生物学和遗传杂交的证据,我们推测RTOS1通过上调FT基因的表达促进植物早花。
     4.RAP2.6L突变增强拟南芥对Pst DC3000的抗性
     ERF类转录因子在植物受病原物侵染后,通过调控寄主植物防卫相关基因的表达参与植物体内防卫反应过程。我们分析了RAP2.6L在拟南芥对Pst DC3000基本防卫反应中的作用。RAP2.6L定位于细胞核,RAP2.6L在基本防卫信号通路突变体abil-1、 jar1-1、ein2-1与npr1-1上受病原菌诱导表达的模式分析表明SA和JA信号通路正调控RAP2.6L基因的表达,而EIN2信号通路负调控其表达。T-DNA插入突变体rap2.6l接种Pst DC3000后与野生型相比,3天后叶片中病原菌数量显著减少,病害症状显著减轻,SA调控的PR-1和PR-2基因上调表达。突变体的抗病表型及防卫相关基因的表达证据表明,RAP2.6L负调控植物对Pst,DC3000的基本防卫反应。RAP2.6L具有转录激活功能,在植物防卫反应中调控许多下游因子,参与植物对病原细菌的抗性。
     5.RAP2.6L过量表达延迟涝害胁迫引起的拟南芥早衰
     涝害通常是灌溉水的过度使用或管理不善的结果,它在所有造成植物损伤的因素里面是一个极为重要的因子。过量表达RAP2.6L能增强拟南芥对干旱胁迫和盐胁迫的抗性。然而,过量表达RAP2.6L是否能增强植物对涝害胁迫的抗性目前尚不清楚。涝害胁迫和外源ABA处理都能诱导RAP2.6L上调表达,但这种上调表达能被ABA合成抑制剂钨酸钠(TUN)所抑制。过量表达RAP2.6L能抑制植株体内涝害胁迫诱导的水分损失和离子渗漏。涝害胁迫下,过量表达植株不同时间内ABA的含量、ROS的产生和抗氧化酶活性分析结果表明,ABA的累积能引起体内H2O2的产生和抗氧化酶活性的显著提高。累积的ABA加速过量表达植株的气孔关闭,并表现出早衰延迟的表型。此外,ROS清除酶基因APX1和(?)(?)SD1,ABA合成基因ABA1,ABA信号基因ABHl和涝害胁迫应答基因ADHl的表达水平在过量表达植物中显著提高,ABIl的表达量显著减弱。此外,ABI突变降低过量表达植株对ABA的敏感性(ABA抑制发芽率和生长反应)。我们的结果表明,RAP2.6L通过ABA信号通路延迟涝害胁迫引进的植物早衰。
RTOS1(response to oxidative stress1; At5g27830) encodes an unknown function protein, which has been predicted to contain a folate-receptor domain. Folate, as a necessary substance in maintaining the normal function of immune system in Eukaryotes, affects plant growth and development process through biosynthesis, metabolism and especially folate-mediated redox reactions. RAP2.6L (At5g13330) belongs to the AP2/ERF family transcription factor which plays a vital role in plant growth and development process. This study reveals that RTOSI and RAP2.6L regulate plant disease resistance, abiotic stress tolerance and accelerate flowering in Arabidopsis.
     1. RTOSI overexpression enhances resistance to Pst DC3000in Arabidopsis
     Folate, as a necessary substance in maintaining the normal function of immune system in Eukaryotes, affects plant growth and development process through biosynthesis, metabolism and especially folate-mediated redox reactions. RTOSI encodes a protein of unknown function, which has been predicted to contain a folate-receptor domain, and the function of RTOSI in plant defense, growth and development has not been studied. In this study, Paraquat and Pst DC3000upregulated the expression of RTOS1, suggesting that RTOSI may involve in oxidative stress and plant defense processes. T-DNA insertion mutants enhanced the growth of Pst DC3000, displayed increased disease symptom severity, and decreased expression of PR-1and increased expression of growth-related AtEXP-1. However, the overexpression plants displayed decreased disease symptom, increased expression of PR-1and decreased expression of AtEXP-1after three days post Pst DC3000inoculation. We also measured pathogen resistance and defensive responses through H2O2accumulation, cell death, lipid peroxidation and defense gene expression after Pst DC3000infection. Our studies indicate that RTOSI mediates generation of H2O2and expression of PR-1in plant defense.
