用户名: 密码: 验证码:
三峡库区紊流扩散模拟和基于GIS的水污染管理系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水环境管理是一个复杂的系统工程,它涉及包括污染源状况,污染物在水体中的迁移分布,城市分布、经济区划、流域状况、控制断面等在内的海量信息。且这些信息往往随时间改变,是一个动态过程。如何对此海量信息进行高效管理和分析,是当前水环境管理的重要课题之一,迫切需要高水平的管理信息系统作支持。对于自然水体中普遍存在的紊流流动及其中的污染物迁移扩散的模拟也是当前科学研究的一个热点。近年来出现的分形理论等非线性科学为解释和描述随机性很强的紊流现象提供了较好的理论基础。论文在国家“十五”科技攻关课题“三峡库区水环境安全关键技术研究与示范”(2004BA604A01)的资助下,将分形理论引入紊流水质模拟中,提出了分形紊流扩散模型,并与K-ε双方程水力模型相配合,完成了长江万州城区段的三维水力/水质模拟研究,对污染物在紊流流体中的扩散迁移规律进行了较深入的研究,实现了分形理论在紊流水质模拟中的成功应用,并完成了复杂边界条件自然河流中多个污染源复合污染带的三维模拟。同时,将GIS技术与水力/水质数学模型相结合,开发了基于GIS的三峡库区水污染(应急)管理信息系统,可以为三峡库区水环境科学管理提供先进的技术手段和决策支持。
     以VB为计算机程序开发语言,以ArcGIS Engine为GIS平台,实现了GIS、数学模型、数据库的全面集成,所开发的三峡库区水污染管理信息系统软件拥有自主知识产权。该系统具备了污染源动态管理、污水厂适时监控、水体水质查询及评价、流场和浓度场模拟等水环境管理和决策支持功能。同时,论文根据当前水环境管理的需要,在所开发的系统中强化了突发性污染事故应急管理功能,可自动统计出各种污染事故产生的污染带在不同时间的区位及影响范围,为突发性污染事故的应急管理提供了软件平台。
     开发了适合GIS系统的三峡库区一维(整个库区江段)、二维(主要城市江段)恒定流动态水质数学模型,能够同时模拟众多点污染源和面源污染产生的污染带和污染物的迁移扩散过程,满足水质模拟和污染事故预警对数学模型的要求。通过实际监测数据,验证了适合长江三峡库区水文条件的模型参数。
     通过系统对成库后库区一维总体水质的模拟分析,在沿江主要点污染源得到有效治理后,库区长江总体水质状况较成库前好,且水位越高,趋势越明显。从污染物单项指标的模拟结果来看,库区长江COD浓度高峰主要出现在主城至涪陵的城市密集区江段,这一区域是城镇生活污水和工业废水的主要来源。而NH3-N、TN、TP等营养性污染物指标的浓度高峰则主要出现主城至涪陵的城市密集区和万州之后至重庆出境的江段,且越靠近库首,浓度越高,说明在库首区域营养性污染物负荷相对较高,水土流失等面源污染是其主要的污染源。成库后,COD指标在整个库区均处于Ⅰ类或Ⅱ类水质标准;NH3-N指标在库区主要处于Ⅱ类水质指标,在主城区和库首则处于Ⅲ类水质指标;以2003年入境水质作为起始断面水质时,TN和TP指标以湖、库标准来衡量,TN指标浓度则将超标,总体处于Ⅳ类和Ⅴ类水质标准,TP指标也将超标处于Ⅲ类和Ⅳ类水质标准。
     从系统对库区干流主要城市江段二维模拟结果来看,在库尾的主城区江段,由于成库前后水文条件变化不大和受到水库回水影响,污染带略有扩大。在库中和库首的江段,在输入相同负荷的情况下,污染带有明显减小,特别是在175m水位下,污染带减小趋势最为明显。
     万州江段的三维水质模拟研究表明,在成库后水流速度显著减小,水体底层紊动掺混能力明显减弱,铅直方向上的水质分布不均匀性非常明显。万州城区江段岸边的表层水质较差,而中层和底层水质则相对较好。库区排污口附近的污染混合区将会由天然河道的狭长型向着短宽型发展。在输入相同污染负荷的情况下,长江表层污染物带的长度略微有所减小,但宽度却增加了一倍。
     论文以三峡库区长江为研究对象,开展了基于紊流理论的三峡库区典型河段三维水质模拟研究,同时开发了基于GIS的三峡库区水污染(应急)管理信息系统。其研究成果对提高水污染(应急)管理水平具有直接推动作用,对于紊流流动、紊流扩散等“无序”、非线性问题进行了探索性的研究,有着重要的理论意义和实用价值,对相似河流和地区的水污染管理和水质模拟研究也有重要的参考价值。
Water environment is a very complex system, which involves numerous information, such as pollution source, passive scalar transportation and disffusion in turbulence, watershed land-use, economic situation and the industrial distribution, monitoring sections, etc. The water environment is a dynamic process/system. So, how to make a high efficient management and analysis on the nemerous informations has become a hot research topic in the fields of water environment management. A hign quality Managemet Information System seems necessary. Turbulent flow and the pollutants disffusion are two very diffucult courses for the researchers to face, which have confused the world-wide researchers for a centry. This dissertation made an successful integration of GIS and Mathmatic Model-Base, and developed a GIS-based water pollution management and emergency reponse information system for Three Gorges Reservior Area(TGRA), Yangetze River, which delivered an adanced Spatial Decision Support System(SDSS). Fractal theory and analysis method were applied in turbulent water quality modelling. A fractal turbulence diffusion model was developed and uesed for the 3D water quality modelling in Wanzhou section of Yangetze River, with help of K-εtwo equation hydraulic model. The dynamics of the passive scarlar diffusion and transportation in turbulence was carefully studied. This Ph. D. thesis is one of the study outputs of the National Tenth-Five-Years Scientific and Techenical Research Project: Research and Demonstration on the Key techenologies for the Water Environmental Safty in Three Gorges Reservoir Area.
