用户名: 密码: 验证码:
高羰基水溶性氧化淀粉及其衍生物的制备与应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非高碘酸氧化制备的氧化淀粉中羰基含量通常不高(<0.1);高碘酸氧化制备高羰基含量氧化淀粉时,氧化淀粉水溶性差,且淀粉分子链易剧烈降解。本文希望设计合成一种水溶性高羰基含量氧化淀粉,并避免淀粉剧烈降解。依据氧化淀粉结构特点,研究了其在金属离子去除和水凝胶制备方面的应用。
     本文首先设计采用次氯酸钠(NaCIO)/盐酸羟胺(NH2OH·HCl)/溴化钠(NaBr)催化氧化体系,一步制备了氧化淀粉,通过调节NaClO加入速度实现了产品的高羰基含量(DOco=0.40)、高分子量(Mw=5.67×106)和产品中羰基与羧基比例的调控(0.8:1-2.2:1)。研究了产品的溶解性和溶液性质。采用FT-IR和13C-NMR对产品结构进行了表征。
     利用氧化淀粉与氨基化合物的反应,设计合成了一系列氧化淀粉希夫碱。以氧化淀粉与氨基噻唑的反应为例,详细研究了反应条件对氨基噻唑取代度和氧化淀粉醛基利用率的影响。结果表明,氨基噻唑取代度可分别通过提高反应温度、延长反应时间、增加投料比来实现提高,实现了醛基利用率100%。采用UV、1H-NMR和13C-NMR对产品结构进行了表征。氧化淀粉与水合肼、乙二胺、对苯二胺、盐酸羟胺等氨基化合物反应均可实现氧化淀粉上醛基100%利用。
     通过调节氨基噻唑取代度制备了结构相似、溶解度不同的氧化淀粉希夫碱,并研究了这些希夫碱的水溶性对Cu2+吸附性能的影响,结果表明,水溶性好的希夫碱吸附效率高,可达到100%。本文合成的氨基噻唑取代度为14.4%的水溶性氧化淀粉希夫碱对Cu2+的吸附量(QCu2+)达到1.18mmol/g,高于相同条件下取代度为78%的双醛淀粉希夫碱对Cu2+的吸附量(0.92mmol/g)。本文设计合成的氧化淀粉-对苯二胺、水合肼、盐酸羟胺希夫碱对Cu2+、Ag+均有很好的吸附性能,特别是基于盐酸羟胺反应制备的希夫碱,不仅制备成本低,而且对Cu2+具有非常好的吸附效果(Q=3.00mmol/g)。
     本文设计合成了氧化淀粉-壳聚糖水凝胶,依据凝胶分数和溶胀度研究了该水凝胶的制备条件,并对该水凝胶的交联机理进行了研究。首次设计采用冻融法制备了氧化淀粉-羧甲基壳聚糖水凝胶,研究了此水凝胶的交联机理和溶胀性能。结果表明,此水凝胶是基于羰基与氨基反应生成希夫碱的化学交联作用和基于氢键产生的物理交联作用共同形成;此水凝胶在pH=7.4时具有快速响应能力(5min),而在pH=2时响应速度较慢(5h)。设计通过调节水凝胶干燥前的pH值或添加海藻酸钠实现了水凝胶溶胀度对pH的敏感性。
Oxidized starch prepared by common oxidants usually had a low carbonyl content (<0.1), except for periodate. Although oxidized starch with high carbonyl content could be prepared by periodate, the obtained product had poor water solubility. In addition, severe degradation of starch chains occured. In this study, a new type of water soluble oxidized starch with high carbonyl content was prepared, and severe degradation of starch chains was prevented. According to the structure characteristic of the oxidized starch, applications of it in the removal of heavy metal ions and preparation of hydrogel were studied.
     The oxidized starch was prepared using a one-step method with sodium hypochlorite (NaCIO)/hydroxylamine hydrochloride (NH2OH·HCl)/sodium bromide (NaBr) catalytic oxidation system. Furthermore, high carbonyl content (DOCO=0.40), high molecualr weight (Mw=5.67×106) and adjustable molar ratio of carbonyl to carboxyl groups from0.8:1to2.2:1could be achived by controlling the dropping speed of NaCIO. The water solubility and solution properties of the oxidized starch were studied. The structure of the oxidized starch was characterized by FT-IR and13C-NMR spectra.
     A series of Schiff bases based on the oxidized starch were synthesised by reacting with amino compounds. According to the reaction of oxidized starch and aminothiazole, effect of reaction conditions on the substitution degree of aminothiazole and utilization rate of aldehyde groups of oxidized starch were throughly studied. The obtained results showed that the substitution degree of aminothiazole could be improved by raising reaction temperature, extending reaction time or increasing molar ratio of amino group to carbonyl group. Therefore,100%utilization rate of aldehyde groups was achived. The structures of the Schiff bases were characterized by UV,1H-NMR and13C-NMR spectra. The100%utilization rate of aldehyde groups of the oxidized starch was also achieved in the reaction of oxidized starch with hydrazine hydrate, ethylenedimine, p-Phenylenediamine and hydroxylamine hydrochloride.