     2. RTOSI overexpression enhances tolerance to osmotic and oxidative stresses in Arabidopsis
     Abiotic stresses affect normal plant growth and development. In response to abiotic stresses, plants produce and accumulate ROS that may cause oxidative stress. RTOS1encodes a protein of unknown function, which has been predicted to contain a folate-receptor domain, and folate affects plant growth and development process through folate-mediated redox reactions, but little attention has been devoted to understanding RTOS1function in plant responses to abiotic stresses. In this study, ABA, osmotic and oxidative stresses upregulated the expression of RTOS1. RTOS1localized exclusively in the nucleus and extracellularly in the onion epidermal cells. RTOS1overexpression enhanced tolerance to osmotic and oxidative stresses via a reduction in hydrogen peroxide concentration and increases in the accumulation of ABA. Furthermore, up-regulation of antioxidant enzyme activities and transcripts of ROS-scavenging genes were observed. RTOS1overexpression caused significant increases in the expression of stress-responsive genes. In overexpression plants, pretreatment with a ROS-scavenging inhibitor or an ABA biosynthesis inhibitor arrested the decrease in ROS levels and led to an enhancement of oxidative damage. Thus, these results suggest that RTOS1enhances tolerance to osmotic and oxidative stresses by decreasing hydrogen peroxide levels and this gene possibly functions in an ABA-dependent pathway.
     3. RTOS1overexpression accelerates flowering in Arabidopsis
     Flowering is an important event from vegetative phase to reproductive stage in flowering plants. Up to2000gene expression levels have changed in Arabidopsis growth and flowering processes, there are more than80genes involved in flowering directly. Folate-mediated redox reactions affect plant growth and development process. RTOS1overexpression increases folate content in overexpression plants and RTOS1also has a function in plant defense.The overexpression plants flowered earlier than wild-type and mutants under long or short days. RTOS1overexpression changed the expression of genes involved in flowering time. The expression levels of CO, FT, SOC1and CCA1gene in overexpression plants were increased and the expression of LFY was decreased. Further bimolecular fluorescence complementation, yeast two-hybrid and screening in flowering library of Arabidopsis assays suggest that RTOS1interacts with FT. Genetic hybridization results showed that mutation of FT gene delays RTOS1overexpression accelerated early flowering. Based on the above evidence on molecular biology and genetic hybridization, we suggest that RTOS1accelerates flowering by interacting with FT.
     4. Mutation of RAP2.6L enhances plant defense against Pst DC3000in Arabidopsis
     ERF transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. We analyzed the role of the RAP2.6L in plant defense against the bacterial pathogen Pseudomonas syringae. RAP2.6L localized in the nucleus. Analysis of Pst DC3000-induced RAP2.6L in the defense signaling mutants abil-1, jar1-1, ein2-1and npr1-1further indicated that this gene is positively regulated by the SA and JA signaling pathway and negatively regulated by ET signaling pathway. T-DNA insertion mutants reduced growth of Pst DC3000and displayed reduced disease symptom severity as compared to wild-type plants. Mutants also displayed increased expression of the PR-1and PR-2genes after the pathogen infection. Based on analysis of the mutants, stress-induced RAP2.6L functions as a negative regulator of SA-mediated defense responses to Pst DC3000. RAP2.6L was a transcriptional activator and was able to activate the expression of genes involved in plant defense.
     5. RAP2.6L overexpression retards waterlogging-induced premature senescence
     Waterlogging usually results from overuse or poor management of irrigation water and is a serious constraint in damaging effects. RAP2.6L overexpression enhances plant resistance to drought and salt stresses in Arabidopsis. However, it is yet unknown whether RAP2.6L overexpression in vivo improves plant tolerance to waterlogging stress. The expression of RAP2.6L was induced by waterlogging or ABA treatment and reduced by pretreated with ABA biosynthesis inhibitor tungate (TUN). RAP2.6L overexpression inhibited water loss and membrane leakage under waterlogging. Time-course analyses of ABA content, production of H2O2, and activities of antioxidant enzymes showed that increased ABA precedes the increase of H2O2, and follows by a marked increase in the activities of antioxidant enzymes. Increased ABA promoted stomatal closure and made the leaves exhibited a delayed waterlogging-induced premature senescence. Transcripts of ROS-scavenging enzymes genes APX1(ascorbate peroxidase1) and FSD1(Fe-superoxide dismutase1), ABA biosynthesis gene ABA1(ABA deficient1) and signaling ABH1(ABA-hypersensitive1) and waterlogging stress-responsive gene ADH1(alcohol dehydrogenase1) were increased in overexpression plants, but the transcript of ABI1(ABA insensitive1) was reduced. Mutation of ABI1reduced the hypersensitive phenotype of RAP2.6L overexpression plants to ABA (germination and growth response). These suggest that RAP26L retards waterlogging-induced premature through an ABA-dependent pathway.
