用户名: 密码: 验证码:
混凝土碳化与硫酸盐腐蚀共同作用下混凝土耐久性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土耐久性研究是当今混凝土结构研究中的一个重要组成部分,而混凝土碳化与硫酸盐腐蚀均是混凝土耐久性研究的重要组成部分。碳化破坏混凝土的碱性环境,导致钢筋锈蚀,混凝土结构失效。硫酸盐腐蚀是一种化学腐蚀,它的主要产物为钙矾石、石膏以及近年来新发现一种腐蚀产物——碳硫硅钙石(TSA),前两种产物主要是导致混凝土开裂失效,后一种产物主要是破坏混凝土中的水化硅酸钙(C-S-H),使混凝土软化破坏。目前,对混凝土碳化的研究比较深刻全面,但是对混凝土部分碳化区的研究还不够深入。对混凝土硫酸盐腐蚀的研究也取得了不少成果,但是对硫酸根的扩散过程还缺乏的定量的分析,对各种产物的形成机理与条件的认识还不够明确。另外,以往的研究多是仅仅研究混凝土碳化或硫酸盐腐蚀,很少有人进行混凝土碳化与硫酸盐腐蚀共同作用下的研究,基于此本文主要做了以下几个方面的工作并取得系列成果:
     1:对同一试件分别使用彩虹指示剂与酚酞试剂两种试剂测量碳化深度,对比研究了不同水灰比不同湿度以及不同碳化龄期两种试剂测量的混凝土碳化深度的变化规律,最后,通过热重分析试验对两种试剂的测试结果进行验证。彩虹指示剂的测试结果显示混凝土部分碳化区很短,热重分析的结果与彩虹指示剂的测试结果相吻合。酚酞试剂测试的碳化深度偏小,水灰比越小,偏差越大。
     2:分别采用BP神经网络与RBF神经网络分内推与外推两种形式对彩虹指示剂的测试结果进行了分析与预测。发现BP网络的外推效果较好,而RBF网络的内推效果更优。3:分三种工况研究了四种浓度的腐蚀溶液(硫酸根浓度分别为:0,850mg/l,35000mg/l,73000mg/l)中混凝土碳化与硫酸盐腐蚀共同作用下混凝土的劣化机理,三种工况分别是硫酸盐单独腐蚀、先碳化再硫酸盐腐蚀以及碳化与硫酸盐腐蚀交替。测试的指标包括混凝土抗压强度、劈裂抗拉强度、质量变化以及不同腐蚀龄期混凝土中的硫酸根含量及相应的热重分析试验。经过一年的腐蚀发现,三种工况下的抗压、抗拉强度均远未达到破坏,也未出现明显的质量损失。硫酸根含量与热重分析的结果表明:硫酸盐单独腐蚀工况硫酸根的侵蚀深度较小,但硫酸根含量较大,除最大浓度溶液中试件首层的主要产物为石膏外,其余的主要腐蚀产物为钙矾石;先碳化再硫酸盐腐蚀工况硫酸根的腐蚀深度较大,但硫酸根含量较小,表层已碳化区的混凝土中硫酸根主要以游离态存在,到了腐蚀后期有碳硫硅钙石(TSA)生成,内部未碳化区的主要腐蚀产物为钙矾石;碳化与硫酸盐腐蚀交替工况,表层混凝土中的硫酸盐侵蚀产物有一个先形成后来又因碳化而分解的过程,其腐蚀过程较前两个工况更为复杂。
At present, the research of concrete durability is an important part of the research of concrete structures; both concrete carbonization and sulfate corrosion are important parts of the concrete durability. The alkaline circumstance of concrete is destroyed by carbonization, resulting in reinforce steel rusting and concrete structure lapsing up. Sulfate corrosion is a type of chemical corrosion, its mine products are ettringite(AFt),gypsum and thaumasite(TSA) which is a new discovering product, the front two kinds of product result in concrete structures crazing and lapsing up, and the mine function of thaumasite is to destroy C-S-H of concrete and to soften concrete. Now, the research to concrete carbonization is very profoundly and completely, but the research to half-carbonized zone isn’t enough. The research to sulfate corrosion has gotten lots of fruit, but it shorts of quantitative analysis to sulfate radical ion diffusion and it isn’t certain of mechanism of kinds of products’forming process and condition. In addition, the most front research is only on concrete carbonization or sulfate corrosion, but the research of concrete carbonization and sulfate corrosion combined action is very few to be done, Based on previous work, this paper has mainly done the following several tasks and made serial achievements:
     1: Both rainbow indicator and phenolphthalein indicator are used to test carbonation depth for all the same samples, three kinds of factors which are water to cement ratio relative humidity and carbonized age are considered, the comparison research of carbonation depth tested by the two indicators is done, at last, the result tested by the two indicators is demonstrated through the experimentation of thermal gravity analysis. The result tested by rainbow indicator indicates that the half-carbonized zone is very short, and the depth tested by rainbow indicator is uniform with the result of thermal gravity analysis. The carbonation depth tested by phenolphthalein indicator is shorter, and the difference is bigger with the decreasing of water to cement ration.
