用户名: 密码: 验证码:
矿井预拌料混凝土微观结构和力学性能研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山井巷喷射混凝土的人工现场拌料施工,存在原材料计量不准确、混凝土质量差、粉尘浓度大等问题。针对这一现状,提出了预拌干料和预拌料混凝土技术。预拌干料是指将水泥、砂子和石子等混凝土原材料,按照设计配合比拌合均匀、干燥贮存的散装混合料。预拌料混凝土是在预拌干料中加入水和外加剂,硬化后形成的一种混凝土。预拌料混凝土具有准确的配合比、良好的混凝土质量、较低的粉尘浓度等诸多优点。但预拌干料中的砂子含有的极少量水,与水泥发生水化反应,劣化了原材料性能,对预拌料混凝土性能产生影响。
     结合教育部博士点基金优先发展领域课题“预拌喷射补偿收缩混凝土微观结构与力学特性研究”,采用理论分析、室内试验和现场试验相结合的方法,对砂子含水率分别为0%、0.5%、1.0%、1.5%、2.0%和贮存期分别为0d、3d、7d、10d、15d、20d、30d的预拌干料和预拌料混凝土的微观结构进行分析,揭示微观结构对预拌料混凝土抗压强度、孔隙率等的影响机理。主要研究结论如下。
     (1)预拌干料和预拌料混凝土的微观分析表明,砂子含水率越高、贮存期越长,预拌干料中失效的水泥量越多,原材料性能劣化越严重,混凝土微观结构越疏松。当预拌干料的砂子含水率在1.0%以下、贮存期在15d以内时,预拌干料的水化产物和微观结构变化较小、材料性能劣化程度低,预拌料混凝土的微观结构密实:当预拌干料的砂子含水率在1.5%以上时,贮存期的增加导致预拌干料中失效的水泥数量增多、材料性能劣化加剧。
     (2)预拌料混凝土抗压强度试验表明,预拌干料的砂子含水率小于1.0%、贮存期在15d以内时,水胶比为0.45的预拌料混凝土强度损失率不超过8.64%,抗压强度达到42.3MPa,满足要求;当砂子含水率增加到1.5%以上时,贮存期对预拌料混凝土强度的影响较大。结果表明,砂子含水率为1.0%的预拌干料有效贮存期为15d。
     (3)建立了不同砂子含水率和贮存期条件下的预拌料混凝土抗压强度与孔隙率之间的定量关系。预拌干料的砂子含水率越小、贮存期越短,预拌料混凝土孔隙数量越少、孔径越小、微观结构越密实,预拌料混凝土的抗压强度越高。随预拌干料贮存期延长,砂子含水率在1.0%以下时,预拌料混凝土孔隙率增加较慢,对混凝土的强度影响较小;而砂子含水率为1.5%和2.0%时,预拌料混凝土孔隙率增加相对较快,对混凝土的强度影响较大。
     (4)通过分析,得出预拌干料的砂子含水率和贮存期对预拌料混凝土强度的影响机理。预拌干料的砂子含水率和贮存期对预拌干料的水化程度产生影响,水化程度高时,预拌干料水化消耗的水泥量多,导致后期混凝土中水泥数量减少,同时,密实的预拌干料水化产物包裹部分水泥颗粒,阻止或延缓了这部分水泥在混凝土中继续水化;水化程度低时,预拌干料中的水化产物疏松,这些疏松的微观结构在混凝土中很难水化密实,成为预拌料混凝土的薄弱环节。预拌干料的水泥水化程度越高,失效水泥量越多,预拌干料性能劣化越严重,预拌料混凝土强度降低越多。
     (5)工程应用表明,预拌料喷射混凝土具有良好的力学性能、较好的变形性能、较小的回弹率和较低的粉尘浓度。
For the problems of artificial cast-in-situ shotcrete in coalmine roadway, such as inaccurate in raw material measurement, poor shotcrete quality, and large dust concentration, ready-mixed materials and ready-mixed concrete technology have been put forward to solve those problems. By mixing cement, sand and gravel uniformly in design proportion, the ready-mixed materials are formed and will be stored in some periods. When adding water and additives in ready-mixed materials, ready-mixed concrete is produced after hardening. Ready-mixed concrete gets many virtues, such as accurate mix proportion, good concrete quality, and low dust concentration. But the hydration reaction will occur between cement and a little moisture on sand in ready-mixed materials, which will deteriorate the performance of raw materials and affect the performance of ready-mixed concrete.