     A 3D K-εtwo-equation hydraulic model was applied for dynamics of the velocity in Wanzhou section of Yangetze River, Base on which the fractal turbulence diffusion model was developed and uesed for the 3D water quality modelling. A successful case of combination of fractal turbulent diffusion model and K-εhydraulic model has been showed, which is an innovation that fractal theory was applied to model compounded pollution area from multiple-sources in big and natural river system.
     In the development of the water pollution SDSS, Virtual Basic(VB) was selected as the software developing language, and ArcGIS Engine as GIS platform. A fully integration of GIS, Model Base, and Date Base was achieved, and consequently, a copyright-self-owned software was developed. The new software has several kinds of powerful functions for decision-making, including pollution source management, WWTP up-to-date monitoring, water quality query and assessment, velocity and quality modeling. The function of emergency response after the pollution accident happening was also enhanced in the software. The influent area from the pollution accident can be calculated and displayed out in time-serial.
     1D and 2D water quality models suitable for integration in GIS software have been developed. The compounded pollution area from multiple-sources can be simulated in big and complex situation river system through the developed models. The mathematical models have been validated by the existing monitoring data.
     According to the research result of 1D water quality simulation on the whole length of the Yangtze River in Chongqing area, the water quality of Yangtze River will be improved after finishing the construction work of the big dam with water level rising, if the main point-source pollution can be treated efficiently. The peak point of COD concentration will appear in the section between Chongqing main-town and Fuling city, which area has the high density of urban area, and is the main source district of domestic and industrial wastewater. While the peak sites of nutrient pollutants, such as NH3-N、TN、TP, will appear in the river section downstream to Wanzhou, where non-point source pollution, such as soil-erosion is heavy. After finishing the dam construction, COD concentration of TGRA will remain in ClassⅠorⅡ, NH3-N concentration will remain in ClassⅡorⅢ(the river section in Chongqing main town and near to the dam will remain in ClassⅢ). The concentration of TN and TP was predicted to exceed the desired water quality standard, and stay in ClassⅣorⅤ. The situation of TN is poorer than TP.