     2: The analysis and forecast were carried out for the carbonation depth tested by rainbow indicator by BP network and RBF network with the models of inside forecast and outside forecast. We find the effect of BP network’s outside forecast is better, and RBF network’s inside forecast is better.
     3: In this experimentation three solutions which are separate corrosion, corrosion after carbonating some depth and carbonation and corrosion alternate action under four kinds of sulfate liquor (the four kinds of liquor’s sulfate radical ion density are 0, 850mg/l, 35000mg/l, 73000mg/l) are consider, the concrete’s deteriorate mechanism of the three solutions is been researched. The targets tested in this experimentation are concrete samples’compressive and splitting-tensile strength, change of mass, sulfate radical ion content under the different corrosion age and its thermal gravity analysis. After one year corrosion, compressive strength and splitting-tensile strength don’t reach to destroy under three kinds of solution, and the obvious mass lose doesn’t appear. The result of sulfate radical ion content and thermal gravity analysis indicate: corrosion depth of sulfate radical ion under solution of separate corrosion is smaller than under solution of corrosion after carbonating some depth, but sulfate radical ion content is bigger, besides the 1st layer of samples’main product are gypsum under the biggest density liquor, the other’s main product is ettringite; Corrosive depth of sulfate radical ion under the solution of corrosion after carbonating some depth is bigger, but sulfate radical ion content is smaller, sulfate radical ion is presence as free form in the front layers concrete which have carbonated, thaumasite appears until late stage corrosion, and the mine product is ettringite in the inside concrete which doesn’t been carbonate; Under the solution of carbonation and sulfate corrosion alternate action, the sulfate corrosion products of surface layer concrete have a process which decompose for carbonation after form, and the process is more complex than the front two solutions.
引文
[1] 张誉,蒋利学,张伟平,屈文俊。混凝土结构耐久性概论[M].上海科学技术出版社,2003.
    [2] 杨利伟,王天稳.混凝土碳化的影响因素及其控制措施[J]。建筑技术开发,2005,(2):34~36.
    [3] A.M.Dunster.D.J.Bigland L.R.Hohon.Rates of carbonation and reinforce corrososion in high alumina cement concrete[J].Magazine of concrete Research,2002,52(6).
    [4] 刘亚芹,张誉等.表面覆盖层对混凝土碳化的影响与计算[J].工业建筑,1997,27(8).
    [5] 袁承斌等.混凝土在不同应力状态下的碳化[J].建筑结构,2004,(4).
    [6] 魏艳芳,王天稳.裂缝对混凝土结构耐久性的影响[J].建筑技术开发,2004,(6).
    [7] 黄可信,吴兴相等编译钢筋混凝土结构中钢筋腐蚀与保护[M].中国建筑工业出版社,1983.
    [8] Papadakis V G,Voyenas C G etal. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Moterials Journal,1991,88; 363~373.
    [9] 张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型[J] .工业建筑,1998,28(1):16~19.
    [10] 张仲先,张灵,张耀庭.基于 BP 网络的砼碳化深度预测与分析[J].华中理工大学学报,2000(10):97~99.