     Oxidized starch based schiff bases with similar structure and different solubilities were synthesised by adjusting the substitution degree of aminothiazole. The synthesised product was then used to study the effect of solubility of Schiff bases on the adsorption of Cu2+. The results showed that the Schiff bases with a better water solubility had a higher adsorption efficiency, up to100%. Oxidized starch based aminothiazole Schiff base with a degree of substitution of14.4%was synthesised. It had a high adsorption capacity (Q) of1.18mmol/g for Cu2+which was higher than that of dialdehyde starch based aminothiazole Schiff base with a degree of substitution of78%(Q=0.92mmol/g). Other Schiff bases such as oxidized starch based p-Phenylenediamine, hydrazine hydrate and hydroxylamine Schiff bases all had a good adsorption capacity for Cu2+and Ag+. Especially, the oxidized starch based hydroxylamine Schiff base not only had a very well adsorption capacity for Cu2+(Q=3.00mmol/g), but also had a low cost.
     Oxidized starch-crosslinked-chitosan hydrogels were synthesised. Effects of reaction conditions on the preparation of the hydrogels were investigated in detail based on the gelation fraction and swelling ratio. The crosslinking mechanism of the hyrogel was studied. Oxidized starch-crosslinked carboxylmethyl chitosan hydrogels were first synthesised by freezing-thawing process. The crosslinking mechanism and swelling properties of the hydrogel were studied. Results proved that the hydrogels were crosslinked by the combination of hydrogen bonding and Schiff base structure formed by the reaction of carbonyl groups and amino groups. It was also proved that this hydrogels had a fast response ability (5min) at pH7.4and a slower response ability (5h) at pH2. The pH-sensitive hydrogel could be prepared by adjusting the pH value of hydrogel before freeze drying or adding certain amount of sodium alginate.
引文
[1]. Roper H. Renewable raw materials in Europe-industrial utilisation of starch and sugar [J]. Starch-Starke,2002,54(3-4):89-99.
    [2]. Sanchez-Rivera M, Garcia-Suarez F, Velazquez del Valle M, et al. Partial characterization of banana starches oxidized by different levels of sodium hypochlorite[J]. Carbohydrate Polymers,2005, 62(1):50-56.
    [3]. Kaur B, Ariffin F, Bhat R, et al. Progress in starch modification in the last decade[J]. Food Hydrocolloids,2012,26(2):398-404.
    [4]. Kuakpetoon D, Wang YJ. Characterization of different starches oxidized by hypochlorite[J]. Starch-Starke,2001,53(5):211-218.
    [5]. Xiao H, Lin Q, Liu G-Q, et al. Physicochemical properties of chemically modified starches from different botanical origin[J]. Scientific Research and Essays,2011,6(21):4517-4525.
    [6]. Patel K, Mehta H, Srivastava H. Kinetics and mechanism of oxidation of starch with sodium hypochlorite[J]. Journal of Applied Polymer Science,1974,18(2):389-399.
    [7]. Sangseethong K, Lertphanich S, Sriroth K. Physicochemical properties of oxidized cassava starch prepared under various alkalinity levels[J]. Starch-Starke,2009,61(2):92-100.
    [8]. Dias ARG, Zavareze EdR, Elias MC, et al. Pasting, expansion and textural properties of fermented cassava starch oxidised with sodium hypochlorite[J]. Carbohydrate Polymers,2011,84(1):268-275.
    [9]. Wang Y-J, Wang L. Physicochemical properties of common and waxy corn starches oxidized by different levels of sodium hypochlorite[J]. Carbohydrate Polymers,2003,52(3):207-217.
    [10]. Kuakpetoon D, Wang YJ. Structural characteristics and physicochemical properties of oxidized corn starches varying in amylose content[J]. Carbohydrate Research,2006,341(11):1896-1915.
    [11]. Kuakpetoon D, Wang Y-J. Locations of hypochlorite oxidation in corn starches varying in amylose content[J]. Carbohydrate Research,2008,343(1):90-100.
    [12].Forssell P, Hamunen A, Autio K, et al. Hypochlorite oxidation of barley and potato starch[J]. Starch-Starke,1995,47(10):371-377.
    [13]. Sangseethong K, Termvejsayanon N, Sriroth K. Characterization of physicochemical properties of hypochlorite-and peroxide-oxidized cassava starches[J]. Carbohydrate Polymers,2010, 82(2):446-453.
    [14].Chong W, Uthumporn U, Karim A, et al. The influence of ultrasound on the degree of oxidation of hypochlorite-oxidized corn starch[J]. LWT-Food Science and Technology,2013,50(2):439-443.
    [15]. Dai Y, Dong H, Hou H, et al. Preparation of oxidized corn starch in a screw extruder under alkali-free conditions[J]. Starch-Starke,2012,64(5):374-381.
    [16]. Whistler RL, Linke EG, Kazeniac S. Action of alkaline hypochlorite on corn starch amylose and methyl 4-O-methyl-D-glucopyranosides[J]. Journal of The American Chemical Society,1956, 78(18):4704-4709.