     Combining with the prior development project of doctoral fund of Ministry of Education, research on microstructure and mechanical characteristic of ready-mixed shrinkage-compensating shotcrete, the microstructure of ready-mixed materials and ready-mixed concrete are analyzed in moisture contents,0%,0.5%,1.0%,1.5%,2.0%, and storage periods,0d,3d,7d,10d,15d,20d,30d. Then the influence mechanism of microstructure on compressive strength and porosity of ready-mixed concrete is revealed. The main research contents and conclusions are shown as follows.
     (1) The microstructure analyses on ready-mixed materials and ready-mixed concrete show that larger sand moisture content and longer storage period lead to more amount of failure cement, more serious deterioration of raw materials, and more loosen microstructure of concrete. When sand moisture content is equal to or less than1.0%and storage period is within15d, there is little change of hydration production and microstructure in ready-mixed materials, therefore the degree of deterioration is low and the microstructure of ready-mixed concrete is dense. However, when sand moisture content is equal to or exceeds1.5%, the extending of storage period leads to the amount of failure cement increasing and the deterioration of raw materials intensifying.
     (2) The compressive strength tests of ready-mixed concrete show that when sand moisture content is equal to or less than1.0%and storage period is within15d, the strength loss rate of ready-mixed concrete with water-binder ratio of0.45is no more than8.64%and the compressive strength meets the requirements, reaching42.3MPa. When sand moisture content is equal to or exceeds1.5%, there is a big influence of sand moisture content on compressive strength. The results show that the valid storage period of ready-mixed materials in the condition of1.0%sand moisture content is15d.
     (3) The quantitative relation between compressive strength and porosity for ready-mixed concrete is established in various sand moisture contents and storage periods. Smaller sand moisture content and shorter storage period result in less pore number, smaller pore diameter, denser microstructure, and higher compressive strength of ready-mixed concrete. With storage period extending, the porosity increases slowly and shows little influence on concrete strength when sand moisture content is equal to or less than1.0%. While the porosity increases fast and presents large influence on concrete strength when sand moisture content is equal to1.5%or2.0%.