引文
1. Aebi H (1984). Catalase in vitro. Methods Enzymol.105:121-126.
    2. Anderson ME (1985). Glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113:548-555.
    3. Apel K, Hirt H (2004). Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol.55:373-399.
    4. Araki T (2001). Transition from vegetative to reproductive phase. Curr. Opin. Plant Biol.4:63-68.
    5. Arcot J, Shrestha A (2005). Folate:methods of analysis. Trends Food Sci.Technol.16:253-266.
    6. Arora A, Sairam R, Srivastava G (2002). Oxidative stress and antioxidative system in plants. Curr Sci (Bangalore).82:1227-1238.
    7. Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T (2011). Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 108:16128-16132.
    8. Bailey-Serres J, Mittler R (2006). The roles of reactive oxygen species in plant cells. Plant Physiol.141: 311-311.
    9. Bailey-Serres J, Voesenek L (2008). Flooding stress:acclimations and genetic diversity. Annu Rev Plant Biol.59:313-339.
    10. Barrero J, Rodriguez P, Quesada V, Ponce P, Ponce M, Micoi J (2006). Both abscisic acid (ABA)-dependent and ABA-independent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant cell Environt.29:2000-2008.
    11. Basset G, Quinlivan EP, Ziemak MJ, Diaz de La Garza R, Fischer M, Schiffmann S, Bacher A, Gregory JF, Hanson AD (2002). Folate synthesis in plants:the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proc. Natl. Acad. Sci. U. S. A.99:12489-12494.
    12. Basset GJC, Gregory JF, Hanson AD, Quinlivan EP (2005). Folate synthesis and metabolism in plants and prospects for biofortification. Crop Sci.45:449-453.
    13.Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J (2002). RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science.296:2026-2028.
    14. Bekaert S, Storozhenko S, Mehrshahi P, Bennett MJ, Lambert W, Gregory JF, Schubert K, Hugenholtz J, Van Der Straeten D, Hanson AD (2008). Folate biofortification in food plants. Trends Plant Sci.13: 28-35.
    15. Blokhina O, Virolainen E, Fagerstedt KV (2003). Antioxidants, oxidative damage and oxygen deprivation stress:a review. Ann. Bot.91:179-194.
    16. Boller T, He SY (2009). Innate immunity in plants:an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science.324:742-744.
    17. Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248-254.
    18. Cai X, Ballif J, Endo S, Davis E, Liang M, Chen D, DeWald D, Kreps J, Zhu T, Wu Y (2007). A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis. Plant physiol.145:98-105.
    19. Che P, Lall S, Nettleton D, Howell SH (2006). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol.141:620-37.
    20. Chen GX, Asada K (1989). Ascorbate peroxidase in tea leaves:occurrence of two isozymes and the differences in their enzymatic and molecular properties. Plant Cell Physiol.30:987-998.
    21. Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006). Host-microbe interactions:shaping the evolution of the plant immune response. Cell.124:803-814.
    22. Cho D, Shin D, Jeon BW, Kwak JM (2009). ROS-mediated ABA signaling. J.Plant Biol.52:102-113.
    23. Choi SW, Mason JB (2002). Folate status:effects on pathways of colorectal carcinogenesis. J.Nutr.132: 2413S.
    24. Chung S, Parish RW (2008). Combinatorial interactions of multiple cis-elements regulating the induction of the Arabidopsis XERO2 dehydrin gene by abscisic acid and cold. Plant J.54:15-29.