    [17].Lucio Anelli P, Biffi C, Montanari F, et al. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions[J]. The Journal of Organic Chemistry,1987,52(12):2559-2562.
    [18].Anelli PL, Banfi S, Montanari F, et al. Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions[J]. The Journal of Organic Chemistry,1989, 54(12):2970-2972.
    [19]. Davis NJ, Flitsch SL. Selective oxidation of monosaccharide derivatives to uronic acids[J]. Tetrahedron Letters,1993,34(7):1181-1184.
    [20].Kato Y, Matsuo R, Isogai A. Oxidation process of water-soluble starch in TEMPO-mediated system[J]. Carbohydrate Polymers,2003,51(1):69-75.
    [21].De Nooy AE, Besemer AC, van Bekkum H. Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans[J]. Carbohydrate Research,1995,269(1):89-98.
    [22].Bragd PL, Besemer AC, Bekkum H. TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates[J]. Journal of Molecular Catalysis A:Chemical,2001,170(1):35-42.
    [23]. Chang P, Park K, Shin H, et al. Physicochemical properties of partially oxidized corn starch from bromide-free TEMPO-mediated reaction[J]. Journal of Food Science,2008,73(3):C173-C178.
    [24].Baucherel X. Method for oxidising carbohydrates:WO,95/07303[P].1995,03,16.
    [25].De Nooy A, Besemer A, Van Bekkum H, et al. TEMPO-mediated oxidation of pullulan and influence of ionic strength and linear charge density on the dimensions of the obtained polyelectrolyte chains[J]. Macromolecules,1996,29(20):6541-6547.
    [26].Bordenave N, Grelier Sp, Coma Vr. Advances on selective C-6 oxidation of chitosan by TEMPO[J]. Biomacromolecules,2008,9(9):2377-2382.
    [27].Fraschini C, Vignon MR. Selective oxidation of primary alcohol groups of β-cyclodextrin mediated by 2,2,6,6-tetramethylpiperidine-l-oxyl radical (TEMPO)[J]. Carbohydrate Research,2000, 328(4):585-589.
    [28].Saito T, Okita Y, Nge T, et al. TEMPO-mediated oxidation of native cellulose:Microscopic analysis of fibrous fractions in the oxidized products[J]. Carbohydrate Polymers,2006,65(4):435-440.
    [29].Tanaka R, Saito T, Isogai A. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO2 systems in water at pH 4.8 or 6.8[J]. International Journal of Biological Macromolecules,2012,51(3):228-234.
    [30]. Li L, Zhao S, Zhang J, et al. TEMPO-mediated oxidation of microcrystalline cellulose:Influence of temperature and oxidation procedure on yields of water-soluble products and crystal structures of water-insoluble residues[J]. Fibers and Polymers,2013,14(3):352-357.
    [31]. Jiang B, Drouet E, Milas M, et al. Study on TEMPO-mediated selective oxidation of hyaluronan and the effects of salt on the reaction kinetics[J]. Carbohydrate Research,2000,327(4):455-461.
    [32].Sierakowski M, Milas M, Desbrieres J, et al. Specific modifications of galactomannans[J]. Carbohydrate Polymers,2000,42(1):51-57.
    [33]. de Nooy AE, Rori V, Masci G, et al. Synthesis and preliminary characterisation of charged derivatives and hydrogels from scleroglucan[J]. Carbohydrate Research,2000,324(2):116-126.
    [34].Tamura N, Hirota M, Saito T, et al. Oxidation of curdlan and other polysaccharides by 4-acetamide-TEMPO/NaClO/NaClO2 under acid conditions[J]. Carbohydrate Polymers,2010, 81(3):592-598.
    [35].Bragd P, Van Bekkum H, Besemer A. TEMPO-mediated oxidation of polysaccharides:survey of methods and applications[J]. Topics in Catalysis,2004,27(1):49-66.
    [36].Bragd PL, Besemer AC, van Bekkum H. Selective oxidation of carbohydrates by 4-AcNH-TEMPO/peracid systems[J]. Carbohydrate Polymers,2002,49(4):397-406.
    [37].Thornton J, Besemer A, Schraven B. A recovery method:WO,020059064[P].2002,08,01.
    [38].Heeres A, Van Doren H. Method for recovering or recirculating stable nitroxide radicals:WO, 96/36621 [P].1996,11,21.
    [39].Bragd PL, Besemer AC, van Bekkum H. Bromide-free TEMPO-mediated oxidation of primary alcohol groups in starch and methyl a-D-glucopyranoside[J]. Carbohydrate Research,2000, 328(3):355-363.
    [40].Cimecioglu A, Thomaides JS. Polysaccharide aldehydes prepared by oxidation method and used as strength additives in papermaking:EP,1077221[P].2001,02,21.
    [41].ter Haar R, Timmermans JW, Slaghek TM, et al. TEMPO oxidation of gelatinized potato starch results in acid resistant blocks of glucuronic acid moieties[J]. Carbohydrate Polymers,2010, 81(4):830-838.
