用户名: 密码: 验证码:
耦合分布式水文模拟及降雨集合预报的水库实时优化调度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式水文模型所需的高精度驱动数据通常难以获得,预报信息不确定性阻碍了水库实时调度进程。针对以上问题,本文主要研究全球数据产品在流域尺度的可利用性,并采用集合预报描述预报误差,开发水库实时优化调度系统。主要研究成果与结论如下:
     (1)以辉发河流域为研究区域,建立基于水和能量平衡的分布式水文模型WEB-DHM,模拟流域长系列(2000-2006年)水分(流量)和能量(陆面温度)循环过程。与地面实测日流量和遥感陆面温度对比表明,WEB-DHM模型能较好模拟流域水分和能量循环过程,这是本文的基础。
     (2)针对分布式水文模型高精度驱动数据难以获得的问题,分析GLDAS产品在流域尺度的可利用性进行。结果表明,GLDAS的降雨,气温及长波辐射精度较高,但GLDAS高估了向下短波辐射Rsw,d'从而导致GLDAS模拟的净辐射,蒸散发,潜热及显热通量具有不确定性。将GLDAS的Rsw.d作简单的线性修正后,以GLDAS驱动WEB-DHM能较好再现流域水循环过程。
     (3)开发了基于确定性数值天气预报的水库多目标(水库上下游防洪安全及兴利蓄水)实时优化系统。系统采用日本气象厅(JMA)实时预报作为驱动,使其实现真正的实时操作,并对原始WEB-DHM模型作了改进,使模型运行效率提高约63%。系统采用洗牌复形演化算法(SCE-UA)和动态惩罚函数法分别进行目标优化和解决多约束条件问题。在丰满水库对三场洪水进行检验(2001,2004和2005年)的结果表明,系统能较好预报汛期洪水及优化目标函数。
     (4)针对数值天气预报普遍存在的不确定性问题,基于前人工作,改进降雨集合预报生成技术。第一,将降雨预报评价指标归一化,全面描述降雨强度误差;第二,考虑降雨强度和分布误差,并概括为数学公式以弱化人为因素对扰动结果的影响。统计2004和2005年汛期降水的连续概率排位分数(CRPS)和分布直方图(RH),结果表明,用本文方法生成的集合预报总体上优于JMA产品。
     (5)耦合集合预报和分布式水文模型于水库实时优化模型,开发基于集合预报的水库实时调度系统(EPROS),在丰满流域对2004和2005年实测洪水检验。结果表明,EPROS通过产生一组场景(入库流量,水库泄流及水位),有效地描述了单值预报的不确定性。此外,EPROS系统对集合预报成员数并不敏感,在较大洪水下也能较好运行。系统易于操作,为水库实时调度提供了参考。
     最后对全文做了总结,并对有待于进一步研究的问题进行了展望。
The accurate high-resolution forcing data are usually difficult to obtain. The uncertainty of forecast information hindered the process of real-time reservoir operation. The aim of this theis is:1) to assess the applicability of a global dataset in basin scale;2) to handle the forecast uncertainty by using ensemble approach;3) to develop an ensemble prediction-based reservoir optimization system. Main results and conclusions include:
     (1) A hydrological model (The Water and Energy Budget-based Distributed Hydrological Model, WEB-DHM) was established in a semiarid river basin (Fengman basin). The water (discharge) and energy (Land Surface Temperature, LST) cycles is simulated from2000to2006. It was concluded that the WEB-DHM is able to predict water and energy fluxes accurately over the Fengman basin by comparing with measured streamflows and MODIS/Terra (Moderate Resolution Imaging Spectroradiometer/Terra) LSTs.
     (2) Because accurate high resolution atmospheric forcing data is difficult to obtain for most cases, the applicability of GLDAS in basin scale water and energy budget study is evaluated. Main results include:1) the GLDAS is of high quality for daily and monthly precipitation, Tair, monthly Rlw.d, while it overestimates monthly Rsw.d,2) the GLDAS/Noah agrees well with the verified WEB-DHM and JRA-25in terms of LST, upward shortwave and longwave radiation. While the net radiation, evapotranspiration, latent and sensible heat fluxes modeled by GLDAS/Noah are larger than WEB-DHM and JRA-25simulations in wet seasons;3) the basin-integrated discharges and evapotranspiration can be reproduced reasonably well by WEB-DHM fed with GLDAS forcing except linear corrections ofRsw.d?
     (3) A multi-objective (the upstream and downstream safety, and water use) real-time reservoir operation system is developed by using deterministic rainfall forecast obtained from Japan Meteorology Agency (JMA). The efficiency of the WEB-DHM model is improved by63%comparing with the original WEB-DHM model. The SCE-UA (Shuffled Complex Evolution developed at The University of Arizona) is applied to optimize the multi-objective. The dynamic penalty function is applied to solve the multi-constraint. The results show that the system is able to optimize the objectives by evaluating the system for the three flood events (2001,2004and2005).
     (4) The ensemble precipitation generation method proposed by Saavedra et al,[2010] is improved in order to describe the uncertainties in NWPs. First, the precipitation forecast error is described by using the normalized evaluation index. Second, the definition of QPF perturbation weight is simplified by using mathematical functions instead of using proposed zones and a look up table. The ensemble QPFs generated by EPROS are comparable to that obtained from JMA by measuring their performances using CRPS (Continuous Ranked Probability Score) and RH (Rank Histogram) on2004and2005.
     (5) An Ensemble Prediction based Reservoir Optimization System (EPROS) is presented in this study by coupling ensemble hydrological prediction with reservoir real-time optimization. The EPROS system has been evaluated on Fengman reservoir for the flood events in2004and2005. For both events, the ensemble based streamflow predictions described the uncertainties of single prediction effectively by generating multiple (e.g.,30-member) streamflow sceneries (water levels, reservoir inflows). The system's capability was evaluated under critical situations. The system is not sensitive to the ensemble sizes. The system is of high efficiency and easy to operate. It can provide reference for practical operation.
     Finally, the summary and further directions are given.
引文
[1]徐宗学,等.水文模型[M]。北京:科学出版社,2009.