     According to the research results from 2D water quality simulation for the urban section of Yangtze River in TGRA, the near-bank water pollution belt in Chongqing main town will expand slightly, due to that the water level will not be influenced significantly; while in river sections near to dam or at the middle of the reservoir, the near-bank water pollution belt will minish obviously, especially when the water level is in 175m height.
     The 3D water quality simulation for Yangtze River in Wanzhou Urban area showed a very water quality gradient will appear in vertical direction of the Yangtze after the reservoir formed, and the turbulent mixing capacity will decrease at the bed of the river due to the low velocity. The surface water quality is relative poorer than the middle or bottom part. The near-bank pollution belt will be changed from narrow-and-long style to short-and-wide style. Through the model simulation, the width of the pollution belt will double, while the length will decrease slightly after the reservoir forming, comparing with the natural river situation with the same pollutant load.
     This dissertation selected TGRA as research area, and applied fractal theory into 3D turbulent diffusion in complex natual river,and developed a GIS-based software about water pollution management and emergency reponse. The research output is helpful to elevate the management level in the field of water pollution and emergcy response. The dissertation is a pioneer for the research on fractal application in the“nonregular”and“nonlinear”phenomenia like turbulent flow and turblent diffusion, which is meaningful to scientific research and actual use, aslo a good refernce for silimar revers or area.
引文
[1] B. A. Cox. A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. The Science of the Total Environment, 2003, 314–316: 335–377.
    [2] Jamieson DG, Fedra K. The‘WaterWare’decision-support system for river-basin planning. 2: Planning capability. J Hydrol 1996;177:177–198.
    [3] Bob Crabtree, Matt Hickman and Dave Martin, Integrated water quality and environmental cost-benefit modelling for the management of the river tame, Water Science and Technology, Volume 39, Issue 4, 1999, Pages 213-220.
    [4] Bowden K, Brown SR. Relating effluent control parameters to river quality objectives using a generalised catchment simulation model. Water Sci Technol 1984;16:197–205.
    [5] V. Keller, Risk assessment of bdown-the-drainQ chemicals:Search for a suitable model, Science of the Total Environment 360 (2006) 305– 318.
    [6] Joon-Hyuk Chang, Saeed Gazor, Nam Soo Kim and Sanjit K. Mitra, Multiple statistical models for soft decision in noisy speech enhancement, Pattern Recognition, Volume 40, Issue 3, March 2007, Pages 1123-1134.
    [7] S. Donadio, S. Guatelli, B. Mascialino, A. Pfeiffer, M. G. Pia, A. Ribon and P. Viarengo, A, Statistical Toolkit for Data Analysis, Nuclear Physics B - Proceedings Supplements, Volume 150, January 2006, Pages 50-53.
    [8] Brown LC, Barnwell, TO. The enhanced stream water quality models QUAL2E and QUAL2E-UNCAS: documentation and user manual. Athens, Georgia: US EPA; 1987. EPA/ 600/3-87/007.
    [9] Vivian Palmieri, Roberto Jos′e de Carvalho. Qual2e model for the Corumbata′? River, ecological modelling 1 9 8 ( 2 0 0 6 ) 269–275.
    [10] A. Azzellino, R. Salvetti, R. Vismara, L. Bonomo, Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source apportionment of point and non point loads of nutrients to surface waters, Science of the Total Environment 371 (2006) 214–222.
    [11] K. W. Migliaccio, I. Chaubey, B. E. Haggard, Evaluation of landscape and instream modeling to predict watershed nutrient yields, Environmental Modelling & Software xx (2006) 1e13 (ARTICLE IN PRESS).
    [12] Roberta Salvetti, Arianna Azzellino, Renato Vismara, Diffuse source apportionment of the Poriver eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach, Chemosphere xxx (2006) xxx–xxx(ARTICLE IN PRESS).