    25. Colmer TD, Flowers TJ (2008). Flooding tolerance in halophytes. New Phytol.179:964-974.
    26. Corbesier L, Coupland G (2006). The quest for florigen:a review of recent progress. J. Exp. Bot.57: 3395-3403.
    27. Creissen G, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A (1999). Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell.11:1277-1292.
    28. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281.
    29. Davletova S, Schlauch K, Coutu J, Mittler R (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant physiol.139:847-856.
    30. Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004). ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot.55:205-212.
    31.Desikan R, Griffiths R, Hancock J, Neill S (2002). A new role for an old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A.99:16314-16318.
    32. Ding Z, Doyle MR, Amasino RM, Davis SJ (2007). A complex genetic interaction between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian clock and in output regulation. Genetics.176: 1501-1510.
    33. Dong H, Delaney TP, Bauer DW, Beer SV (1999). Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20:207-215.
    34. Dong X (1998). SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol.1:316-323.
    35. Duthie SJ (2011). Folate and cancer:how DNA damage, repair and methylation impact on colon carcinogenesis. J. Inherit. Metab. Dis.34:101-109.
    36. Fridovich I (1995). Superoxide radical and superoxide dismutases. Annu. Rev. Biochem.64:97-112.
    37. Fujimoto SY, Ohta M, Usui A, Shinshi H, Ohme-Takagi M (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12:393-404.
    38. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol.9:436-442.
    39. Fukao T, Bailey-Serres J (2004). Plant responses to hypoxia-is survival a balancing act? Trends Plant Sci.9:449-456.
    40. Garg N, Pundhir S, Prakash A, Kumar A (2008). PCR Primer Design:DREB Genes. J Comput Sci Syst Biol.1:021-040.
    41. Gazzarrini S, Mccourt P (2003). Cross-talk in plant hormone signalling:what arabidopsis mutants are telling us. Ann. Bot.91:605-612.
    42. Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays.28:1091-1101.
    43. Glazebrook J (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43:205-227.
    44. Greenberg JT, Yao N (2004). The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol.6:201-211.
    45. Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002). Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817-831.
    46. Guo H, Yang H, Mockler TC, Lin C (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science.279:1360-1363.
    47. Gutterson N, Reuber TL (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol.7:465-471.
    48. Halliday KJ, Salter MG, Thingnaes E, Whitelam GC (2003). Phytochrome control of flowering is temperature sensitive and correlates with expression of the floral integrator FT. Plant J.33:875-885.
    49. Halliday KJ, Thomas B, Whitelam GC (1997). Expression of heterologous phytochromes A, B or C in transgenic tobacco plants alters vegetative development and flowering time. Plant J.12:1079-1090.
    50. Harris M, Juriloff D (1999). Mini-review:toward understanding mechanisms of genetic neural tube defects in mice. Teratology.60:292-305.
    51. Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts::I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys.125:189-198.
    52. Hepworth SR, Valverde F, Ravenscroft D, Mouradov A, Coupland G (2002). Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J.21: 4327-4337.
    53. Hong SY, Lee S, Seo PJ, Yang MS, Park CM (2010). Identification and molecular characterization of a Brachypodium distachyonGIGANTEA gene:functional conservation in monocot and dicot plants. Plant Mol. Biol.72:485-497.
    54. Hori Y, Nishidate K, Nishiyama M, Kanahama K, Kanayama Y (2011). Flowering and expression of flowering-related genes under long-day conditions with light-emitting diodes. Planta.234:321-330.
    55. Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K (2004). Enhancement of folates in plants through metabolic engineering. Proc. Natl. Acad. Sci. U. S. A.101:5158-5163.
    56. Jack T (2004). Molecular and genetic mechanisms of floral control. Plant Cell.16:S1-S17.
    57. Jackson SD (2009). Plant responses to photoperiod. New. Phytol.181:517-531.
    58. Jaeger KE, Graf A, Wigge PA (2006). The control of flowering in time and space. J. Exp. Bot.57: 3415-3418.
    59. Jang JY, Choi CH, Hwang DJ (2010). The WRKY superfamily of rice transcription factors. Plant Pathol. J.26:110-114.
    60. Jiang M, Zhang J (2001). Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol.42:1265-1273.
    61. Jiang M, Zhang J (2002). Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot.53:2401-2410.
    62. Jones JDG, Dangl JL (2006). The plant immune system. Nature.444:323-329.
    63. Kele Y, Unyayar S (2004). Responses of antioxidant defense system of Helianthus annuus to abscisic acid treatment under drought and waterlogging. Acta Physiol Plant.26:149-156.