    [42].Arjan E. J. de Nooy, Arie C. Besemer, Bekkum Hv. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols[J]. Synthesis,1996(10):1153-1176.
    [43].Leininger S, Haas T, Bischoff D, et al. Process for the oxidation of starch:US,0300051726[P]. 2003,03,20.
    [44].陈彦逍,胡爱琳,王公应.催化氧化制备氧化淀粉[J].中国粮油学报,2005,20(4):25-28.
    [45].李芳良,麻昌爱,曾桂英.木薯淀粉催化氧化研究[J].化工文摘,2007,(6):29-31.
    [46].王春艳,钟耕,李大勇.双氧水氧化玉米淀粉的制备及其性质研究[J].粮食与饲料工业,2007,(8):26-27.
    [47].Zhang SD, Zhang YR, Wang XL, et al. High carbonyl content oxidized starch prepared by hydrogen peroxide and its thermoplastic application[J]. Starch-Starke,2009,61(11):646-655.
    [48]. Zhang Y-R, Zhang S-D, Wang X-L, et al. Effect of carbonyl content on the properties of thermoplastic oxidized starch[J]. Carbohydrate Polymers,2009,78(1):157-161.
    [49]. Zhang YR, Wang XL, Zhao GM, et al. Preparation and properties of oxidized starch with high degree of oxidation[J]. Carbohydrate Polymers,2012,87(4):2554-2562.
    [50].Parovuori P, Hamunen A, Forssell P, et al. Oxidation of potato starch by hydrogen peroxide[J]. Starch-Starke,1995,47(1):19-23.
    [51]. Lukasiewicz M, Bednarz S, Ptaszek A. Environmental friendly polysaccharide modification-microwave-assisted oxidation of starch[J]. Starch-Starke,2011,63(5):268-273.
    [52].Herrmann WA, Rost AM, Tosh E, et al. Super absorbers from renewable feedstock by catalytic oxidation[J]. Green Chemistry,2008,10(4):442-446.
    [53].Kachkarova-Sorokina SL, Gallezot P, Sorokin AB. A novel clean catalytic method for waste-free modification of polysaccharides by oxidation[J]. Chemical Communications,2004(24):2844-2845.
    [54]. Tolvanen P, Maki-Arvela P, Sorokin A, et al. Kinetics of starch oxidation using hydrogen peroxide as an environmentally friendly oxidant and an iron complex as a catalyst[J]. Chemical Engineering Journal,2009,154(1):52-59.
    [55].Tolvanen P, Sorokin A, Ma□ki-Arvela P, et al. Batch and semibatch partial oxidation of starch by hydrogen peroxide in the presence of an iron tetrasulfophthalocyanine catalyst:the effect of ultrasound and the catalyst addition policy[J]. Industrial and Engineering Chemistry Research,2011, 50(2):749-757.
    [56]. Harmon RE, Gupta S, Johnson J. Oxidation of starch by hydrogen peroxide in the presence of UV light-part. I[J]. Starch-Starke,1971,23(10):347-349.
    [57].Skibida IP, Sakharov AM, Sakharov AM. Process for the production of oxyacids from carbohydrates: EP,0548399[P].1993,06,30.
    [58].Conca E, Brussani G. A method of oxidising carbohydrates:WO,92018542[P].1992,10,29.
    [59].Achremowicz B, Gumul D, Bala-Piasek A, et al. Air oxidation of potato starch over Cu (Ⅱ) catalyst[J]. Carbohydrate Polymers,2000,42(1):45-50.
    [60].Bala-Piasek A, Tomasik P. Air oxidation of potato starch over vanadium (Ⅴ) catalyst[J]. Carbohydrate Polymers,1999,38(1):41-45.
    [61].Antioxidants FAAPB. Air oxidation of potato starch over zinc (Ⅱ) catalyst[J]. Food Science and Technology,2005,8(4):85-101.
    [62].Besemer A, Van B-vDL, Thiewes HJ. Process for oxidising primary hydroxyls in carbohydrates:EP, 1251140[P].2002,10,23.
    [63].王秋华,徐学纯,姜文勇等.新型水溶性深度氧化玉米淀粉的制备及氧化机理[J].吉林大学学报(理学版),2007,45(3):471-476.
    [64].Kesselmans R, Peter W, Bleeker I. Catalyst-free ozone oxidation of starch:WO,97035890[P]. 1997,10,02.
    [65].Kesselmans R, Peter W, Bleeker I. Method for oxidizing polysaccharides using ozone in the presence of a halogenide-containing catalyst:WO,97032903[P].1997,09,12.
    [66].Larsson M, Oskarsson J. Oxidation of starch:WO,01044304[P].2001,06,21.
    [67].Kesselmans R, Peter W, Bleeker I. Method for oxidizing dry starch using ozone:WO,97032902[P]. 1997,10,02.
    [68]. Chan HT, Bhat R, Karim AA. Physicochemical and functional properties of ozone-oxidized starch[J]. Journal of Agricultural and Food Chemistry,2009,57(13):5965-5970.
    [69].殷强锋:双醛淀粉Schiff碱衍生物的合成与应用[D].大连理工大学;2008.