    [13] Ritu Paliwal, Prateek Sharma, Arun Kansal, Water quality modelling of the river Yamuna (India) using QUAL2E-UNCAS, Journal of Environmental Management ] ())))) ]]]–]]] (ARTICLE IN PRESS).
    [14] V. Keller, Risk assessment of“down-the-drain”chemicals: Search for a suitable model, Science of the Total Environment 360 (2006) 305– 318.
    [15] D. C. McAvoy et. al. , Risk assessment approach for untreated wastewater using the QUAL2E water quality model, Chemosphere 52 (2003) 55–66.
    [16] Seok Soon Park, Yong Seok Lee, A water quality modeling study of the Nakdong River, Korea, Ecological Modelling 152 (2002) 65–75.
    [17] S. K. Ning, et. al. Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan, Journal of Environmental Management (2001) 61, 61–76.
    [18] M. D. Yang, R. M. Sykes, C. J. Merry, Estimation of algal biological parameters using water quality modeling and SPOT satellite data, Ecological Modelling 125 (2000) 1–13.
    [19] Eatherall A, Boorman DB, Williams RJ, Kowe R. Modelling in-stream water quality in LOIS. Sci Total Environ 1998;210y211:499–517.
    [20] Oxford Scientific Software. HERMES: dynamic river flow and quality model with built in aggregated dead zone analysis. User Manual—version 1. 00 (DOS); 1992.
    [21] D. A. Post, A. E. Kinsey-Henderson, L. K. Stewart, C. H. Roth and J. Reghenzani, Optimising drainage from sugar cane fields using a one-dimensional flow routing model: a case study from Ripple Creek, North Queensland, Environmental Modelling & Software, Volume 18, Issues 8-9, October-November 2003, Pages 713-720.
    [22] Harry V. Wang, Billy H. Johnson. Validation and Application of the second generation three dimensional hydrodynamic model of Chesapeake Bay. Water Quality and Ecosystem Modeling, 1, 51-90, 2000.
    [23] Brian S. Caruso. Water quality simulation for planning restoration of a mined watershed. Water, Air, and Soil Pollution. 2003, 150:359-382.
    [24] R. W. H. Carroll et. al. Modeling erosion and overbank deposition during extreme flood conditions on the Carson River, Nevada. Journal of Hydrology 297 (2004) 1–21.
    [25] R. W. H. Carroll, J. J. Warwick. Uncertainty analysis of the Carson River mercury transport model, Ecological Modelling 137 (2001) 211–224.
    [26] Karl-Erich Lindenschmidt. The effect of complexity on parameter sensitivity and model uncertainty in river water quality modeling. Ecological Modelling 190 (2006) 72–86.
    [27] Lianyuan Zheng et. al. Development of water quality model in the Satilla River Estuary, Georgia. Ecological Modelling 178 (2004) 457–482.
    [28]陈冬云,谈广鸣,郑邦民, Monte2Carlo方法求解水动力学方程的原理及实践,水利水电科技进展, 2001, 21(3):24-25).
    [29] Karen Updegraff et. al. Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations. Biomass and Bioenergy 27 (2004) 411–428.
    [30]吴飞,彭泽洲,聂晶. Monte Carlo随机差分法在二维水动力弥散实验中的应用.工程勘察. 2004. 5:31-33.
    [31] Isukapalli, S. S. , Roy, A., Georgopoulos, P. G. , 2000. Efficient sensitivity/uncertainty analysis using the combined stochastic response surface method and automated differentiation: application to environmental and biological systems. Risk Analysis 20 (5), 591–602.
    [32] Isukapalli, S. S. , Georgopoulos, P. G. , 1999. Computational Methods for Efficient Sensitivity and Uncertainty Analysis of Models for Environmental and Biological Systems. CCL/EDMAS-03, Piscataway, NJ.
