用户名: 密码: 验证码:
大型平房仓储粮水分分布的电磁波检测理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了应对粮食危机,我国施行了储备粮的粮食安全战略。粮食在储藏过程中需要不断监测其状态,以保障粮食储藏安全。其中储粮的水分监测是一项重要的监测内容,是储粮安全的重要质量指标,及时掌握储粮粮堆水分分布,可以及时采取通风等措施预防储粮生虫霉变。我国粮库储粮数量多,存期长,目前还没有有效的大范围水分监测方法,本研究课题正式针对这一急需解决的问题而提出的。
     储粮水分的检测方法与技术一直是粮食储藏科技的研究热点。但很多研究工作都是针对样品和测点的,虽在一定程度上满足了应用需求,但并不适用于仓储的大型粮堆。本文提出了基于甚高频电磁波(30MHz~300MHz)探测的粮堆水分探测方法。该方法能够在探测粮仓储粮水分含量这一最重要的指标上满足一些传统方法难以满足的要求,其具体研究内容和创新性成果如下:
     (1)电磁波在储粮粮堆中传播特性的研究。从探地雷达的基本探测理论出发,研究了探地雷达应用于粮仓探测的可能性和可行性。结合粮仓的实际探测环境,探讨了其参数设置问题。针对电磁波在粮堆中传播的特性,主要研究电磁波在粮仓多层介质结构体系中传播的波动方程和反射折射特性,并在此基础上提出了适应粮仓介质体系结构的电磁波传播的正演模型和模型构建方法。为了有利于对采集信号的数据解译,研究了小波域内雷达杂波的滤波问题,提出了小波域内融合阈值算法滤除雷达回波中杂波的方法。
     (2)依据电磁波在介质中的折射和反射原理,提出了一种介电常数分层反演的迭代算法。算法中采用了相位比较法用来获取迭代式中所需的修正因子,使得介电常数测算结果优于土木工程中常用的介电常数测量方法。提出的方法解决了储粮粮堆内部介电常数的分布式测量问题,且测量结果与传统方法相比误差处在允许范围内。
     (3)对粮食的介电特性作了深入的研究。以小麦为例,分析了影响小麦介电常数的各种因素,分别从小麦温度、检测频率及小麦水分含量对介电常数的影响三个方面做了深入的研究。结合平房仓储粮粮堆的特点,在大量实验的基础上,提出了两种介电常数和储粮水分关系的模型:小麦介电—水分非线性模型和Q值法介电-水分线性模型,并着重研究了采用Q值法得到的小麦介电-水分模型以及基于系统识别的改进的Q值法介电-水分模型的构建过程,对两种模型的应用效果进行了实验上的评价和分析。
     (4)研究了对仓内粮堆水分含量异常区域进行电磁波层析成像的理论与方法。从电磁波层析成像的基本理论出发,分析研究了电磁波层析成像的走时层析和衰减层析两种模式。针对电磁波层析成像的正演方法,深入研究了基于射线理论的正演方法。讨论了多种射线追踪方法,特别讨论了对其中的波前法的改进——即采用走时方程进行折射点位置校正以提高追踪精度的方法。针对射线追踪应用于地面上粮仓目标测量时边界条件与地下目标不同的情况,利用FDTD仿真,分析电磁波的传播特性,特别是对初至波的判断和提取做了深入地分析。利用波速层析和衰减层析联合构造层析成像的正演模型。采用LSQR算法对图像进行重建,在LSQR算法中采用了改进的波前法提高射线追踪精度,使图像的重建质量、以及抗干扰方面都得到了一定改善。针对大型粮仓LSQR算法数据量大,计算效率不高的问题,分析了算法中系数矩阵非零元素的分布规律,提出了LSQR算法的并行化方法,并分析了其并行效率。
     本文所提出的基于电磁波探测的粮仓储粮水分含量探测技术,不仅融合了电磁波传播理论、雷达技术、信号与信息处理技术、图像处理技术,也兼顾了具体的应用需求和现有粮堆水分探测已取得的成果,有可能很好地解决粮堆水分探测平台的便捷性、灵活性、低成本性、高效性、高可靠性这些关键问题,为国有大型粮仓水分探测的自动化、网络化、信息化开拓了一个新的途径,提升我国粮食储藏的科技水平。
Foodstuffs storage security is an important part of the foodstuffs security. For along time, the monitoring to foodstuffs storage situation has been an importantproblem worried to be solved. The monitoring to humidity is an important contentfor foodstuffs security, and is one of important quality index. To know moisturecontent well may prevent foodstuffs from mildewing because of high humidity. Dueto long storage time and abundant storage foodstuffs, and if there is no advanced andquick method to detecting moisture, we can not master the circumstance of humiditydistribution and changement, which will cause the heavy losses.