    [11] 程云虹,刘斌.基于 BP 网络的混凝土碳化研究[J].东北大学学报(自然科学版),2004(4):398~401.
    [12] 刘兴远,郭伟等.重庆地区混凝土构件碳化规律的神经网络描述[J].四川建筑科学研究,2004(12):55~58.
    [13] 张伟平.软土地层中钢筋混凝土排水管道结构的纵向变形及其耐久性研究[D].同济大学博士学位论文,2002.
    [14] 蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):4~8.
    [15] 蔡光汀.钢筋混凝土腐蚀机理和防腐措施探讨[J].混凝土,l992(1):18~24.
    [16] 赵翔.我国西南地区酸雨的特征、成因、危害及防治对策建议[J].四川工业学院学报,2004(4):63~65.
    [17] 于忠,胡蔚儒.化工大气环境中混凝土的腐蚀机理及性能研究[J].混凝土,2000(8):10~15.
    [18] 杨建森.混凝土中钙矾石作用的二重性及其发生条件[J].土木工程学报,2003(2):100~103.
    [19] 张丽.混凝土硫酸盐侵蚀机理及影响因素[J].东北公路,1998(4):40~44.
    [20] 亢景富. 混凝土硫酸盐侵蚀研究中的几个基本问题[J].混凝土,1995(3):9~19.
    [21] 申春妮,杨德斌,方祥位,张涛.混凝土硫酸盐侵蚀影响因素的探讨[J].水利与建筑工程学报,2004(2):16~19 .
    [22] 马保国,高小建,何忠茂,董荣珍.混凝土在 SO42-和 CO32-共同作用下的腐蚀破坏[J].硅酸盐学报,2004(10):1219~1223.
    [23] 席跃中,“近年来水泥化学新进展——记第九届国际水泥化学会议”[J].硅酸盐学报,1993(12).
    [24] 高礼雄,姚燕等.水泥混凝土抗硫酸盐侵蚀试验方法的探讨[J].混凝土,2004(10)12~17.
    [25] GB749-65,水泥抗硫酸盐侵蚀试验方法[S].
    [26] GB2420-80,水泥抗硫酸盐侵蚀快速试验方法[S].
    [27] ASTMC452—95,暴露于硫酸盐中波特兰水泥砂浆的潜在膨胀的测试方法[S].
    [28] ASTM C1012—95,暴露于硫酸盐溶液中的水硬性水泥砂浆的长度变化的标准测定方法[S].
    [29] 欧阳东.混凝土抗硫酸盐侵蚀试验的一种新方法[J].腐蚀与防护,2003(9):369~371.
    [30] 梁咏宁,袁迎曙.超声检测混凝土硫酸盐侵蚀的研究[J].混凝土,2004(8):15~17.
    [31] 蒋敏强,陈建康,杨鼎宜.硫酸盐侵蚀水泥砂浆动弹性模量的超声检测[J].硅酸盐学报 2005(1):126~132.
    [32] 胡明玉,唐明述.碳硫硅钙石型硫酸盐腐蚀研究综述[J].混凝土,2004(6):17~19.
    [33] N.J.Crammond. The thaumasite from of sulfate attack in the UK[J].Cement & Concrete Composites, 2003, 25:809~818.
    [34] P.Hagelia, R.G.Sibbick, etal. Thaumasite and secondary calcite in some Norwegian concretes[J]. Cement & Concrete Composites, 2003, 25:1131~1140.
    [35] E.Freyburg, A.M.Berninger.Field experiences in concrete deterioration by thaumasite formation: possibilities and problems in thaumasite analysis [J]. Cement & Concrete Composites,2003, 25:1105~1110.
    [36] R.G.Sibbick, N.J.Crammond, D.Metcalf.The microscopical characterization of thaumasite [J]. Cement & Concrete Composites, 2003, 25:831~837.
    [37] 胡明玉,唐明述. 碳硫硅钙石对混凝土的破坏作用[J].混凝土,2001(6):3~5.
    [38] Kleber, W. An Introduction to Crystallography[J]. 1st English Edition, p.169, VEB Verlag Technik, Berlin(1970).