    [2]Heise, E. (1996), An investigation of water and energy budgets for the BALTEX region based on short-range numerical weather predictions, Tellus,48A,693-707.
    [3]Wang, L.2007. Development of a distributed runoff model coupled with a land surface scheme. PhD Dissertation. The University of Tokyo.
    [4]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [5]Overgaard, J., Rosbjerg, D., and Butts, M. B. (2006), Land-surface modelling in hydrological perspective-a review, Biogeosciences,3,229-241, doi:10.5194/bg-3-229-2006.
    [6]大连理工大学,国家防汛抗旱总指挥部办公室.水库防洪预报调度方法及应用[M].北京:中国水利水电出版社,1996.
    [7]周惠成,王福兴,梁国华.碧流河水库后汛期汛限水位及控制运用方式研究[J].水科学进展,2009(6):857-862.
    [8]Labadie, J. W (2004), Optimal operation of multireservoir system:State-of-the-Art review, J. Water. Res. Pl-ASCE.,130,93-111, doi:10.1061/(ASCE)0733-9496(2004)130:2(93).
    [9]王本德,周惠成.水库汛限水位动态控制理论与方法及其应用[M].北京:中国水利水电出版社,2006.
    [10]郭生练,陈炯洪,刘攀,等.水库群联合优化调度研究进展与展望[J].水科学进展,2010(4):496-503.
    [11]陈端,陈求稳,陈进,等.考虑生态流量的水库优化调度模型研究进展[J].水力发电学报,2011(5):248-256.
    [12]王栋,许圣斌.水库群系统防洪联合调度研究进展[J].水科学进展,2001(1):118-124.
    [13]Intergovernmental Panel on Climate Change (2007), Climate Change 2007:Climate Change Impacts, Adaptation and Vulnerability. Summary for Policymakers, World Meteorol. Org., Geneva.
    [14]Cai, X., M. W. Rosegrant, and C. Ringler (2003), Physical and economic efficiency of water use in the river basin:Implications for efficient water management, Water Resour. Res.,39(1),1013, doi:10.1029/2001WR000748.
    [15]Freeze, R.A., and R. L. Harlan (1969), Blueprint for a physically-based digitallysimulated hydrological response model, J. Hydrol.,9,237-258.
    [16]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002(4):341-348.
    [17]金鑫,郝振纯,张金良.水文模型进展及发展方向[J].水土保持研究,20)06(4):197-199.
    [18]Abbott, M. B., J. C. Bathurst, and J. A. Cunge et al. (1986), An introduction to the European hydrological system-Systeme Hydrologique Europeen, SHE,2. Strcuture of a physically-based distributed modeling system, J. Hydrol.,87,61-77.
    [19]Bathurst, J. C., J. M. Wicks, P. E. O'Connell (1995), The SHE/SHESED basin scale water flow and sediment transport modeling system, In:Singh, V. P. (Ed.), Computer Models of Watershed Hydrology, Water Resources Publications, LLC, Highlands Ranch, CO, pp.563-594.
    [20]Beven, K J and Kirkby, M J. (1979), A physically based variable contributing area model of basin hydrology. Hydrol. Sci. Bull.,24(1),43-69.
    [21]Beven, K J and Wood, E F.1983 Catchment Geomorphology and the Dynamics of Runoff Contributing Areas, J.Hydrol.65,139-158.
    [22]Beven, K J, Kirkby, M J, Schoffield, N, and Tagg, A.1984 Testing a Physically-based Flood Forecasting Model (TOPMODEL) for Three UK Catchments, J. Hydrol.69; 119-143
    [23]Yang, D. W., T. Koike, and H. Tanizawa (2004a), Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan, Hydrol. Process.,75(16),3119-3132, doi:10.1002/hyp.5752.
    [24]Yang, D., S. Herath, and K. Musiake (2000), Comparison of different distributed hydrological models for characterization of catchment spatial variability, Hydrol. Processes,14,403-416, doi:10.1002/(SICI)1099-1085(20000228)14:3<403::AID-HYP945>3.0.CO;2-3.
    [25]Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier (1994), A distributed hydrologyvegetation model for complex terrain, Water Resour. Res.,30 (6),1665-1679.
    [26]Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple hydrologically based model of land surface water and energy fluxes for GSMs, J. Geophys.Res.,99(D7),14415-14428.
    [27]Arnold, J. G., Srinivasan, R., Muttiah, R. S. and Williams, J. R. (1998), LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I:MODEL DEVELOPMENT. JAWRA Journal of the American Water Resources Association, 34:73-89. doi:10.1111/j.1752-1688.1998.tb05961.x
    [28]Clark, M. P., and L. E. Hay (2004), Use of medium-range numerical weather prediction model output to produce forecasts of streamflow, J. Hydrometeor.,5,15-32.
    [29]田杏丽,黄强,工义民,等.我国水库洪水资源化研究进展[J].水资源与水工程学报,2011(5):24-28.
    [30]Kumar, D., and M. Reddy (2006), Ant Colony Optimization for multi-purpose reservoir operation, Water Resour. Manag.,20(6),879-898, doi:10.1007/s11269-005-9012-0.
    [31]Yeh, W. W.-G. (1985), Reservoir management and operations models:a state-of-the-art review, Water Resour. Res.27(12),1797-1818, doi:10.1029/WR021i012p01797.
    [32]郭生练,陈炯洪,刘攀,等.水库群联合优化调度研究进展与展望[J].水科学进展,2010(4):496-503.
    [33]郭文献,夏自强,王远坤,等.三峡水库生态调度目标研究[J].水科学进展,2009(4):554-559.
    [34]陈端,陈求稳,陈进.考虑生态流量的水库优化调度模型研究进展[J].水力发电学报,2011(5):248-256.
    [35]Stedinger, J. R., B. F. Sule, and D. P. Loucks (1984), Stochastic dynamic programming models for reservoir operation optimization, Water Resour. Res.,20(11),1499-1505, doi:10.1029/WR020i011p01499.
    [36]Johnson, S. A., J. R. Stedinger, and K. Staschus (1991), Heuristic operating policies for reservoir system simulation, Water Resour. Res.,27(5),673-685, doi:10.1029/91WR00320.