    [33] Suhrid Balakrishnan et. al. , A comparative assessment of efficient uncertainty analysis techniques for environmental fate and transport models: application to the FACT model, Journal of Hydrology 307 (2005) 204–218.
    [34] Kiri Srivastava et. al. Stochastic modeling of transient stream-aquifer interaction with the nonlinear Boussinesq equation. Journal of Hydrology (2006) 328:538-547.
    [35] G. M. Zeng?. A two-dimensional water-quality model for a winding and topographically complicated river. Journal of Environmental Management (2001) 61, 113–121.
    [36]曾光明等.平原区二维复杂河流水质模拟计算.环境科学学报. 2000, 20(5): 603-607.
    [37]赵棣华,戚晨,庾维德,徐葆华.平面二维水流-水质有限体积法及黎曼近似解模型.水科学进展. 2000, 11(4): 368-374.
    [38]赵棣华,李踶来,陆家驹.长江江苏段二维水流-水质模拟.水利学报. 2006. 6: 73-77.
    [39]江春波等.厂家三峡库区污染混合区的有限元模拟.清华大学学报(自然科学版). 2004, 44(6):808-811.
    [40]史栾生,黄平.河流污染带的随机模拟方法.人民珠江. 2002. 2: 46-49.
    [41]许其功等.三峡库区二维随机水质模拟预测研究.环境科学研究, 2004, 17(5):23-26.
    [42]申满斌,陈永灿,刘昭伟.岸边排放污染物浓度场三维浑水水质模型研究.水力发电学报. 2005, 24(3):93-98.
    [43] WILLIAM B. SAMUELS and RAKESH BAHADUR. AN INTEGRATED WATER QUALITY SECURITY SYSTEM FOR EMERGENCY RESPONSE. NATO Security through Science Series. Vol. 8 / 2006. pp. 99– 112.
    [44] W. F. Dabbert et. al. Advances in meteorological instrumentation for air quality and emergency response. Meteorol Atmos Phys. 2004, 87: 57-88.
    [45] Gilbert C. S. Luia et. al. . Modelling algal blooms using vector autoregressive modelwith exogenous variables and long memory . lter. ecological modelling x x x (2006) x x x–x x x(ARTICLE IN PRESS).
    [46]陈蓓青等.三峡水库突发性水污染事件应急系统的开发.人民长江, 2006, 37 (5):89-91.
    [47] D. Thirumalaivasan et. al. AHP- DRASTIC: Software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling & Software, 18(2003): 645-656.
    [48] I. Portoghese et. al. A GIS tool for hydrogeological water balance evaluation on a regional scale in semi-arid environments. Computers & Geosciences 31 (2005) 15–27.
    [49] Iain R. Lake et. al. Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. Journal of Environmental Management 68 (2003) 315–328.
    [50] B. Nordeidet et. al. Prioritising and planning of urban storm-water treatment in the Alna watercourse in Oslo. Science of Total Environment 334-335(2004):231-238.
    [51] S. Naouma, I. K. Tsanisb, M. Fullarton. A GIS pre-processor for pollutant transport modeling. Environmental Modelling & Software 20 (2005) 55-68.
    [52] W. Al-Sabhan, M. Mulligan, G. A. Blackburn. A real-time hydrological model for flood prediction using GIS and the WWW. Computers, Environment and Urban Systems, 27 (2003) 9–32.
    [53] David Pullar, Darren Springer. Towards integrating GIS and catchment models. Environmental Modelling & Software 15 (2000) 451–459.
    [54] G. S. Boggs et. al. Assessing catchment-wide mining-related impacts on sediment movement in the Swift Creek catchment, Northern Territory, Australia, using GIS and landform- evolution modeling techniques. Journal of Environmental Management (2000) 59, 321–334.
    [55] Christopher Cox, Chandra Madramootoo. Application of geographic information systems in watershed management planning in St. Lucia. Computers and Electronics in Agriculture 20 (1998) 229–250.