    64. Kizis D, Pages M (2002). Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J.30: 679-689.
    65. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. U. S. A.97:8849-8855.
    66. Koornneef A, Pieterse CMJ (2008). Cross talk in defense signaling. Plant physiol.146:839-844.
    67. Krizek BA, Fletcher JC (2005). Molecular mechanisms of flower development:an armchair guide. Nat. Rev. Genet.6:688-698.
    68. Laloi C, Apel K, Danon A (2004). Reactive oxygen signalling:the 1 atest news. Curr. Opin. Plant Biol.7: 323-328.
    69. Leung J, Merlot S, Gosti F, Bertauche N, Blatt MR, Giraudat J (1998). The role of ABI1 in abscisic acid signal transduction:from gene to cell. Symp Soc Exp Biol.51:65-71.
    70. Levine A, Tenhaken R, Dixon R, Lamb C (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell.79:583-593.
    71. Li K, Wang Y, Han C, Zhang W, Jia H, Li X (2007). GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regul.53:195-206.
    72. Ling Q (2003). Signal Transduction of ABA Inducing Stomatal Closure. Chin. Bull. Bot.20:664-670.
    73. Lopez-Barneo J, Pardal R, Ortega-Saenz P (2001). Cellular mechanism of oxygen sensing. Annu. Rev. Physiol.63:259-287.
    74. Luhua S, Ciftci-Yilmaz S, Harper J, Cushman J, Mittler R (2008). Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiol.148: 280-292.
    75. Marsch-Martinez N, Greco R, Becker JD, Dixit S, Bergervoet JHW, Karaba A, De Folter S, Pereira A (2006). BOLITA, an Arabidopsis AP2/ERF-like transcription factor that affects cell expansion and proliferation/differentiation pathways. Plant Mol. Biol.62:825-843.
    76. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J.38:982-993.
    77. McDowell JM, Dangl JL (2000). Signal transduction in the plant immune response. Trends Biochem. Sci.25:79-82.
    78. Michaels S, Amasino R (2000). Memories of winter:vernalization and the competence to flower. Plant Cell Environ.23:1145-1153.
    79. Michaels SD, Amasino RM (1999). FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell.11:949-956.
    80. Miller G, Shulaev V, Mittler R (2008). Reactive oxygen signaling and abiotic stress. Physiol. Plant.133: 481-489.
    81. Mishra NP, Mishra RK, Singhal GS (1993). Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol.102:903-910.
    82. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004). Reactive oxygen gene network of plants. Trends Plant Sci.9:490-498.
    83. Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2011). AP2/ERF family transcription factors in plant abiotic stress responses. Biochim. Biophys. Acta-Gene Regul.Mech.1819:86-96.
    84. Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant physiol.140:249-262.
    85. Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J.34:137-148.
    86. Nefissi R, Natsui Y, Miyata K, Oda A, Hase Y, Nakagawa M, Ghorbel A, Mizoguchi T (2011). Double loss-of-function mutation in EARLY FLOWERING 3 and CRYPTOCHROME 2 genes delays flowering under continuous light but accelerates it under long days and short days:an important role for Arabidopsis CRY2 to accelerate flowering time in continuous light. J. Exp. Bot.62:2731-2744.
    87. Neill S, Desikan R, Hancock J (2002). Hydrogen peroxide signalling. Curr. Opin. Plant Biol.5: 388-395.
    88. Noctor G, Foyer CH (1998). Ascorbate and glutathione:keeping active oxygen under control. Annu. Rev. Plant Biol.49:249-279.
    89. Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009). ATTED-Ⅱ provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res.37:D987-991.
    90. Oh SJ, Song SI, Kim YS, Jang HJ, Kim SY, Kim M, Kim YK, Nahm BH, Kim JK (2005). Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant physiol.138:341-351.