    [70].Kochkar H, Morawietz M, Holderich W. Oxidation of potato starch with NO2:characterization of the carboxylic acid salts[J]. Applied Catalysis A:General,2001,210(1-2):325-328.
    [71].Tihl6rik K. Amino derivatives of starch part 1:Amination of amylose oxidized with nitrogen dioxide[J]. Starch-Starke,1993,45(12):450-452.
    [72].A1-Mehbad N. Improving paper properties[J]. Polymer-Plastics Technology and Engineering,2004, 43(3):963-979.
    [73].Vihervaara T, Luukkonen K, Niinivaara V. Additive for paper making:US,6398912[P].2002,06,04.
    [74].Luukkonen K. Additive composition for paper making:US,0100003760[P].2001,06,14.
    [75].Dournel P. Process for the manufacture of oxidized starch, oxidized starch and its use:WO, 100139727[P].2010,12,09.
    [76]. Slaghek TM. Biopolymer-based binders:EP,1529820[P].2005,05,11.
    [77]. Li J, Vasanthan T. Hypochlorite oxidation of field pea starch and its suitability for noodle making using an extrusion cooker[J]. Food Research International,2003,36(4):381-386.
    [78]. Stevens CL, Stevens JF. Coated cereal pieces:US,0500079248[P].2005,04,14.
    [79].Kesselmans RPW, Ter Veer BCA, Brouwer PH, et al. Oxidation of starch:US,6777548[P]. 2004,08,17.
    [80]. Serrero Al, Trombotto Sp, Bayon Y, et al. Polysaccharide-based adhesive for biomedical applications: correlation between rheological behavior and adhesion[J]. Biomacromolecules,2011, 12(5):1556-1566.
    [81]. Jetten JM, Van Den Dool RTM, Van Hartingsveldt W, et al. Process for selective oxidation of primary alcohols and novel carbohydrate aldehydes:WO,00050621[P].2000,08,31.
    [82].Fenn D, Schweitzer T. Pharmaceutical compositions containing carboxylated starch:US, 1300056678[P].2013,03,07.
    [83].Chauhan K, Chauhan GS, Ahn J-H. Novel polycarboxylated starch-based sorbents for Cu2+Ions[J]. Industrial and Engineering Chemistry Research,2010,49(6):2548-2556.
    [84].Le Roy DH. Method of oxidizing starch:US,3553193[P].1971,01,05.
    [85].Solarek DB, Jobe PG, Tessler MM. Polysaccharide derivatives containing aldehyde groups, their preparation from the corresponding acetals and use as paper additives:6586588[P].2003,07,01.
    [86]. Yin QF, Ju BZ, Zhang SF, et al. Preparation and characteristics of novel dialdehyde aminothiazole starch and its adsorption properties for Cu (Ⅱ) ions from aqueous solution[J]. Carbohydrate Polymers, 2008,72(2):326-333.
    [87].Mu C, Liu F, Cheng Q, et al. Collagen cryogel cross-linked by dialdehyde starch[J]. Macromolecular Materials and Engineering,2010,295(2):100-107.
    [88].Kanth S, Madhan B, Rao J, et al. Studies on the stabilization of collagen using dialdehyde starch:Part I. Effect of autoclaving on dialdehyde starch[J]. The Journal of the American Leather Chemists Association,2006,101(12):444-453.
    [89]. Song L, Sang Y, Cai L, et al. The effect of cooking on the antibacterial activity of the dialdehyde starch suspensions[J]. Starch-Starke,2010,62(9):458-466.
    [90].Luo Z, Fu X. Immobilization of urease on dialdehyde porous starch[J]. Starch-Starke,2010, 62(12):652-657.
    [91]. Lu W, Shen Y, Xie A, et al. Preparation and protein immobilization of magnetic dialdehyde starch nanoparticles[J]. The Journal of Physical Chemistry B,2013,117(14):3720-3725.
    [92]. Zhang SD, Wang XL, Zhang YR, et al. Preparation of a new dialdehyde starch derivative and investigation of its thermoplastic properties[J]. Journal of Polymer Research,2010,17(3):439-446.
    [93]. Yu J, Chang PR, Ma X. The preparation and properties of dialdehyde starch and thermoplastic dialdehyde starch[J]. Carbohydrate Polymers,2010,79(2):296-300.
    [94]. Zhang SD, Zhang YR, Zhu J, et al. Modified corn starches with improved comprehensive properties for preparing thermoplastics[J]. Starch-Starke,2007,59(6):258-268.
    [95]. Yu DM, Xiao SY, Tong CY, et al. Dialdehyde starch nanoparticles:Preparation and application in drug carrier[J]. Chinese Science Bulletin,2007,52(21):2913-2918.
    [96]. Yang D, Gao L, Zhao W. Synthesis, characterization and catalytic activity of dialdehyde starch-schiff base Co (Ⅱ) complex in the oxidation of cyclohexane[J]. Catalysis Letters,2008,126(1-2):84-88.