    [37]Goldberg, D. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA.
    [38]Oliveira, R., and D. P. Loucks (1997), Operating rules for multireservoir systems, Water Resour. Res.,33(4),839-852, doi:10.1029/96WR03745.
    [39]Kennedy J. and R. C. Eberhart (1995), Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ,1942-1948, doi:10.1109/ICNN.1995.488968.
    [40]Dorigo, M., V. Maniezzo, and A. Colorni (1996), Ant system:optimization by a colony of cooperating ants, IEEE Trans. Sys. Man Cybern.26(1),29-42, doi:10.1109/3477.484436.
    [41]Duan, Q., S. Sorooshian, and V. K. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res.,28(4),1015-1031, doi:10.1029/91WR02985.
    [42]Duan, Q., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global minimization, J. Optimiz. Theory. App., 76(3),501-521, doi:10.1007/BF00939380.
    [43]Duan, Q., S. Sorooshian, and V. K. Gupta (1994), Optimal use of the SCE-UA global optimization method for calibrating watershed models,./. Hydrol,755(3-4),265-284, doi:10.1016/0022-1694(94)90057-4.
    [44]Croley, T. E., Ⅱ, and K. N. Raja Rao (1979), Multiobjective risks in reservoir operation, Water Resour. Res.,15(4),807-814, doi:10.1029/WR015i004p00807.
    [45]Yeh, W. W.-G., and L. Becker (1982), Multiobjective Analysis of Multireservoir Operations, Water Resour. Res.,18(5),1326-1336, doi:10.1029/WR018i005p01326.
    [46]Khu, S. T., and H. Madsen (2005), Multiobjective calibration with Pareto preference ordering:an application to rainfall-runoff model calibration, Water Resour. Res.41, W03004, doi:10.1029/2004/WR00304.
    [47]Ngo, L. L., H. Madsen, and D. Rosbjerg (2007), Simulation and optimization modelling approach for operation of the Hoa Binh reservoir, Vietnam, J. Hydrol.,336,269-281, doi:10.1016/j.jhydrol.2007.01.003.
    [48]Reddy, M. J. and D. N. Kumar (2007), Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation, Hydrol. Process.,21(21), 2897-2909, doi:10.1002/hyp.6507.
    [49]Niewiadomska-Szynkiewicz, E., K. Malinowski, and A. Karbowski (1996), Predictive Methods for Real-Time Control of Flood Operation of a Multireservoir System: Methodology and Comparative Study, Water Resour. Res.,32(9),2885-2895, doi:10.1029/96WR01443.
    [50]Chang, Y. T., L. C. Chang, and F. J. Chang (2005), Intelligent control for modeling of real-time reservoir operation, part Ⅱ:artificial neural network with operating rule curves, Hydrol. Process.,19(1),1431-1444.
    [51]Hsu, N.-S., and C.-C. Wei (2007), A multipurpose reservoir real-time operation model for flood control during typhoon invasion, J. Hydrol.,336,282-293, doi:10.1016/j.jhydrol.2007.01.001.
    [52]Saavedra Valeriano, O. C., T. Koike, K. Yang, T. Graf, X. Li, L. Wang, and X. Han (2010a), Decision support for dam release during floods using a distributed biosphere hydrological model driven by quantitative precipitation forecasts, Water Resour. Res.,46, W10544, doi:10.1029/2010WR009502.
    [53]Saavedra Valeriano, O. C., T. Koike, K. Yang, and D. W. Yang (2010b), Optimal dam operation during flood season using a distributed hydrological model and a heuristic algorithm, J. Hydrol. Eng.-ASCE.,15(7),580-586, doi:10.1061/(ASCE)HE.1943-5584.0000212.
    [54]Wang, L., T. Koike, M. Ikeda, C.T. Nyunt, T.V. Sap, L.C. Nguyen, and D.N. Tinh (2011), An integrated simulation and optimization system (ISOS) for dam operation in large river basins with numerical weather forecasts and the corrected satellite precipitation, Water Resour. Res. (in revision)
    [55]Chen, F., and J. Dudhia (2001), Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I:Model description and implementation, Mon. Wea. Rev.,129(4),569-585.
    [56]Sellers, P. J., Y. Mintz, Y.C. Sud, and A. Dalcher (1986), A simple biosphere model (SiB) for use within general circulation models,J.Atmos. Sci.,43 (6):505-531.
    [57]Sellers, P. J., R. E. Dickinson, D. A. Randall, A. K. Betts, F. G. Hall, J. A. Berry, G. J. Collatz, A. S. Denning, H. A. Mooney, C. A. Nobre, N. Sato, C. B. Field, and A. Henderson-Sellers (1997), A modeling the exchanges of energy, water, and carbon between continents and the atmosphere, Science.,275(5299),502-509, doi: 10.1126/science.275.5299.502.
    [58]Dirmeyer, P. A., A. J. Dolman, and N. Sato (1999), The pilot phase of the Global Soil Wetness Project, Bull. Am. Meteorol. Soc.,80(5),851-878.
    [59]Bowling, L.C., et al. (2003), Simulation of high-latitude hydrological processes in the Torne-Kalix basin:PILPS Phase 2(e):1:Experiment description and summary intercomparisons, Global Planet. Change.,38(1-2),1-30, doi:10.1016/S0921-8181 (03)00003-1.
    [60]Rodell, M., P. R. Houser, A. A. Berg, and J. S. Famiglietti, (2005), Evaluation of ten methods for initializing a land surface model, J. Hydrometeor.,6(2),146-155, doi: 10.1175/JHM414.1.
    [61]Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla (1991), A simplified biosphere model for global climate studies,J.Climate,4(3),345-364.
    [62]Koster, R. D., and M. J. Suarez (1992a), A comparative analysis of two land surface heterogeneity representations, J. Climate,5,1379-1390.
    [63]Henderson-Sellers, A., A. J. Pitman, P. K. Love, P. Irannejad, and T. H. Chen (1995), The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS)-Phase-2 and Phase-3, Bull. Am. Meteorol. Soc.,76(4),489-503.