     As far as monitoring to foodstuffs humidity to be concerned, the formerresearches have done much study works, which meet to some extent the requirementto humidity detecting. However, it is not adpte to the moisture detection of hugegrain pile, we proposed a new monitoring method using Ground PenetratingRadar(GPR) based on very high frequency(VHF) electromagnetic wave theory inthis paper. This method can meet some requirements to detecting moisture whichtriditional method can not meet. The detailed study content and inovation efforts areas follow:
     (1) The study on the propagation characteristic of electromagnetic wave in grainpile. From the basic theory of GPR, we studied the feasibility applied GPR todetecting to humidity to grain pile, and considering the real situation of granary,studied the its parameters setup problems. Aimming at propagation characteristic ingrain pile, mainly studied the reflection and refraction characteristic in foodstuffsmedium, and based on it, proposed a forward model and building method for thepropagation of electromagnetic wave in grain pile. In order to be propitious to DataInterpretation, studied the filter to radar clutter wave in wavelet domain, andproposed a new filter method based fuse treshold algorithm.
     (2) Based on the principle of refraction and reflection, we proposed a newinverting method named dielectric constant layer-by-layer method inclucingmodifying factors, to realize the detection to grain dielectric constant in a large sapcerange. Compared to triditional method, this method improved the measurementaccuracy, simplified the detecting method, enlarged the detecting range andimproved messurement effeorts. The measurement results are in normal error range.
     (3) An intensive study on grains dielectric property. Taking wheat for an example,we analyzed the various factors impacting wheat dielectric property, and do adetailed comparation and analysis from three sides such as temperature, frequencyand moisture content. As to the relationship between dielectric constant and moisturecontent, we proposed two models named dielectric-moisture nonlinearity model andchange Q value model based on an amount of experiments, and mainly studied thechange Q value model and its construction based system identification. At last, weevaluated the two model by experiment reults.
     (4) Based on the basic theory of tomography, we studied the two forward models of velocity and attenuation tomography. To inverting method of tomography, mainlystudied the method based on ray tracing theory. We also discussed many ray tracingtheories, and specially discussed the improvement to wavefront method whichadopts refraciton point verificaiton to improve tracing precision. Aimming at thedifferent circumstance when applied ray tracing to ground objects, using FDTDemulation, we analyzed the extraction of first-motion wave, and setup joint inversionmodel using velocity and attenuation tomography. We adpted LSQR algorithm toconstruct image in which the improved wavefront method is applied to improveimage quality. For large grain pile, the huge data and calculated amount of LSQRalgorithm can be overcomed by using parallel computing.
     In this paper, we proposed the new method including radar technology, Signaland information processing technology, Image Processing Technology and otherefforts in moisture detecting, maybe resolve the key problems related to foodstuffsmoisture detecting, and can also provide an uniform and simple platform of moisturemonitoring to large granary,which are great helpful to chinese Food storageinformation.
引文
[1]吴子丹.中国的粮情和调控[J].粮食经济研究,2005(1):4-9.
    [2]范威.当前中央储备粮仓储工作需解决的几个问题[J].粮油仓储科技通讯,2005(6):51-53.
    [3] Chari V,K. Kandala, R.g.Leffler, S.O. Nelson, K.C. Lawrence. CapacitanceSensors for Measuring Single Kernal Moisture Content in Corn. Transactions of theASABE,30(3):0793-0797,1987.
    [4]陆品桢.国内外水分测量技术及水分计发展概况[J].分析仪器,1990(1):12.