    91. Ohme-Takagi M, Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173-182.
    92. Ohme-Takagi M, Suzuki K, Shinshi H (2000). Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol.41:1187-1192.
    93. Okamuro JK, Caster B, Villarroel R, Van Montagu M, Jofuku KD (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc. Natl. Acad. Sci. U.S. A.94:7076-7081.
    94. Potocky M, Jones MA, Bezvoda R, Smirnoff N, Zarsky V (2007). Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth. New Phytol.174:742-751.
    95. Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010). ABA perception and signalling. Trends Plant Sci.15:395-401.
    96. Rizhsky L, Davletova S, Liang H, Mittler R (2004). The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J. Biol. Chem.279: 11736-11743.
    97. Roberts A, Blake P, Lewis R, Taylor J, Dunstan D (1999). The effect of gibberellins on flowering in roses. J. Plant Growth Regul.18:113-119.
    98. Sairam RK, Dharmar K, Chinnusamy V, Meena RC (2009). Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J Plant Physiol.166:602-616.
    99. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem. Biophys. Res. Commun.290:998-1009.
    100. Salazar MDA, Ratnam M (2007). The folate receptor:What does it promise in tissue-targeted therapeutics? Cancer Metastasis Rev.26:141-152.
    101. Samet JS, Sinclair TR (1980). Leaf Senescence and Abscisic Acid in Leaves of Field-grown Soybean. Plant Physiol.66:1164-1168.
    102. Scandalios JG (2002). The rise of ROS. Trends Biochem. Sci.27:483.
    103. Scott A, Wyatt S, Tsou P, Robertson D, Allen NS (1999). Model system for plant cell biology:GFP imaging in living onion epidermal cells. Biotechniques.26:1125-1128.
    104. Setua S, Menon D, Asok A, Nair S, Koyakutty M (2010). Folate receptor targeted, rare-earth oxide nanocrystals for bi-modal fluorescence and magnetic imaging of cancer cells. Biomaterials.31: 714-729.
    105. Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol.6:410-417.
    106. Singh KB, Foley RC, Onate-Sanchez L (2002). Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol.5:430-436.
    107. Skriver K, Mundy J (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 2:503-512.
    108. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005). Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell.17: 2384-2396.
    109. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770.
    110. Storozhenko S, De Pauw P, Van Montagu M, Inz6 D, Kushnir S (1998). The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant physiol.118:1005-1014.
    111. Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997). Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1,ABI1 and AXR2 in Arabidopsis. Plant J.12:557-569.
    112. Stuart JM, Segal E, Koller D, Kim SK (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science.302:249-255.
    113. Sung S, Amasino RM (2004). Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature.427:159-164.
    114. Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008). Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science's STKE.321:952-956.
    115. Tien Nguyen-nhu N, Knoops B (2003). Mitochondrial and cytosolic expression of human peroxiredoxin 5 in Saccharomyces cerevisiae protect yeast cells from oxidative stress induced by paraquat. FEBS Lett. 544:148-152.
    116. Torres MA, Dangl JL (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol.8:397-403.
    117. Van Breusegem F, Bailey-Serres J, Mittler R (2008). Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant physiol.147:978-984.
    118. Van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2009). Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann. Bot.103:269-280.
    119. Wang Z, Dai L, Jiang Z, Peng W, Zhang L, Wang G, Xie D (2005). GmCOI1, a soybean F-box protein gene, shows ability to mediate jasmonate-regulated plant defense and fertility in Arabidopsis. Mol. Plant-Microbe Interact.18:1285-1295.
    120. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006). CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18:2971-2984.
    121. Wilkins KA, Bancroft J, Bosch M, Ings J, Smirnoff N, Franklin-Tong VE (2011). Reactive oxygen species and nitric oxide mediate actin reorganization and programmed cell death in the self-incompatibility response of papaver. Plant physiol.156:404-416.
    122. Xie Z, Chen Z (1999). Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant physiol.120:217-226.
    123. Xiong L, Zhu JK (2003). Regulation of abscisic acid biosynthesis. Plant physiol.133:29-36.
    124. Xiong L, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell. 14:S165-S183.
    125. Xu ZS, Chen M, Li LC, Ma YZ (2011). Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement. J Integr Plant Biol.53:570-585.
    126. Yamaguchi-Shinozaki K, Shinozaki K (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends Plant Sci.10:88-94.
    127. Yordanova RY, Christov KN, Popova LP (2004). Antioxidative enzymes in barley plants subjected to soil flooding. Environ Exp Bot.51:93-101.