    [64]Koster, R. D., M. J. Suarez, A. Ducharne, M. Stiglitz, and P. Kumar (2000), A catchment-based approach to modeling land surface processes in a GCM. Part 1:Model structure,J.Geophys. Res.,105 (D20),24809-24822, doi:10.1029/2000JD900327.
    [65]Warrach, K., M. Stieglitz, H. Mengelkamp, and E. Raschke (2002), Advantages of a topographically controlled runoff simulation in a SVAT model, J. Hydrometeor.,3, 131-148.
    [66]Rigon, R., G. Bertoldi, and T. M. Over (2006), GEOtop:A Distributed Hydrological Model with Coupled Water and Energy Budgets, J. Hydrometeor.,7,371-388.
    [67]Tang, Q, T. Oki, S. Kanae, and H. Hu (2007), The Influence of Precipitation Variability and Partial Irrigation within Grid Cells on a Hydrological Simulation, J. Hydrometeor.,8, 499-512, doi:10.1175/JHM589.1.
    [68]Pietroniro, A., and E. D. Soulis (2003), A hydrology modeling framework for the Mackenzie GEWEX programme, Hydrol. Processes,17(3),673-676, doi:10.1002/hyp.5104.
    [69]Cosgrove, B. A., D. Lohmann, K. E. Mitchell, P. R. Houser, E. F. Wood, J. Schaake, A. Robock, C. Marshall, J. Sheffield, L. Luo, Q. Duan, R. T. Pinker, J. D. Tarpley, R. W. Higgins, and J. Meng (2003), Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project, J. Geophys. Res.,108(D22),8842, doi:10.1029/2002JD003118.
    [70]Luo, L., A. Robock, K. E. Mitchell, P. R. Houser, E. F. Wood, J. C. Schaake, D. Lohmann, B. A. Cosgrove, F. Wen, J. Sheffield, Q. Duan, R. W. Higgins, R. T. Pinker, and J. D. Tarpley (2003), Validation of the North American Land Data Assimilation System (NLDAS) retrospective forcing over the southern Great Plains, J. Geophys. Res., 108(D22),8843, doi:10.1029/2002JD003246.
    [71]Qian, T., A. G. Dai, K. E. Trenberth, and K. W. Oleson (2006), Simulation of global land surface conditions from 1948 to 2004. Part I:forcing data and evaluations, J. Hydrometeorol.,7,953-975.
    [72]Mitchell, K. E., et al. (2004), The multi-institution North American Land Data Assimilation System (NLDAS):Utilizing multiple GCIP products and partners in a continental distributedhydrological modeling system, J. Geophys. Res.,109, D07S90, doi:10.1029/2003JD003823.
    [73]Rodell, M., P. R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004a), The Global Land Data Assimilation System, Bull Amer. Meteor. Soc.,85(3),381-394, doi:10.1175/BAMS-85-3-381.
    [74]Kumar, S. V., C. D. Peters-Lidard, Y. Tian, P. R. Houser, J. Geiger, S. Olden, L. Lighty, J. L. Eastman, B. Doty, P. Dirmeyer, J. Adams, K. Mitchell, E. F. Wood, and J. Sheffield (2006), Land information system:An interoperable framework for high resolution land surface modeling, Environ. Modell. Sofrw.,27(10),1402-1415, doi:10.1016/j.envsoft.2005.07.004.
    [75]Chen, F., K. Mitchell, J. Schaake, Y. Xue, H.-L. Pan, V. Koren, Q. Y. Duan, M. Ek, and A. Betts (1996), Modeling of land surface evaporation by four schemes and comparison with FIFE observations, J. Geophys. Res.,101(D3),7251-7268, doi: 10.1029/95JD02165.
    [76]Koren, V., J. Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, and J. M. Baker (1999), A parameterization of snowpack and frozen ground intended for NCEP weather and climate models, J. Geophys. Res.,104, D16,19,569-19.585, doi:10.1029/1999JD900232.
    [77]Betts, A. K., F. Chen, K. E. Mitchell, and Z. I. Janjic (1997), Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data, Mon. Wea. Rev.,125,2896-2916.
    [78]Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley (2003), Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res., 108, D22,8851, doi:10.1029/2002JD003296.
    [79]Koster, R. D., M. J. Suarez, P. Liu, U. Jambor, A. Berg, M. Kistler, R. Reichle, M. Rodell, and J. Famiglietti (2004), Realistic initialization of land surface states:Impacts on subseasonal forecast skill, J. Hydrometeor.,5(6),1049-1063, doi:10.1175/JHM-387.1.
    [80]Rodell, M., J. S. Famiglietti, J. Chen, S. Seneviratne, P. Viterbo, S. Holl, and C. R. Wilson (2004b), Basin scale estimates of evapotranspiration using GRACE and other observations, Geophys. Res. Lett.,31, L20504, doi:10.1029/2004GL020873.
    [81]Kato, H., M. Rodell, F. Beyrich, H. Cleugh, E. van Gorsel, H. Liu, and T.P. Meyers (2007), Sensitivity of land surface simulations to model physics, parameters, and forcings, at four CEOP sites, J. Meteor. Soc. Japan.,85A,187-204.
    [82]Syed, T. H., J. S. Famiglietti, M. Rodell, J. L. Chen, and C. R. Wilson (2008), Analysis of terrestrial water storage changes from GRACE and GLDAS, Wat. Resour. Res.,44, W02433, doi:10.1029/2006WR005779.
    [83]Yang, K., and T. Koike (2008), Satellite monitoring of the surface water and energy budget in the Central Tibetan Plateau, Adv. Atmos. Sci.,25,974-985, doi: 10.1007/s00376-008-0974-8.
    [84]Zhang, J., W.-C. Wang, and J. Wei (2008), Assessing land-atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation, J. Geophys. Res.,113, D17119, doi:10.1029/2008JD009807.
    [85]Yang, K., T. Koike, Ⅰ. Kaihotsu, and J. Qin (2009b), Validation of a Dual-Pass Microwave Land Data Assimilation System for Estimating Surface Soil Moisture in Semiarid Regions, J. Hydrometeor,10(3),780-793, doi:10.1175/2008JHM1065.1.