     (4) The influence mechanism of sand moisture content and storage period on compressive strength of ready-mixed concrete is obtained. The sand moisture content and storage period affect the hydration degree of ready-mixed materials. With high hydration degree, the hydration reaction consumes more cement leading to less cement in later concrete hardening, and some cement particles are packaged by dense hydration production which will stop or postpone the hydration reaction of cement. With low hydration degree, the hydration production of ready-mixed materials is loosen, and these loosen microstructures are much hard to hydrate densely which will become the weak parts of ready-mixed concrete. The higher the hydration degree, the more the amount of failure cement, the more serious the deterioration of ready-mixed materials, and the more the loss of concrete strength.
     (5) Engineering application indicates that ready-mixed shotcrete presents a better mechanical performance, better deformation performance, lower rebound rate and smaller dust concentration.
引文
[1]中华人民共和国统计局.年度数据[EB/OL]. http://data.stats.gov.cn/
    [2]Aitcin P C. Cements of yesterday and today-concrete of tomorrow[J]. Cement and Concrete Research,2000,30(9):1349-1359
    [3]Mehta P K, Monteiro P J M. Concrete, microstructure, properties, and materials (Fourth Edition)[M]. New York:McGraw-Hill,2013
    [4]Neville A M. Properties of concrete (Fourth Edition)[M]. London:Pearson Education Limited, 1995
    [5]程良奎,李象范.岩土锚固·土钉·喷射混凝土——原理、设计与应用[M].北京:中国建筑工业出版社,2008
    [6]美国土木工程师学会.地层支护中的喷射混凝土[M].北京:冶金工业出版社,1982
    [7]刘波,陶龙光.利用新型速凝剂改善喷射混凝土施工作业环境研究[J].中国安全科学学报,2000,10(6):71-75
    [8]Bonin K, Bezler J. Killing the bounce:polymer additives cut rebound losses and improve quality of sprayed concrete[J]. European Coatings Journal,2009, (12):102-105
    [9]赵华玮,代学灵,曾宪桃,等.磁化水降低喷射混凝土粉尘含量的试验研究[J].采矿与安全工程学报,2008,25(3):371-374
    [10]龚小兵,赵才华.混凝土喷射机降尘技术研究[J].矿业安全与环保,2013,40(4):4649
    [11]马利,许鹏.岩巷掘进快速湿式喷射混凝土支护技术[J].煤炭科学技术,2013,41(4):5-7,12
    [12]李伏虎,马芹永.HCSA膨胀剂对喷射混凝土微观结构的影响[J].矿冶工程,2012,40(4):5-7,12
    [13]赵晓晶,马芹永.钢纤维和膨胀剂复合效应对喷射混凝土弯曲韧性的影响分析[J].混凝土与水泥制品,2012,(2):45-48
    [14]申文萍,马芹永,李伏虎.粉煤灰膨胀剂对喷射混凝土力学性能影响试验[J].煤炭科学技术,2012,40(4):42-44,51
    [15]Leung C K Y, Lee A Y F, Lai R. New testing procedure for shrinkage cracking of fiber-reinforced shotcrete[J]. Journal of Materials in Civil Engineering,2007,19(3):214-218
    [16]Ansell A. Investigation of shrinkage cracking in shotcrete on tunnel drains[J]. Tunneling and Underground Space Technology,2010,25(5):607-613
    [17]Mostafa N Y, Brown P W. Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry[J]. Thermochimica Acta,2005, (2):162-167
    [18]吕鹏,翟建平,聂荣,等.环境扫描电镜用于硅酸盐水泥早期水化的研究[J].硅酸盐学报,2004,32(4):530-536
    [19]施惠生.水泥水化硬化过程中游离氧化钙的影响机制[J].水泥,1995,(9):6-9
    [20]严生,蔡安兰,周际东.C3S-C12A7-H2O和C3S-C12A7-CaSO4·2H2O-H2O系统的水化及其性能研究[J].硅酸盐学报,2003,31(2):199-204
    [21]李悦,张丽慧..低水胶比混合水泥的水化硬化特征[J].北京工业大学学报,2005,31(S1):40-44