    128. Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000). Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant physiol.123:223-234.
    129. Yun LJ, Chen WL (2011). SA and ROS are involved in methyl salicylate-induced programmed cell death in Arabidopsis thaliana. Plant Cell Rep.30:1231-1239.
    130. Zafra A, Rodriguez-Garcia M, Alche J (2010). Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biol.10:36.
    131. Zaninotto F, La Camera S, Polverari A, Delledonne M (2006). Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant physiol.141:379-383.
    132. Zhang H, Mao X, Wang C, Jing R (2010). Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One.5:e16041.
    133. Zhang X, Zhang Z, Chen J, Chen Q, Wang XC, Huang R (2005). Expressing TERF1 in tobacco enhances drought tolerance and abscisic acid sensitivity during seedling development. Planta.222: 494-501.
    134. Zhang Y, Feng F, He C (2012). Downregulation of OsPK1 Contributes to Oxidative Stress and the Variations in ABA/GA Balance in Rice. Plant Mol Biol Report. DOI:10.1007/s11105-011-0386-2.
    135. Zhao M, Wang L, Zhang B, Wang J, Chen G (2006). HarpinXooc, a proteineous elicitor of Xanthomonas oryzae pv. oryzicola, triggering hypersensitive response in tobacco and inducing disease resistance in rice. Chin. J. Biol. Control.22:283-289.
    136. Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS (2005). The wheat TaGIl, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog. Plant Mol. Biol.58:53-64.
    137.常娜宁,姜凌,蒲训,范云六,张春义(2010).作物叶酸检测方法的研究进展.中国农业科技导报.12:44-49.
    138.陈福禄,傅永福,林辰涛(2009). Co/Ft调节元件与植物开花时间调节研究进展.中国农业科技导报.11:17-22.
    139.陈晓,李思远,吴连成,王翠玲,陈彦惠(2006).光周期影响植物花时的分子机制.西北植物学报.26:1490-1499.
    140.葛宝宇,林轶,侯和胜(2007).Erf类转录因子的结构与功能.安徽农学通报.13:32-35.
    141.郭玉双,李祥羽,任学良(2011).植物体内活性氧(ROS)的产生及其作用研究进展.黑龙江农业科学.8:146-148.
    142.韩月婷,姜凌,范云六,张春义(2009).叶酸生物强化研究进展.中国农业科技导报.11:23-28.
    143.李莉,田士林(2007).酶联免疫(Elisa)分析晋麦叶片中脱落酸的含量.安徽农业科学.35:7098-7099.
    144.梁业红,Arnaud B,范云六(2006).异源表达细菌二氢喋呤合成酶基因提高拟南芥叶酸含量的研究.作物学报.32:164-168.
    145.林植芳,李双顺,林桂珠,郭俊彦(1988).衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系.植物生理学报.1:16-22.
    146.桑素玲(2011).质外体过氧化氢与水通道蛋白PIP1;4对Hpal蛋白诱导拟南芥抗病性的调控作用.博士学位论文,南京农业大学.
    147.沙爱华,王英,刘志文,蔡铭,袁平该,陈宪成(2006).植物开花光周期反应的分子调控机制.华北农学报.21:12-15.
    148.孙枫(2010).核黄素受体蛋白(RIR)与RIR类似蛋白(AtRIR)以及转录因子RAP2.6L在拟南芥防卫反应中的功能研究.博士学位论文南京农业大学.
    149.孙维洋,李剑芳,牟志美(2008).植物叶酸的合成、代谢及基因工程研究进展.安徽农业科学.36:2 229-2230.
    150.吴耀荣,谢旗(2006).ABA与植物胁迫抗性.植物学通报.23:511-518.
    151.徐雷,贾飞飞,王利琳(2011).拟南芥开花诱导途径分子机制研究进展.西北植物学报.31:1057-1065.
    152.张海娜,李小娟,李存东,肖凯(2008).过量表达小麦超氧化物歧化酶(SOD)基因对烟草耐盐能力的影响.作物学报.34:1403-1408.
    153.张怡,路铁刚(2011).植物中的活性氧研究概述.生物技术进展.4:242-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700