    [86]Zilitinkevich, S. S. (1995), Non-local turbulent transport:Pollution dispersion aspects of coherent structure of convective flows, Air Pollution Theory and Simulation, edited by:H. Power, N. Moussiopoulos, and C. A. Brebbia, Eds., Vol. I, Air Pollution 111, Computational Mechanics Publications,53-60.
    [87]Russell S. O., and P. F. Campbell (1996), Reservoir operating rules with fuzzy programming, ASCE J. Water Res. Plann. Manage.,122(3),165-170.
    [88]Tejada-Guibert, J. A., S. A. Johnson, and J. R. Stedinger (1995), The Value of Hydrologic Information in Stochastic Dynamic Programming Models of a Multireservoir System, Water Resour. Res.,57(10),2571-2579, doi:10.1029/95WR02172.
    [89]You, J.-Y., and X. Cai (2008), Hedging rule for reservoir operations:1. A theoretical analysis, Water Resour. Res.,44, W01415, doi:10.1029/2006WR005481.
    [90]Mascaro, G., E. Vivoni, and R. Deidda (2010), Implications of Ensemble Quantitative Precipitation Forecast Errors on Distributed Streamflow Forecasting, J. Hydrometeor., 11(1),69-86, doi:10.1175/2009JHM1144.1.
    [91]Roulin, E., and S. Vannitsem (2005), Skill of medium-range hydrological ensemble predictions, J. Hydrometeorol.,6,729-744, doi:10.1175/JHM436.1.
    [92]Cui, B., Z. Toth, Y. J. Zhu, and D. C. Hou (2011), Bias Correction for Global Ensemble Forecast, Weather Forecast., accepted.
    [93]Fan, Y., and H. van den Dool (2011), Bias Correction and Forecast Skill of NCEP GFS Ensemble Week-1 and Week-2 Precipitation,2-m Surface Air Temperature, and Soil Moisture Forecasts, Weather Forecast.,26,355-370, doi:10.1175/WAF-D-10-05028.1.
    [94]Toth, Z., and E. Kalnay (1993), Ensemble forecasting at NMC:the generation of perturbations, Bull. Am. Met. Soc.74(12),2317-2330.
    [95]Toth, Z., and E. Kalnay (1997), Ensemble forecasting at NCEP and the breeding method, Mon. Wea. Rev.,125,3297-3319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.
    [96]Buizza, R., and T. N. Palmer (1995), The Singular-Vector Structure of the Atmospheric Global Circulation,J. Atmos. Sci.,52,1434-1456, doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.
    [97]Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis (1996), The ECMWF Ensemble Prediction System:Methodology and validation, Quart. J. Roy. Meteor. Soc, 122,73-119, doi:10.1002/qj.49712252905.
    [98]Houtekamer, P. L., L. Lefaivre. J. Derome, H. Ritchie, H. L. Mitchell (1996), A System Simulation Approach to Ensemble Prediction, Mon. Wea. Rev.,124,1225-1242, doi:10.1175/1520-0493(1996)124<1225:ASSATE>2.0.CO;2.
    [99]Hamill, T. M., C. Snyder, and R. E. Morss (2000), A comparison of probabilistic forecasts from bred, singular-vector, and perturbed observation ensembles, Mon. Wea. Rev..128,1835-1851.
    [100]Buizza, R.. P. L. Houtekamer. G. Pellerin, Z. Toth, Y. Zhu, and M. Wei (2005), A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev.,133(5),1076-1097, dok10.1175/MWR2905.1.
    [101]Schaake, J. C. J. Demargne, R. Hartman, M. Mullusky, E. Welles, L. Wu, H. Herr, X. Fan, D.-J. Seo (2007), Precipitation and temperature ensemble forecasts from single-value forecasts, Hydrol. Earth Syst. Sci. Diss.,4,655-717.
    [102]Day, G. N. (1985), Extended streamflow forecasting using NWSRFS, ASCE J. Water Res. Plann. Manage., 111,157-170, doi:10.1061/(ASCE)0733-9496(1985)111:2(157).
    [103]Clark, M. P., S. Gangopadhyay, L. E. Hay, B. Rajagopalan, and R. Wilby (2004), The Schaake Shuffle:A method for reconstructing space-time variability in forecasted precipitation and temperature fields, J. Hydrometeor.,5,243-262.
    [104]Werner, K., D. Brandon, M. Clark, and S. Gangopadhyay (2005), Incorporating mediumrange numerical weather model output into the ensemble streamflow prediction system of the National Weather Service, J. Hydrometeorol, 6,101-114.
    [105]Schaake, J. C., K. Franz, V. Bradley, and R. Buizza (2006), The Hydrologic Ensemble Prediction EXperiment (HEPEX), Hydrol. Earth Syst. Sci.3,3321-3332, doi:10.1175/BAMS-88-10-1541.
    [106]Dietrich, J., S. Trepte, Y. Wang, A. H. Schumann, F. VoB, F. B. Hesser, and M. Denhard (2008), Combination of different types of ensembles for the adaptive simulation of probabilistic flood forecasts:hindcasts for the Mulde 2002 extreme event, Nonlinear Proc. Geoph.,15,275-286.
    [107]Cloke, H. L., and F. Pappenberger (2009), Ensemble Flood Forecasting:a review, J. Hydrol,375(3-4),613-626, doi:10.1016/j.jhydrol.2009.06.005.
    [108]Pappenberger, F., and R. Buizza (2009), The Skill of ECMWF Precipitation and Temperature Predictions in the Danube Basin as Forcings of Hydrological Models, Weather Forecast.,24(3),749-766, doi:10.1175/2008WAF2222120.1.
    [109]Wu, L. M., D.-J. Seo, J. Demargne, J. D. Brown, S. Z. Cong, and J. Schaake (2011), Generation of ensemble precipitation forecast from single-valued quantitative precipitation forecast for hydrologic ensemble prediction, J. Hydrol.,399(3-4),281-298, doi:10.1016/j.jhydrol.2011.01.013.