    [22]仲晓林,孙跃生,仲朝明,等.纳米粘土材料对水泥混凝土作用机理的研究[J].混凝土,2006,(4):5-6
    [23]卢忠远,徐迅.纳米Si02对硅酸盐水泥水化特性的影响[J].建筑材料学报,2006,9(5):581-585
    [24]潘莉莎,邱学青,庞煜霞,等.减水剂对水泥水化行为的影响[J].硅酸盐学报,2007,35(10):1369-1375
    [25]万雪峰,马保国,李相国,等.添加剂对水泥性能与水化过程的影响[J].河南理工大学学报(自然科学版),2007,26(4):435-439
    [26]姜洪义,殷杰,张联盟.环保型GSF胶结料水化硬化机理研究[J].武汉工业大学学报,2000,22(6):5-7
    [27]冯竟竟,苗苗,阎培渝.补偿收缩复合胶凝材料的水化与膨胀性能[J].建筑材料学报,2012,15(4):4391445
    [28]马保国,欧志华,蹇守卫,等.HEMC对水泥浆早期水化产物形成历程的影响[J].建筑材料学报,2011,14(6):798-802
    [29]石明霞,谢友均,刘宝举.水泥-粉煤灰复合胶凝材料的水化性能研究[J].建筑材料学报,2002,5(2):114-119
    [30]林灼杰,尹健,李益进.水泥-粉煤灰复合胶凝材料水化特性研究[J].铁道科学与工程学报,2005,2(6):76-82
    [31]钱文勋,蔡跃波,张燕迟.高掺量粉煤灰水泥浆体长期水化碱环境的变化[J].建筑材料学报,2011,14(2):244-247,268
    [32]陆安群,邓敏,莫立武.粉煤灰水泥压实体早期水化和孔隙结构的演变[J].混凝土,2012,(11):24-27
    [33]杨代六,徐迅.磷渣对硅酸盐水泥水化硬化的影响研究[J].混凝土,2006,(12):46-48
    [34]徐迅,卢忠远,严云.磷渣粉对硅酸盐水泥水化特性的影响[J].材料导报,2008,22(S3):316-318
    [35]冯奇,王培铭.活化煤矸石对水泥水化的影响[J].材料研究学报,2006,20(2):191-196
    [36]胡曙光,何永佳.再生胶凝材料对水泥水化体系的影响[J].武汉理工大学学报,2006,28(10):4-7
    [37]张利娟.再生微粉-水泥复合胶凝材料的水化性能[J].混凝土与水泥制品,2013,(6):14-17
    [38]艾红梅,常钧,卢洪正,等.全组分废弃混凝土再生水泥熟料烧成及水化性能研究[J].大连理工大学学报,2013,53(3):410-416
    [39]张莹,史美伦.水泥基材料水化过程的交流阻抗研究[J].建筑材料学报,2000,3(2):109-112
    [40]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报,2004,32(1):34-38
    [41]魏小胜,肖莲珍,崔登国,等.早龄期混凝土的力学和电性能研究[J].武汉理工大学学报,2008,30(1):52-55
    [42]李春江,杨庆生.水泥水化过程的细观力学模型与性能演化[J].复合材料学报,2006,23(1):117-123
    [43]董学仁,程新,杨波,等.水泥水化和微结构的计算机模拟与仿真[J].硅酸盐学报,2000,28(S1):57-61
    [44]吴中伟.混凝土科学技术的反思——吴中伟教授在祝贺其七十寿辰时的学术报告[J].混凝土与水泥制品,1988,(6):4-6
    [45]Prokopski G, Halbiniak J. Interfacial transition zone in cementitious materials[J]. Cement and Concrete Research,2000,30(4):579-583
    [46]Diamond S, Huang J D. The ITZ in concrete-a different view based on image analysis and SEM observations[J]. Cement and Concrete Composites,2001,23 (2):179-188
    [47]陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述(一):实验技术[J].硅酸盐学报,2004,32(1):63-69
    [48]陈惠苏,孙伟,Stroeven P.水泥基复合材料集料与浆体界面研究综述(二):界面微观结构的形成、劣化机理及其影响因素[J].硅酸盐学报,2004,32(1):70-79
    [49]叶正茂,常钧,芦令超,等.硫铝酸盐水泥砂浆界面过渡区的改性[J].硅酸盐学报,2006,34(4):511-515
    [50]何小芳,缪昌文.界面过渡区对水泥基材料氯离子扩散性能的影响研究[J].东南大学学报(自然科学版),2009,39(S2):268-273
    [51]Leemann A, Munch B, Gasser P, et al. Influence of compaction on the interfacial transition zone and the permeability of concrete[J]. Cement and Concrete Research,2006, 36(8):1425-1433
    [52]杨久俊,董延玲,海然,等.骨料表面化学预处理对界面区的组分梯度分布和混凝土力学性能的影响(Ⅰ)[J].混凝土与水泥制品,2003,(6):1-5
    [53]水中和,潘智生,朱文琪,等.再生集料混凝土的微观结构特征[J].武汉理工大学学报,2003,25(12):99-102
    [54]龙涛,石宵爽,王清远,等.粉煤灰基地聚物再生混凝土的力学性能和微观结构[J].四川大学学报(工程科学版),2013,45(S1):43-47
    [55]周甲佳,潘金龙,梁坚凝,等.尺寸效应对水泥净浆与粗骨料界面黏结性能的影响[J].建筑材料学报,2012,15(5):712-716
    [56]杜修力,金浏.混凝土静态力学性能的细观力学方法述评[J].力学进展,2011,41(4):411-426