    [97]. Huang L, Xiao C, Chen B. A novel starch-based adsorbent for removing toxic Hg(Ⅱ) and Pb(Ⅱ) ions from aqueous solution[J]. Journal of Hazardous Materials,2011,192(2):832-836.
    [98].Aroua MK, Zuki FM, Sulaiman NM. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration[J]. Journal of Hazardous Materials,2007,147(3):752-758.
    [99].Gadd GM. Biosorption:critical review of scientific rationale, environmental importance and significance for pollution treatment[J]. Journal of Chemical Technology and Biotechnology,2009, 84(1):13-28.
    [100]. Nurchi VM, Villaescusa I. Sorption of toxic metal ions by solid sorbents:A predictive speciation approach based on complex formation constants in aqueous solution[J]. Coordination Chemistry Reviews,2012,256(1):212-221.
    [101]. Volesky B. Biosorption and me[J]. Water Research,2007,41(18):4017-4029.
    [102]. Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia M, et al. Bioadsorption of Pb (Ⅱ), Cd (Ⅱ), and Cr (VI) on activated carbon from aqueous solutions[J]. Carbon,2003,41(2):323-330.
    [103]. Bosso S, Enzweiler J. Evaluation of heavy metal removal from aqueous solution onto scolecite[J]. Water Research,2002,36(19):4795-4800.
    [104]. Bhattacharyya KG, Gupta SS. Removal of Cu (Ⅱ) by natural and acid-activated clays:An insight of adsorption isotherm, kinetic and thermodynamics[J]. Desalination,2011,272(1):66-75.
    [105]. Niu L, Deng S, Yu G, et al. Efficient removal of Cu (Ⅱ), Pb (Ⅱ), Cr (Ⅵ) and As (Ⅴ) from aqueous solution using an animated resin prepared by surface-initiated atom transfer radical polymerization[J]. Chemical Engineering Journal,2010,165(3):751-757.
    [106]. Hua M, Zhang S, Pan B, et al. Heavy metal removal from water/wastewater by nanosized metal oxides:A review[J]. Journal of Hazardous Materials,2012,211:317-331.
    [107]. Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment[J]. Progress in Polymer Science,2005,30(1):38-70.
    [108]. Varma A, Deshpande S, Kennedy J. Metal complexation by chitosan and its derivatives:a review[J]. Carbohydrate Polymers,2004,55(1):77-93.
    [109]. Kweon D-K, Choi J-K, Kim E-K, et al. Adsorption of divalent metal ions by succinylated and oxidized corn starches[J]. Carbohydrate Polymers,2001,46(2):171-177.
    [110]. Chauhan GS, Jaswal SC, Verma M. Post functionalization of carboxymethylated starch and acrylonitrile based networks through amidoximation for use as ion sorbents[J]. Carbohydrate Polymers,2006,66(4):435-443.
    [111]. Chang Q, Hao X, Duan L. Synthesis of crosslinked starch-graft-polyacrylamide-co-sodium xanthate and its performances in wastewater treatment[J]. Journal of Hazardous Materials,2008, 159(2):548-553.
    [112]. Xu S-M, Wei J, Feng S, et al. A study in the adsorption behaviors of Cr (Ⅵ) on crosslinked cationic starches[J]. Journal of Polymer Research,2004,11(3):211-215.
    [113]. Xu SM, Feng S, Yue F, et al. Adsorption of Cu (Ⅱ) ions from an aqueous solution by crosslinked amphoteric starch[J]. Journal of Applied Polymer Science,2004,92(2):728-732.
    [114]. Chan WC, Wu JY. Dynamic adsorption behaviors between Cu2+ ion and water-insoluble amphoteric starch in aqueous solutions[J]. Journal of Applied Polymer Science,2001, 81(12):2849-2855.
    [115]. Xu S-M, Feng S, Peng G, et al. Removal of Pb (Ⅱ) by crosslinked amphoteric starch containing the carboxymethyl group[J]. Carbohydrate Polymers,2005,60(3):301-305.
    [116]. Liu J-t, Dong Z-P, Ding W, et al. Adsorption of Zn (Ⅱ) on dialdehyde m-phenylenediamine starch[J]. Water Science and Technology,2012,66(2):321-327.
    [117]. Para A. Complexation of metal ions with dioxime of dialdehyde starch[J]. Carbohydrate Polymers,2004,57(3):277-283.
    [118]. Dong A, Xie J, Wang W, et al. A novel method for amino starch preparation and its adsorption for Cu (Ⅱ) and Cr (Ⅵ)[J]. Journal of Hazardous Materials,2010,181(1):448-454.
    [119]. Ding W, Zhao P, Li R. Removal of Zn (Ⅱ) ions by dialdehyde 8-aminoquinoline starch from aqueous solution[J]. Carbohydrate Polymers,2011,83(2):802-807.
    [120]. Liu J-T, Zhang K-Y, Wang P, et al. Adsorption behavior of Cd (Ⅱ) from aqueous solution using dialdehyde 5-aminophenanthroline starch[J]. Separation Science and Technology,2013, 48(5):766-774.