    [110]Thielen, J., J. Bartholmes, M.-H. Ramos, and A. de Roo (2009), The European Flood Alert System-Part 1:Concept and development, Hydrol. Earth Syst. Sci.,13(2), 125-140.
    [111]Faber, B., and J. Stedinger (2001), Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts, J. Hydrol.,249(1-4),113-133, doi:10.1016/S0022-1694(01)00419-X.
    [112]Ottle, C., and D. Vidal-Madjar (1994), Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region, J. Hydrol.,158,241-264.
    [113]Yang, D., and K. Musiake (2003), A continental scale hydrological model using distributed approach and its application to Asia, Hydrol. Process.,17,2855-2869.
    [114]Sellers, P. J.. D. A. Randall, G. J. Collate, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua (1996a), A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I:Model Formulation, J. Climate.,9(4),676-705.
    [115]Fast, J. D., and M. D. McCorcle (1991), The effect of heterogeneous soil moisture on a summer baroclinic circulation in the central United States, Mon. Weather Rev.,199. 2140-2167.
    [116]Li, B., and R. Avissar (1994), The impact of spatial variability of land-surface characteristics on land-surface heat fluxes, J. Climate,7,527-537.
    [117]Chen, F., and R. Avissar (1994), The impact of land-surface wetness heterogeneity on mesoscale heat fluxes, J. Appl. Meteor.,33,1323-1340.
    [118]Wang, L., T. Koike, K. Yang, T. J. Jackson, R. Bindlish, and D.W. Yang (2009a), Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99), J. Geophys. Res.,114, D08107, doi:10.1029/2008JD010800.
    [119]Wang, L.. T. Koike, K. Yang, and P. Yeh (2009b), Assessment of a distributed biosphere hydrological model against streamflow and MODIS land surface temperature in the upper Tone River Basin, J. Hydrol,577(1-2),21-34, doi:10.1016/j.jhydrol.2009.08.005.
    [120]Wang, L.. T. Koike, D. W. Yang, and K. Yang (2009c), Improving the hydrology of the Simple Biosphere Model and its evaluation within the framework of a distributed hydrological model, Hydrolog. Sci. J.,54(6),989-1006, doi:10.1623/hysj.54.6.989.
    [121]Yang, D. W.. S. Herath, and K. Musiake (2002), A hillslope-based hydrological model using catchment area and width functions, Hydrolog. Sci. J.,47(1),49-65, doi: 10.1080/02626660209492907.
    [122]Wang, L., Z. Wang, T. Koike, H. Yin, D. Yang, and S. He (2010a), The assessment of surface water resources for the semi-arid Yongding River Basin from 1956 to 2000 and the impact of land use change, Hydrol. Processes,24,1123-1132, doi:10.1002/hyp.7566.
    [123]Shrestha, M., L. Wang, T. Koike, Y. Xue, and Y. Hirabayashi (2010), Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites, Hydrol. Earth Syst. Sci.,14(12),2577-2594, doi:10.5194/hess-14-2577-2010.
    [124]Wang, L., T. Koike, K. Yang, R. Jin, and H. Li (2010b), Frozen soil parameterization in a distributed biosphere hydrological model. Hydrol. Earth Syst. Sci.,14,557-571.
    [125]Jaranilla-Sanchez, P. A., L. Wang, and T. Koike (2011), Modeling the hydrologic responses of the Pampangga River Basin, Philippines:A quantitative approach for identifying droughts, Water Resour. Res.,47, W03514, doi:10.1029/2010WR009702.
    [126]Sellers, P. J., S. O. Los, C. J. Tucker, C. O. Justice, D. A. Dazlich, G. J. Collatz, and D. A. Randall (1996b), A revised land surface parameterization (SiB2) for atmospheric GCMs, part Ⅱ:the generation of global fields of terrestrial biosphysical parameters from satellite data, J. Climate.,9,706-737.
    [127]Zaitchik, B.F., M. Rodell, and F. Olivera (2010), Evaluation of the Global Land Data Assimilation System using global river discharge data and a source to sink routing scheme, Water Resour. Res.,46, W06507, doi:10.1029/2009WR007811.
    [128]Bertoldi, G., C. Notarnicola, G. Leitinger, S. Endrizzi, M. Zebisch, S. D. Chiesa, and U. Tappeiner (2010), Topographical and ecohydrological controls on land surface temperature in an alpine catchment, Ecohydrology.,5(2),189-204, doi:10.1002/eco.129.
    [129]Nash, J. E., and J. V. Sutcliffe (1970), River flow forecasting through conceptual models part Ⅰ - A discussion of principles, J. Hydrol.,10(3):282-290, doi:10.1016/0022-1694(70)90255-6.
    [130]Asian Development Bank (2002), Report and recommendation of the president to the board of directors on a proposed loan to the People's Republic of China for the Songhua River flood management sector project, RRP:PRC 33437.
    [131]Yang, D. W., C. Li, G. H. Ni, and H. P. Hu (2004b), Application of a distributed hydrological model to the Yellow River Basin, Acta Geographica Sinica.,59(1), 143-154. (in Chinese)
    [132]Parton, W. J., and J. A. Logan (1981), A model for diurnal variation in soil and air temperature, Agricultural Meteorology.,23,205-216, doi: 10.1016/0002-1571(81)90105-9.
    [133]Yang, K., G. W. Huang, and N. Tamai (2001), A hybrid model for estimating global solar radiation, Sol. Energy.,70(1),13-22, doi:10.1016/S0038-092X(00)00121-3.
    [134]Yang, K., T. Koike, and B. S. Ye (2006), Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets, Agric. For. Meteorol,137(1-2), 43-55, doi:10.1016/j.agrformet.2006.02.001.
    [135]Onogi, K., J. Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji and R. Taira (2007), The JRA-25 Reanalysis, J. Meteor. Soc. Japan,85(3),369-432, doi:10.2151/jmsj.85.369.
    [136]Wang, A., and X. Zeng (2011), Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China, J. Geophys. Res.,116, D02107, doi:10.1029/2010JD014659.
    [137]Food and Agriculture Organization (2003), Digital soil map of the world and derived soil properties, land and water digital media series, Rev.l. United Nations Food and Agriculture Organization, CD-ROM.