    [57]杜修力,金浏.考虑过渡区界面影响的混凝土宏观力学性质研究[J].工程力学,2012,29(12):72-79
    [58]Stroeven P. A stereological approach to roughness of fracture surfaces and tortuosity of transport paths in concrete[J]. Cement and Concrete Composites,2000,22(5):331-341
    [59]杜敏,杜修力,金浏.混凝土界面特性与力学性能的细观数值分析[J].土木建筑与环境工程,2012,34(S1):235-238
    [60]水中和,万惠文.老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅰ)—元素与化合物在ITZ的富集现象[J].武汉理工大学学报,2002,24(4):21-23,74
    [61]水中和,万惠文.老混凝土中骨料-水泥界面过渡区(ITZ)(Ⅱ)——元素在界面区的分布特征[J].武汉理工大学学报,2002,24(5):22-25
    [62]魏鸿,凌天清,卿明建,等.再生水泥混凝土界面过渡区的结构特性分析[J].重庆交通大学学报(自然科学版),2008,27(5):709-711,821
    [63]刘玲,王可良,郑灿堂.混凝土渗透结晶材料在水工喷射混凝土中的应用[J].混凝土与水泥制品,2011,(12):15-18
    [64]欧阳幼玲,陈迅捷,蔡跃波.不同骨料混凝土的界面结构特征及极限拉伸性能[J].建筑材料学报,2011,14(6):834-838
    [65]吴中伟,朱万成.膨胀混凝土[M].北京:中国铁道出版社,1990
    [66]Ngala V T, Page C L, Parrott L J, et al. Diffusion in cementitious materials:Ⅱ, further investigations of chloride and oxygen diffusion in well-cured OPC and OPC/30%PFA pastes[J]. Cement and Concrete Research,1995,25(4):819-826
    [67]刘军,田悦,刘智.低温条件下矿物掺合料对混凝土孔隙率的影响[J].沈阳建筑大学学报(自然科学版),2007,23(4):597-601
    [68]蒋正武,孙振平,王培铭.高性能混凝土自身相对湿度变化的研究[J].硅酸盐学报,2003,31(8):770-773,779
    [69]谢友均,马昆林,龙广成,等.矿物掺合料对混凝土中氯离子渗透性的影响[J].硅酸盐学报,2006,34(11):1345-1350
    [70]何智海,钱春香,刘运华,等.石灰石粉和粉煤灰对混凝土抗冻融性能的影响[J].沈阳工业大学学报,2011,33(5):576-581
    [71]高礼雄,孙国文,张云升,等.水泥基复合材料氯离子扩散系数与孔隙率之间的关系[J].重庆大学学报,2012,35(11):53-61
    [72]金浏,杜修力.孔隙率变化规律及其对混凝土变形过程的影响[J].工程力学,2013,30(6):183-190
    [73]贺行洋,苏英,曾三海,等.水泥石强度分析与孔隙率强度模型构造[J].武汉理大学学报,2009,31(14):19-22
    [74]陈应波,胡继洪,卢哲安.层布式混杂纤维混凝土渗透性及孔隙率试验研究[J].混凝土与水泥制品,2004,(4):34-36
    [75]周敏,李国忠.外加材料对水泥混凝土孔隙率的影响[J].中北大学学报(自然科学版),2009,30(4):395-400
    [76]张剑波,吴勇生,孙可伟,等.再生骨料混凝土孔隙结构的试验研究[J].硅酸盐通报,2011,30(1):239-244
    [77]谢新生,汤巍,王锦叶.多孔生态混凝土强度与孔隙率的试验研究[J].四川大学学报(工 程科学版),2008,40(6):19-23
    [78]时啸林,扈惠敏.隧道高性能多孔水泥混凝土孔隙率特性的试验研究[J].合肥工业大学学报(自然科学版),2012,35(5):662-668
    [79]Sujata K L, Jennings H M. Formation of a protective layer during the hydration of cement[J]. Journal of the American Ceramic Society,1992,75(6):1669-1673
    [80]Bensted J, Barnes P. Structure and performance of cement(Second Edition)[M]. London: Taylor & Francis,2002
    [81]崔宏志,邢锋.用SEM和FT-IR研究轻骨料混凝土界面过渡区[J].混凝土,2010,(1):18-20
    [82]刘贤萍,王培铭.硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J].硅酸盐学报,2008,36(1):105-112
    [83]唐明,黄知广.测度关系法评价水泥基材料孔隙SEM分形特征[J].沈阳建筑大学学报(自然科学版),2007,23(6):952-956
    [84]刘军,邢锋,董必钦,等.海砂型氯离子在混凝土中扩散的微观形貌分析[J].混凝土与水泥制品,2007,(6):15-17
    [85]吕建福,巴恒静.海洋浪溅区混凝土SEM及表面微生物16SrRNA鉴定[J].武汉理工大学学报,2009,31(2):28-32
    [86]刘义祥,胡建国,侯爽.不同温度下混凝土受热痕迹的扫描电子显微分析[J].火灾科学,2005,15(2):80-83,58
    [87]王娴明,姚勇,赵若鹏.SEM在混凝土结构耐久性评定中的应用[J].混凝土,1996,(1):5-12
    [88]中华人民共和国国家标准.锚杆喷射混凝土支护技术规范(GB 50086-2001)[S].
    [89]中华人民共和国行业标准.混凝土用水标准(JGJ 63-2006)[S].