    [121]. Para A, Karolczyk-Kostuch S, Fiedorowicz M. Dihydrazone of dialdehyde starch and its metal complexes[J]. Carbohydrate Polymers,2004,56(2):187-193.
    [122]. Zhao P, Jiang J, Zhang F-w, et al. Adsorption separation of Ni (Ⅱ) ions by dialdehyde o-phenylenediamine starch from aqueous solution[J]. Carbohydrate Polymers,2010,81(4):751-757.
    [123]. Kopecek J. Hydrogel biomaterials:a smart future?[J]. Biomaterials,2007,28(34):5185.
    [124]. Chen L, Du Y, Huang R. Novel pH, ion sensitive polyampholyte gels based on carboxymethyl chitosan and gelatin[J]. Polymer International,2003,52(1):56-61.
    [125]. Zhang H, Patel A, Gaharwar AK, et al. Hyperbranched Polyester Hydrogels with Controlled Drug Release and Cell Adhesion Properties[J]. Biomacromolecules,2013,14(5):1299-1310.
    [126]. Stammen JA, Williams S, Ku DN, et al. Mechanical properties of a novel PVA hydrogel in shear and unconfined compression[J]. Biomaterials,2001,22(8):799-806.
    [127]. Baskan T, Tuncaboylu DC, Okay O. Tough interpenetrating Pluronic F127/polyacrylic acid hydrogels[J]. Polymer,2013,54(12):2979-2987.
    [128]. Marchesan S, Qu Y, Waddington LJ, et al. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel[J]. Biomaterials,2013,34(14):3678-3687.
    [129]. Chen L-Y, Ou C-M, Chen W-Y, et al. Synthesis of photoluminescent Au NDs-PNIPAM hybrid microgel for the detection of Hg2+[J]. ACS Applied Materials and Interfaces,2013,5(10):4383-4388.
    [130]. Dai Z, Ngai T. Microgel particles:The structure-property relationships and their biomedical applications[J]. Journal of Polymer Science Part A:Polymer Chemistry,2013,51(14):2995-3003.
    [131]. Yu H, Lu J, Xiao C. Preparation and properties of novel hydrogels from oxidized konjac glucomannan cross-linked chitosan for in vitro drug delivery[J]. Macromolecular Bioscience,2007, 7(9-10):1100-1111.
    [132]. Li Z, Buerkle LE, Orseno MR, et al. Structure and gelation mechanism of tunable guanosine-based supramolecular hydrogels[J]. Langmuir,2010,26(12):10093-10101.
    [133]. Modrzejewska Z. Sorption mechanism of copper in chitosan hydrogel[J]. Reactive and Functional Polymers,2013,73(5):719-729.
    [134]. Serp D, Mueller M, Von Stockar U, et al. Low-temperature electron microscopy for the study of polysaccharide ultrastructures in hydrogels. Ⅱ. Effect of temperature on the structure of Ca2+-alginate beads[J]. Biotechnology and Bioengineering,2002,79(3):253-259.
    [135]. Zhao Y, Liu W, Yang X, et al. The studies on the stimuli-response of poly (N, N-dimethylamino ethyl methacrylate/acrylic acid-co-acrylamide) complex hydrogel under DC electric field[J]. Journal of Applied Polymer Science,2008,110(4):2234-2242.
    [136]. Prado HJ, Matulewicz MC, Bonelli PR, et al. Preparation and characterization of a novel starch-based interpolyelectrolyte complex as matrix for controlled drug release[J]. Carbohydrate Research,2009,344(11):1325-1331.
    [137]. Xiao C, Yang M. Controlled preparation of physical cross-linked starch-g-PVA hydrogel[J]. Carbohydrate Polymers,2006,64(1):37-40.
    [138]. Hoare TR, Kohane DS. Hydrogels in drug delivery:Progress and challenges[J]. Polymer,2008, 49(8):1993-2007.
    [139]. Bae JW, Go DH, Park KD, et al. Thermosensitive chitosan as an injectable carrier for local drug delivery[J]. Macromolecular Research,2006,14(4):461-465.
    [140]. Tsuji H. Poly (lactide) stereocomplexes:formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience,2005,5(7):569-597.
    [141]. Bos GW, Jacobs JJ, Koten JW, et al. In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy [J]. European Journal of Pharmaceutical Sciences,2004, 21(4):561-567.
    [142]. Li J, Ni X, Leong KW. Injectable drug-delivery systems based on supramolecular hydrogels formed by poly (ethylene oxide) s and a-cyclodextrin[J]. Journal of Biomedical Materials Research Part A,2003,65(2):196-202.
    [143]. Choi HS, Kontani K, Huh KM, et al. Rapid induction of thermoreversible hydrogel formation based on poly (propylene glycol)-grafted dextran inclusion complexes[J]. Macromolecular Bioscience,2002,2(6):298-303.
    [144]. Kopecek J, Yang J. Hydrogels as smart biomaterials[J]. Polymer International,2007, 56(9):1078-1098.
    [145]. Lee KY, Bouhadir KH, Mooney DJ. Controlled degradation of hydrogels using multi-functional cross-linking molecules[J]. Biomaterials,2004,25(13):2461-2466.