    [56] Chansheng He. Integration of geographic information systems and simulation model for watershed management. Environmental Modelling & Software 18 (2003) 809–813.
    [57] L. F. Leo′n et. al. Integration of a nonpoint source pollution model with a decision support system. Environmental Modelling & Software 15 (2000) 249–255.
    [58] I. K. Tsanis and S. Boyle. A 2D hydrodynamic/pollutant transport GIS model. Advancing in Engineering Software, 32(2001):353-361.
    [59] Bo Huang, Bin Jiang. AVTOP: a full integration of TOPMODEL into GIS. Environmental Modelling & Software 17 (2002) 261–268.
    [60] M. Hartnett. , S. Nash. Modelling nutrient and chlorophyll a dynamics in an Irish brackish waterbody. Environmental Modelling & Software 19 (2004) 47–56.
    [61] J. L. S. Pinho, J. M. Pereira Vieira, J. S. Antunes do Carmo. Hydroinformatic environment for coastal waters hydrodynamics and water quality modeling. Advances in Engineering Software 35 (2004) 205–222.
    [62] A. Scotti1, C. Meneveau. A fractal model for large eddy simulation of turbulent flow. Physica D 127 (1999) 198–232.
    [63] Alberto Scotti1and Charles Meneveau. Fractal Model for Coarse-Grained Nonlinear Partial Differential Equations. Physical Review Letters, 1997, 78(5):867-870.
    [64] Alberto Scotti1and Charles Meneveau. Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence. Physical Review E, 1995, 51(6): 5594- 5608.
    [65] Charles R. Doering, Xiaoming Wang. Attractor dimension estimates for two-dimensional shear flows, Physica D 123(1998):206-222.
    [66] Ali Naghi Ziaei, Ali Reza Keshavarzi, Emdad Homayoun. Fractal scaling and simulation of velocity components and turbulent shear stress in open channel flow. Chaos, Solitons and Fractals 24 (2005) 1031–1045.
    [67]陈彦光,刘继生.水系结构的分析和分维——Horton水系定律的模型重建及其参数分析.地球科学进展. 2001, 16(2):178-183.
    [68]冯平,冯焱.河流形态特征的分维计算方法.地球学报. 1997, 52(4):324-330.
    [69]朱嘉伟等.黄河下游河道地貌分形分维特征研究.测绘学报. 2005, 30(5):28-30.
    [70]彭杨张红武张羽,长江重庆河段平面二维非恒定水沙数值模拟,水力水电学报, 2005, 24(1):47-52.
    [71] J. Smagorinsky. General circulation experiments with the primitive equation. I. The basic experiment, Mon. weather Rev. 91(1963)99.
    [72] J. W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41(1970)453.
    [73] J. R. Herring, Subgrid scale modeling- an introduction and overview, in: F. Durst, B. E.Launder, F. W. Schmidt, J. H. Whitelaw (Eds. ), Turbulent shear flows I, Springer, Berlin, 1979.
    [74] M. Lesieur, O. Metais, New trends in large eddy simulations of turbulence, Annu. Rev. Fluid. Mech. 28(1996) 45-82.
    [75] P. J. Mason, Large-eddy simulation: A critical review of technique, Q. J. R. Meteorol. Soc. 120 (1994)1-26.
    [76] U. Piomelli, S. Ragab (Eds. ), Engineering applications of large eddy simulations, ASME-FED 162(1993).
    [77] Gesar Aguirre, Armando B. Brizuela, Ivana Vinkovic, Serge Simoens. A subgrid lagrangian stochastic model for turbulent passive and reactive scalar dispersion. International journal of Heat and fluid flow, 27(2006): 627-635.
    [78] A. Kempf, F. Flemming, J. janicka. Investigation of lengthscales, scalar dissipation, and flame orientation in a pilote diffusion flame by LES. Proceedings of the combustion institute, 30 (2005): 557-565.
    [79] Lei Wang, Xi-Yun Lu. An investigation of turbulent oscillatory heat transfer in channel flows by large eddy simulation. International journal of heat and mass transfer. 47(2004): 2161- 2172.