    [90]陆平.水泥材料科学导论[M].上海:同济大学出版社,1991
    [91]林宗寿.水泥工艺学[M].武汉:武汉理工大学出版社,2012
    [92]申爱琴.水泥与水泥混凝土[M].北京:人民交通出版社,2000
    [93]沈晓东,姚燕.水泥材料研究进展[M].北京:高等教育出版社,2012
    [94]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社,2006
    [95]韩松,阎培渝,刘仍光.水泥早期水化产物的TEM研究[J].中国科学技术科学,2012,42(8):879-885
    [96]秦武,杜成斌,孙立国.基于数字图像技术的混凝土细观层次力学建模[J].水利学报,2011,42(4):431-439
    [97]Toth M, Thiel B L, Donald A M. Interpretation of secondary electron images obtained using a low vacuum SEM[J]. Ultramicroscopy,2003,94(2):71-87
    [98]张隐奇,王丽,卫斌,等ESEM在微注入条件下的湿环境研究及原位实验[J].电子显微学报,2008,27(1):38-42
    [99]侯贵华,李伟峰,郭伟,等.用扫描电镜的背散射电子像分析转炉钢渣中的矿物相[J].材料导报,2008,22(S2):208-211
    [100]马芹永.混凝土结构基本原理(第2版)[M].北京:机械工业出版社,2012
    [101]GB/T 50081-2002.普通混凝土力学性能试验方法标准[S].中华人民共和国国家标准
    [102]杜修力,金浏.考虑孔隙及微裂纹影响的混凝土宏观力学特性研究[J].工程力学,2012,29(8):101-107
    [103]骆冰冰,毕巧巍.混杂纤维自密实混凝土孔结构对抗压强度影响的试验研究[J].硅酸盐通报,2012,31(3):626-630
    [104]Powers T C. The properties of fresh concrete[J]. John Wiley and Sons Inc N Y.,1968, (5): 664-666
    [105]王勇威.超高强高性能混凝土的组成、结构及其收缩与补偿的研究[D].重庆:重庆大学,2001
    [106]吴中伟,廉慧珍.高性能混凝土[M].北京:中国铁道出版社,1999
    [107]Rakesh K, Bhattachacharjee B. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research,2003,33(1):155-164
    [108]Powers T C. Structure and physical properties of hardened Portland cement paste[J]. Journal of the American Ceramic Society,1958,41(1):1-6
    [109]Brandt A M. Cement based composites:materials, mechanical properties and performance[M]. London:E & FN Spon,1995
    [110]龙广成,谢友均,尹健,等.掺矿物掺合料结构混凝土性能与其孔隙率的关系研究[J].铁道科学与工程学报,2006,3(3):65-68
    [111]Diamond S. Mercury porosimetry:an inappropriate method for the measurement of pore size distributions in cement-based materials[J]. Cement and Concrete Research,2000,30(10): 1517-1525
    [112]刘振清,黄卫,蒋林华,等.大掺量低质粉煤灰混凝土抗侵蚀性能分析[J].煤炭学报,2002,27(6):609-614
    [113]薛顺勋.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002
    [114]杨胜强.粉尘防治理论及技术[M].徐州:中国矿业大学出版社,2007
    [115]刘建平.浅析煤矿粉尘危害及防治技术[J].能源与节能,2011,(4):37-39
    [116]马汉鹏,王德明.矿井粉尘防治技术探讨[J].洁净煤技术,2005,11(4):68-70
    [117]李卫东,王连富,刘道文,等.我国煤炭行业粉尘浓度监测技术的现状及发展趋势[J].矿业安全与环保,2005,32(S1):66-67
    [118]鹿德智,宋志方,杨海兵,等.煤矿粉尘监测与矿尘成分分析[J].中国安全生产科学技术,2008,4(1):34-37
    [119]孙珑.两相流体力学[M].北京:高等教育出版社,2004
    [120]方丁酉.两相流动力学[M].长沙:国防科技大学出版社,1988
    [121]赵文彬,谭允祯,韩广存,等.锚喷粉尘受力及产尘机理分析[J].工业安全与环保,2007,33(9):21-24
    [122]陈兴义,李保群.喷射混凝土工作面粉尘源分析及防治对策[J].煤炭工程师,1997,(4):32-35
    [123]孙一坚.工业通风[M].北京:中国建筑工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700