    [138]Myneni, R. B., R. R. Nemani, and S. W. Running (1997), Algorithm for the estimation of global land cover, LAI and FPAR based on radiative transfer models, IEEE Trans. Geosc. Remote Sens.,35,1380-1393.
    [139]Wan, Z. M. (2008), New refinements and validation of the MODIS land-surface temperature/emissivity products, Remote Sens. Environ.,112(1):59-74, doi:10.1016/j.rse.2006.06.026.
    [140]Gottschalck, J., J. Meng, M. Rodell, and P. Houser (2005), Analysis of multiple precipitation products and preliminary assessment of their impact on Global Land Data Assimilation System (GLDAS) land surface states, J. Hydrometeor., 6(5),573-598.
    [141]Rudiger, C., J.-C. Calvet, C. Gruhier, T. Holmes, R. De Jeu, and W. Wagner (2009), An Intercomparison of ERS-Scat and AMSR-E Soil Moisture Observations with Model Simulations over France, J. Hydrometeor,10,431-447,doi:10.1175/2008JHM997.1.
    [142]Koster, R. D., and M. J. Suarez (1992b), Modeling the land surface boundary in climate models as a composite of independent vegetation stands, J. Geophys. Res.,97(D3), 2697-2715, doi:10.1029/91JD01696.
    [143]Dai, Y., et al. (2003), The Common Land Model (CLM), Bull. Amer. Meteor. Soc.,84(8), 1013-1023, doi:10.1175/BAMS-84-8-1013.
    [144]Xie, P. P., and P. A. Arkin (1997), Global precipitation:A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, Bull. Amer. Meteor. Soc.,78,2539-2558, doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
    [145]Xie, P. P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis (2003), GPCP Pentad precipitation analyses:An experimental dataset based on gauge observations and satellite estimates, J. Climate,16,2197-2214, doi: 10.1175/2769.1.
    [146]Derber, J. C., D. F. Parrish, and S. J. Lord (1991), The new global operational analysis system at the National Meteorological Center, Wea. Forecasting,6,538-547.
    [147]Shapiro, R. (1987), Simple model for the calculation of the flux of solar radiation through the atmosphere, Appl. Opt.,11(4),760-764, doi:10.1364/AO.11.000760.
    [148]Idso, S. (1981), A set of equations for the full spectrum and 8-to 14-μm and 10.5-to 12.5-μm thermal radiation from cloudless skies, Water Resour. Res.,17(2),295-304, doi:10.1029/WRO17i002p00295.
    [149]Japan Meteorological Agency (JMA) (2007), Outline of the operational forecast and analysis system of the Japan Meteorological Agency, Appendix to WMO technical progress report on the global data-processing and forecasting system and numerical weather prediction, Tokyo. [Available at http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/index.htm].
    [150]Joseph, J. H., W. J. Wiscombe, and J. A. Weinman (1976), The delta-Eddinglon approximation for radiative flux transfer, J. Atmos. Sci.,33(12),2452-2459.
    [151]Coakley, J. A., R. D. Cess, and F. B. Yurevich (1983), The Effect of Tropospheric Aerosols on the Earth's Radiation Budget:A Parameterization for Climate Models, J. Atmos. Sci.,40(1),116-138.
    [152]Briegleb, B. P. (1992), Delta-Eddington Approximation for Solar Radiation in the NCAR Community Climate Model, J. Geophys. Res.,97(D7),7603-7612, doi:10.1029/92JD00291.
    [153]Yang, K., Y. Chen, and J. Qin (2009a), Some practical notes on the land surface modeling in the Tibetan Plateau, Hydrol. Earth Syst. Sci.,13(5),687-701.
    [154]Hong, J., and J. Kim (2008), Simulation of surface radiation balance on the Tibetan Plateau, Geophys. Res. Lett.,35, L08814, doi:10.1029/2008GL033613.
    [155]van de Griend, A., and M. Owe (1994), Bare soil surface resistance to evaporation by vapor diffusion under semiarid conditions, Water Resour. Res.,30(2),181-188.
    [156]Hong, J., and J. Kim (2010), Numerical study of surface energy partitioning on the Tibetan plateau:comparative analysis of two biosphere models, Biogeosci.,7(2), 557-568, doi:10.5194/bg-7-557-2010,2010.
    [157]Chen, F., Z. Janjic, and K. Mitchell (1997), Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta Model, Bound-Layer Meteor.,85,391-421, doi:10.1023/A:1000531001463.
    [158]Chen, F., and Y. Zhang (2009), On the Coupling Strength Between the Land Surface and the Atmosphere:From Viewpoint of Surface Exchange Coefficients, Geophys. Res. Lett., 36, L10404, doi:10.1029/2009GL037980.
    [159]Chen, Y., K. Yang, D. Zhou, J. Qin, and X. Guo (2010), Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length, J. Hydrometeorol.,11,995-1006, doi:10.1175/2010JHM1185.1.
    [160]Verhoef, A., H. A. R. De Bruin, and B. J. J. M. Van Den Hurk (1997), Some Practical Notes on the Parameter kB'for Sparse Vegetation, J. Appl. Meteor.,36,560-572, doi: 10.1175/1520-0450(1997)036<0560:SPNOTP>2.0.CO;2.
    [161]Yang, K., T. Koike, H. Ishikawa, J. Kim, X. Li, H.-Z. Liu, S.-M. Liu, Y.-M. Ma, and J.-M. Wang (2008), Turbulent flux transfer over bare soil surfaces:Characteristics and parameterization, J. Appl. Meteorol. Clim.,40,276-290, doi: 10.1175/2007JAMC 1547.1.
    [162]LeMone, M., M. Tewari, F. Chen, J. Alfieri, and D. Niyogi (2008). Evaluation of the Noah land surface model using data from a fair-weather IHOP_2002 day with heterogeneous surface fluxes, Mon. Weather Rev.,136,4915-4941, doi:10.1175/2008MWR2354.1.
    [163]Paulson, C. A. (1970), The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteorol.,9,857-861.