    [80] Yu-Hong Dong, Xi-Yun Lu, Li-Xian Zhuang. Large eddy simulation of turbulent channel flow with mass transfer at high-schmidt numbers. International journal of heat and mass transfer 46(2003) 1529-1539.
    [81] D. K. Lilly, On the application of the eddy viscosity concept in the inertial sub-range of turbulence, NCAR manuscript 123(1996).
    [82] J. Bardina, J. H. Ferziger, W. C. Reynolds, Improved subgrid scale models for large eddy simulation, AIAA paper (1980) 80-1357.
    [83] S. Liu, C. Menevean, J. Katz, On the properties of similarity subgrid-scale models as deduced from.
    [84] A. N. Kolmogorov, C. R. Acad. Sci. U. S. S. R. 30, 301(1941).
    [85] A. Monin and A. Yaglom, Statistical Fluid Mechannics (MIT Press, Cambridge, MA, 1975).
    [86]刘式达刘式适编著,孤波和湍流,上海科技出版社1995: 10-12.
    [87] S. Orey, Z. Wahrscheinlichkeitstheorie. Verw. Geb. 15, 249(1970).
    [88] Frish V, Sulem PL. A simple dynamical model of intermittent fully developed turbulence[J]. J Fluid Mech. , 1978, 87: 719-736.
    [89] Castaing B, Gagne Y. Hopfinger E J. Velocity probability density functions of high reyonods number turbulence[J]. Physical D, 1990, 46:177-200.
    [90]肖勇,金忠青.紊流涡旋自相似性及标度不变性研究的进展.水利水电科技进展. 2001, 21(6):11-13.
    [91]王玲玲金忠青.分形理论及其在紊流研究中的应用.河海大学学报. 1997, 25(1).
    [92] Mazda A. Marvasti, Warren C. Strahle. Fractal geometry analysis of turbulent data. Signal Processing 41(1995):191-201.
    [93] H. Tennekes, J. L. Lumley, A first course in turbulence, MIT Press, Cambridge, MA, 1972.
    [94] L. M. Smith, S. L. Woodruff, Renormalization-group analysis of turbulence, in: Annual Review of Fluid Mechanics, Annu. Rev, Fluid Mech. , Vol. 30, Annual Reviews, Palo Alto, CA, 1998, pp: 275-310.
    [95] Yigang Cao and W. K. Chow, Recursive renormalization-group calculation for the eddy viscosity and thermal eddy diffusivity of incompressible turbulence, Physica A: Statistical Mechanics and its Applications, Volume 339, Issues 3-4, 15 August 2004, Pages 320-338.
    [96] Jae-Jin Kim and Jong-Jin Baik, A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG k– turbulence model, Atmospheric Environment, Volume 38, Issue 19, June 2004, Pages 3039-3048.
    [97] G. Th. Analytis, Implementation of the renormalization group (RNG) k– turbulence model in GOTHIC/6. lb: solution methods and assessment, Annals of Nuclear Energy, Volume 30, Issue 3, February 2003, Pages 349-387.
    [98]翟俊,水污染控制规划地理信息系统模型库研究,重庆大学硕士学位论文, 2001.
    [99] Alessandra Jannelli, Riccardo Fazio, Davide Ambrosi, A 3D mathematical model for the prediction of mucilage dynamics, Computers & Fluids, 2003, 32:47-57.
    [100]赖锡军,曲卓杰,周杰等,非结构网格上的三维浅水流动数值模型,水科学进展, 2006. 9, 17(5): 693-699.
    [101]刘桦,柯友声,河口三维数学模型研究进展,海洋工程, 2000. 5, 18(2): 87-92.
    [102] Thompson, J. F. , 1980. Numerical solution of flowproblem using body-fitted coordinate system. In: Kollmann, W. (Ed. ), Computational Fluid Dynamics. Hemisphere, Washington, DC, pp. 1–98.