    [39] D.D.Higgins, N.J.Crammond.Resistance of concrete containing gabs to the thaumasite form of sulfate attack[J]. Cement & Concrete Composites, 2003, 25:921~929.
    [40] G.J.Osborne. The sulfater esistance of Portlant and blastfurnace slag[J]. Cement concrete. In: M alhotraVM, editor.2 Cement Conference on the Durability of Concrete. ACI SP126, Montreal,1991.p.1047~71.
    [41] 高小建,马保国,周奇志.水泥混凝土TSA侵蚀研究进展[J].材料导报,2004(8):46~49.
    [42] 胡明玉, 唐明述,龙伏梅.新疆永安坝混凝土的碳硫硅钙石型硫酸盐腐蚀[J].混凝土2004(11): 5~7.
    [43] GBJ 82-85 普通混凝土长期性能和耐久性实验方法[S].
    [44] 李炜光,孙己龙,陈拴发.超早强修补水泥混凝土早强机理研究[J].公路交通科技,2004(6):31~34.
    [45] 游宝坤,席耀忠.钙矾石的物理化学性能与混凝土的耐久性[J].中国建材科技,2002(3):13~18.
    [46] 崔鹏飞.南水北调中线工程高性能混凝土抗碳化性能研究[M].河海大学硕士学位论文,2003.
    [47] 蒋利学,张誉等.混凝土碳化深度的计算与试验研究[J].混凝土,1996(4):12~17.
    [48] 史长城,霍洪媛,赵顺波.混凝土碳化深度的人工神经网络分析与预测[J].河南科学,2007(4):292~295.
    [49] 龚洛书,苏曼青,汪洪琳.混凝土多系数碳化方程及其应用[J].混凝土及加筋混凝土,1985(6):15~27.
    [50] 牛获涛,董振平,浦聿修.预测混凝土碳化深度的随机模型[J].工业建筑,1999,29(303):11~17.
    [51] 飞思科技产品研发中心编著.神经网络理论与 MATLAB7 实现[M].电子工业出版社,2005.
    [52] 温世臣.离心成型钢纤维混凝土力学及耐久性能试验研究[M].华北水利水电学院,硕士学位论文,2005.
    [53] JGJ 52-92.普通混凝土用砂质量标准及检验方法[S].
    [54] 游宝坤,陈富银等.UEA 水泥砂浆与混凝土长期性能的研究[J].硅酸盐学报,2000(8):314~324.
    [55] 李少华,王进伟,王启民,杨海瑞.应用硫化床培烧制备熟石膏的试验研究[J].锅炉技术,2006(5):64~67.
    [56] 潘群雄.煅烧石膏活性的试验研究[J].水泥工程,2001(1):12~14.
    [57] 布德尼科夫著.樊发家等译.石膏的研究与应用[M].北京:中国工业出版社.
    [58] 冯乃谦,邢锋 编著.高性能混凝土技术[M].原子能出版社,2000.
    [59] 刘秉京 编.混凝土技术[M].人民交通出版社,2004.
    [60] 柳俊哲.混凝土碳化研究与进展(3)——腐蚀因子的迁移[J].混凝土,2006(1):51~54.
    [61] 大连理工大学普通化学教研室编著(第四版).大学普通化学[M].大连理工大学出版社,2001.
    [62] 李晓克,史长城,赵顺波.Experimental Study on Measurement of Carbonation Depth of Concrete [J].武汉理工大学学报(材料学英文版),2007(待发表).
    [63] 邓德华,肖佳,元强等.水泥基材料的碳硫硅钙石型硫酸盐侵蚀(TSA)[J].建筑材料学报,2005(10):532~541.
    [64] 刘伟,邢锋,谢友均.水灰比、矿物混合料对混凝土孔隙率的影响[J].低温建筑技术,2006(1):9~11.
    [65] 涂成厚,林宗寿,陶海征.水泥石气泡的形成及其对强度的影响[J].水泥工程,2001(2):6~9.
    [66] 高小建,马保国,董荣珍.Thaumasite 的结构、形成机理及对混凝土的破坏作用[J].硅酸盐通报,2005(1):51~54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700