    [164]Wang, B. D., H. C. Zhou, and C. T. Cheng (1994), Fuzzy optimizing approach to flood operation of multiobjective cascade reservoirs, Journal of Hydraulic Engineering, (2), 31-39,45. (in Chinese)
    [165]Yeniay, O. (2005), Penalty function methods for constrained optimization with genetic algorithms, Math. Comput. Appl.,70(1),45-56.
    [166]Michalewicz, Z. (1995), Genetic algorithms, numerical optimization, and constraints, Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann,151-158.
    [167]Barakat, S., and H. Ibrahim (2011), Application of Shuffled Complex Evolution Global Optimization Technique in the Design of Truss Structures, paper presented at 20114th International Conference of Modeling, Simulation and Applied Optimization (ICMSAO), Kuala Lumpur, doi:10.1109/ICMSAO.2011.5775590.
    [168]Sorooshian, S., Q. Duan, and V. K. Gupta (1993), Calibration of rainfall-runoff models: Application of global optimization to the Sacramento Soil Moisture Accounting Model, Water Resour. Res.,29(4),1185-1194, doi:10.1029/92WR02617.
    [169]Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000), Toward improved calibration of hydrological models:Combining the strengths of manual and automatic methods, Water Resour. Res.,36(12),3663-3674, doi:10.1029/2000WR900207.
    [170]Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res.,39(&),1201, doi:10.1029/2002WR001642.
    [171]Chu, W., X. Gao, and S. Sorooshian (2010). Improving the shuffled complex evolution scheme for optimization of complex nonlinear hydrological systems:Application to the calibration of the Sacramento soil-moisture accounting model, Water Resour. Res.,46, W09530, doi:10.1029/2010WR009224.
    [172]Saito, K., J. I. Ishida, K. Aranami, T. Hara, T. Segawa, M. Narita, and Y. Honda (2007), Nonhydrostatic atmospheric models and operational development at JMA, J. Meteor. Soc. Japan..85B,271-304, doi:10.2151/jmsj.85B.271.
    [173]Yamaguchi, M., R. Sakai, M. Kyoda, T. Komori, and T. Kadowaki (2009), Typhoon Ensemble Prediction System Developed at the Japan Meteorological Agency, Mon. Wea. Rev.,137,2592-2604, doi:10.1175/2009MWR2697.1.
    [174]Lorenz, E. N. (1969), The predictability of a flow which contains many scales of motion, Tellus,21,289-307, doi:10.1111/j.2153-3490.1969.tb00444.x.
    [175]Turner, M. R. J., J. P. Walker and P. R. Oke (2008), Ensemble member generation for sequential data assimilation, Remote Sens. Environ.,112,1421-1433, doi:10.1016/j.rse.2007.02.042.
    [176]Wang, F., L. Wang, T. Koike, H. Zhou, K. Yang, A. Wang, and W. Li (2011a), Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model, J. Geophys. Res.,116,D21108, doi:10.1029/2011JD015990.
    [177]Hersbach, H (2000), Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems, Wea. Forecasting,15,559-570, doi:http://dx.doi.org/10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.
    [178]Hamill, T. M. (2001), Interpretation of Rank Histograms for Verifying Ensemble Forecasts, Mon. Wea. Rev.,129,550-560, doi:http://dx.doi.Org/10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.
    [179]Candille, G., C. Cote, P. L. Houtekamer, and G. Pellerin (2007), Verification of an Ensemble Prediction System against Observations, Mon. Wea. Rev.,135(7),2688-2699.
    [180]Pappenberger, F., A. Ghelli, R. Buizza, and K. Bodis (2009), The skill of probabilistic precipitation forecasts under observational uncertainties within the Generalized Likelihood Uncertainty Estimation framework for hydrological applications,J. Hydrometeorol.,10 (3),794-806.
    [181]Lin, C., S. Vasic', A. Kilambi, B. Turner, and I. Zawadzki (2005), Precipitation forecast skill of numerical weather prediction models and radar nowcasts, Geophys. Res. Lett.,32, L14801,doi:10.1029/2005GL023451.
    [182]Chakraborty, A (2010), The Skill of ECMWF Medium-Range Forecasts during the Year of Tropical Convection 2008, Mon. Wea. Rev.,138,3787-3805, doi:10.1175/2010MWR3217.1.
    [183]Wang, F., L. Wang, H. Zhou, O. C. Saavedra Valeriano, T. Koike, and W. Li (2011b), Ensemble hydrological prediction based real-time optimization of multi-objective reservoir during flood season in a semiarid basin with global numerical weather predictions, Water Resour. Res., revision under review.
    [184]Dee, D. P., et al., (2011), The ERA-Interim reanalysis:configuration and performance of the data assimilation system,Q. J. Roy. Meteor. Soc.,137,553-597, doi:10.1002/qj.828.
    [185]Frogner, I.-L., and T. Iversen (2001), Targeted ensemble prediction for northern Europe and parts of the north Atlantic ocean, Tellus,53A(1),35-55, doi:10.1034/j.1600-0870.2001.01132.x.
    [186]Grimit, E. P., and Clifford F. M. (2007), Measuring the Ensemble Spread-Error Relationship with a Probabilistic Approach:Stochastic Ensemble Results, Mon. Wea. Rev.,135,203-221, doi:http://dx.doi.Org/10.1175/MWR3262.1.
    [187]Jackson, C. (1992), Hillslope infiltration and lateral downslope unsaturated flow, Water Resour. Res.,28(9),2533-2539, doi:10.1029/92WR00664.
    [188]Verdin, K. L., and J. P. Verdin (1999), A topological system for delineation and codification of the Earth's river basins, J. Hydrol.,218,1-12, doi:10.1016/S0022-1694(99)00011-6.
    [189]曹明亮,2011.基于多源信息分析人类活动对径流及洪水预报的影响.博士论文.大连理工大学
    [190]陈德辉,薛纪善.数值天气预报业务模式现状与展望[J].气象学报.2004(62):623-633.
    [191]段明铿,王盘兴.集合预报方法研究及应用进展综述[J].南京气象学院学报.2004(27):280-288.
    [192]王太微,陈德辉.数值预报发展的新方向-集合数值预报[J].气象研究与应用.2007(28):7-12,24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700