    [103] Thompson, J. F. , Thames, F. C. , Mastin, C. W. , 1974. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary twodimensional bodies. J. Comput. Phys. 15, 299–319.
    [104] Binxin Wu, Kifle G. Gebremedhin, Numerical simulation of flowfield around a cowusing 3-D body-fitted coordinate system, Journal of Thermal Biology 26 (2001) 563–573
    [105] Takanori Uchida, Yuji Ohya, Numerical simulation of atmospheric flow over complex terrain, Journal of Wind Engineering and Industrial Aerodynamics 81 (1999) 283-293.
    [106] Renwei Mei and Wei Shyy, On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates, JOURNAL OF COMPUTATIONAL pHYSICS 143, 426–448 (1998).
    [107] Haoxiang Luo, Thomas R. Bewley, On the contravariant form of the Navier–Stokes equations in time-dependent curvilinear coordinate systems, Journal of Computational Physics 199 (2004) 355–375.
    [108]魏文礼,张宗孝,刘玉玲等,采用Poisson方程生成曲线网格时源项P、Q选择的研究,应用力学学报, 2000. 9, 17(3): 87-90.
    [109]魏文礼,王德意,刘玉玲,正交曲线网格生成技术的一点改进,武汉水利电力大学学报, 2000. 4, 33(2): 40-42.
    [110]魏文礼,李建中,张宗孝等,泄水建筑物曲面边壁三维定常紊流数值模拟,应用力学学报, 2000. 12, 17(4): 105-110.
    [111] Pantankar S. V. , 1980. Numerical heat transfer and fluid flow, Hemisphere/ McGraw-Hill, New York.
    [112]黄真理,李玉樑等著,三峡水库水质预测和环境容量计算,中国水利水电出版社,北京: 2006. 1: 287-305.
    [113] B. D. Welfert, Analysis of iterated ADI-FDTD schemes for Maxwell curl equaltions, Journal of computational physics 222(2007)9-27.
    [114]周霖,刘鸿明,徐更光,炸药激光起爆过程的准三维有限差分数值模拟,火炸药学报, 2004. 2, 27(1):16-19.
    [115] A. Onorati, M. Perotti and S. Rebay, Modelling one-dimensional unsteady flows in ducts: Symmetric finite difference schemes versus galerkin discontinuous finite element methods, International Journal of Mechanical Sciences, Volume 39, Issue 11, November 1997, Pages 1213-1236.
    [116] Y. Fabignon, R. A. Beddini and Y. Lee, Analytic evaluation of finite difference methods for compressible direct and large eddy simulations, Aerospace Science and Technology, Volume 1, Issue 6, September 1997, Pages 413-423.
    [117] E. A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof, Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations, Journal of Computational Physics, Volume 161, Issue 1, 10 June 2000, Pages 35-60.
    [118] Bruno Costa and Wai Sun Don, High order Hybrid central—WENO finite difference scheme for conservation laws, Journal of Computational and Applied Mathematics, Volume 204, Issue 2, 15 July 2007, Pages 209-218.
    [119]李锦秀,黄真理,吕平毓,三峡库区江段纵向离散系数研究,水利学报, 2000. 8: 84-87.
    [120]李锦秀,廖文根,黄真理,三峡水库整体一维水质数学模拟研究,水利学报, 2002. 12: 7-10.
    [121] Wright R M, Mcdonell, A. J. In-stream deoxygenation rate prediction [J] . Proc ASCE J Env Div, 1979, 105(4):323-333.
    [122]傅国伟.河流水质模型及其模拟计算[M].北京:中国环境科学出版社, 1987. 201-202
    [123]李锦秀,廖文根.水流条件巨大变化对有机污染物降解速率影响研究.环境科学研究, 2002, 3.:45-48
    [124]余文公,夏自强,于国荣等,三峡水库水温变化及其对中华鲟繁殖的影响,河海大学学报(自然科学版), 2007. 1, 35(1): 92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700