    [146]. Crescenzi V, Francescangeli A, Capitani D, et al. Hyaluronan networking via Ugi's condensation using lysine as cross-linker diamine[J]. Carbohydrate Polymers,2003,53(3):311-316.
    [147].柯睛瑾,王飞镝,奚红霞等.EDTAD-PEG-dial-明胶复合改性凝胶的制备与性能研究[J].材料导报,2010,24(004):41-44.
    [148]. Butler MF, Ng YF, Pudney PD. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin[J]. Journal of Polymer Science Part A: Polymer Chemistry,2003,41(24):3941-3953.
    [149]. Chen S-C, Wu Y-C, Mi F-L, et al. A novel pH-sensitive hydrogel composed of N.O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery [J]. Journal of Controlled Release,2004,96(2):285-300.
    [150]. Schacht E, Bogdanov B, Bulcke AVD, et al. Hydrogels prepared by crosslinking of gelatin with dextran dialdehyde[J]. Reactive and Functional Polymers,1997,33(2):109-116.
    [151]. Balakrishnan B, Mohanty M, Umashankar P, et al. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin[J]. Biomaterials,2005,26(32):6335-6342.
    [152]. Liang Y, Liu W, Han B, et al. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium[J]. Colloids and Surfaces B:Biointerfaces,2011,82(1):1-7.
    [153]. Dawlee S, Sugandhi A, Balakrishnan B, et al. Oxidized chondroitin sulfate-cross-linked gelatin matrixes:a new class of hydrogels[J]. Biomacromolecules,2005,6(4):2040-2048.
    [154]. Chattopadhyay S, Singhal RS, Kulkarni PR. Optimisation of conditions of synthesis of oxidised starch from corn and amaranth for use in film-forming applications[J]. Carbohydrate Polymers,1997, 34(4):203-212.
    [155]. Smith R, Whistler R, Paschall E. Production and use of hypochlorite oxidized starches[M]. New York:Starch chemistry and technology academic press,1967:620-625.
    [156]. Cui D, Liu M, Zhang B, et al. Optimization of reaction conditions for potato starch sulphate and its chemical and structural characterization[J]. Starch-Starke,2011,63(6):354-363.
    [157]. Yan Q, Hou H, Guo P, et al. Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films[J]. Carbohydrate Polymers,2012,87(1):707-712.
    [158]. Gonzalez-Gutierrez J, Partal P, Garcia-Morales M, et al. Development of highly-transparent protein/starch-based bioplastics[J]. Bioresource Technology,2010,101(6):2007-2013.
    [159]. Lawal O, Lechner M, Kulicke W. The synthesis conditions, characterizations and thermal degradation studies of an etherified starch from an unconventional source[J]. Polymer Degradation and Stability,2008,93(8):1520-1528.
    [160]. Szurmai Z, Lipta k A. spectroscopy of 2-O- and 6-O-acetyl-3-O-a-L-rhamnopyranosyl-D-galactose, constituents of bacterial cell-wall polysaccharides[J]. Carbohydrate Research,1982,107(1):33-41.
    [161]. Garcia-Alles LF, Zahn A, Erni B. Sugar recognition by the glucose and mannose permeases of Escherichia coli. Steady-state kinetics and inhibition studies[J]. Biochemistry,2002, 41(31):10077-10086.
    [162]. Kittipongpatana OS, Sirithunyalug J, Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches[J]. Carbohydrate Polymers,2006,63(1):105-112.
    [163]. Wang K, Iliopoulos I, Audebert R. Viscometric behaviour of hydrophobically modified poly (sodium acrylate)[J]. Polymer Bulletin,1988,20(6):577-582.
    [164]. Kawakami K, Ihara T, Nishioka T, et al. Salt tolerance of an aqueous solution of a novel amphiphilic polysaccharide derivative[J]. Langmuir,2006,22(7):3337-3343.
    [165]. Zhang J, Wu D. Characteristics of the aqueous solution of carboxymethyl starch ether[J]. Journal of Applied Polymer Science,1992,46(2):369-374.
    [166]. Para A, Karolczyk-Kostuch S. Metal complexes of starch dialdehyde dithiosemicarbazone[J]. Carbohydrate Polymers,2002,50(2):151-158.
    [167]. Wang T, Song Y, Li B, et al. Chelating-ultrafiltration treatment of some heavy metal ions in aqueous solutions by crosslinking carboxymethyl modified corn starch[J]. Water, Air and Soil Pollution,2012,223(2):679-686.
    [168]. Zhou HY, Chen XG, Kong M, et al. Effect of molecular weight and degree of chitosan deacetylation on the preparation and characteristics of chitosan thermosensitive hydrogel as a delivery system[J]. Carbohydrate Polymers,2008,73(2):265-273.
    [169].贾之慎,李奇彪.双突跃电位滴定法测定壳聚糖脱乙酰度[J].化学世界,2001(05):240-241.
    [170]. Jiang X, Chen L, Zhong W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan[J]. Carbohydrate Polymers,2003,54(4):457-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700