    [5]张仁标.KLS一411微量水分分析仪的设计[J].分析仪器.1993(4):26~30.
    [6]李昌禧.新型红外线水分仪.自化仪表,1996(7):13~17.
    [7]杜民.水分测定仪的综合研究及评述.中国仪器仪表,1996(2):8~10.
    [8]滕召胜.水分检测技术及其智能信息处理方法的研究[D].长沙,湖南大学,1997.
    [9]杜民.新型水分快速测定仪的研究[J].仪器仪表学报,I997,18(5):486~491.
    [10]丁元明.粮食水分测量技术及水分发展概况.分析仪器,1997(2):5.
    [11]于洋.测量粉粒体物料水分的电导水分仪[J].分析仪器,1998(5):15~17.
    [12]张胜全.电阻式粮食水分含量的测定方法.粮食加工与食品机械.2005(2):66~69.
    [13]李业德.基于介质损耗因数的粮食水分测量方法[J].农业工程学报,2006,22(2):14~17.
    [14]孙健,周展明,唐怀建.国内外粮食水分快速检测方法的研究.粮食储藏.2007,(3):46~49.
    [15]陈炜,常春波,张芳等.在线测量粮库粮食温度水分的数字传感装置,发明专利(200810055014).
    [16] Lawrence K C,Nelson S O.Radion–frequency Density–independent Determinitionin Wheat. Transaction of the ASAE,1993,38(3):477~483.
    [17]张永林,李诗龙,许晓云.微波水分检测及其在小麦着水装置中的应用[J].粮食与饲料工业.2003,(11):7~8.
    [18]刘文生,张永林,易启伟.小麦着水中微波水分测控系统设计研究.粮食加工与食品机械,2003(12):52~54.
    [19]杜先锋,张胜全,张永林.基于微波的粮食水分检测技术与系统[J].武汉工业学院学报.2004,23(2):32~34.
    [20]李俊林.电磁波检测粮食含水量的研究[D].硕士论文,郑州:河南工业大学,2008.
    [21]杨坤平.基于电磁波的粮食水分检测技术的研究[D].硕士论文,郑州:河南工业大学,2008.
    [22]王建华,丁言镁,左春英.微波谐振腔微扰法测量油体含水量的研究[J].沈阳师范大学学报(自然科学版),2006,24(4):433~435.
    [23]梁晓艳,吉海彦.近红外光谱技术在农作物品质分析方面的应用[J].农业工程科学.2006,22(1):366~371.
    [24] Samir Trabelsi.Nondestructive sensing of bulk density and moisture contentin shelled peanuts from microwave permittivity measurements.Food Control.2006,vol.17,P:304~311.
    [25]胡俊刚.现代核磁共振技术在食品科学中的应用[J].食品研究与开发,2002,21(1):11~15.
    [26]方建军.粮食水分在线测量的声学方法[J].北方工业大学学报,2000,12(1):57~60.
    [27]张林.粮堆中声波传播特性的研究[D].中国农业大学,2007.
    [28] Harrenstein A, Brusewitz G,Sound Level Measurements on Flowing Wheat [J].TranASAE,1986,29(4):1114~1117.
    [29]曾庆军,陆耿,微波透射法测量煤炭水分的研究[J].选煤技术,2008(4):35~37.
    [30]袁明德,利用地质雷达检测公路结构层湿度[J].岩土工程界,2003,6(1):42~45.
    [31] F. Thompson, A.D. Haigh, B.M. Dillon and A.A.P. Gibson. Analysis and designof a re-entrant microwave cavity for the characterisation of single wheat grainkernels. IEE Proc.~Sci.Meas.Technol., Vol150, No3, May2003,113~117.
    [32] H.S.Chua, A.D.Haigh, F.Thompson and A.A.P.Gibson. Measurement of the wet~mass, moisturecontent, volume and density of single wheat grain kernels. IEEProc.~Sci.Meas.Technol., Vol.151,No.5,September2004,384~388.
    [33]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社,2006.
    [34]曹顺,李雅莲,徐弘彦.小型散粮仓库存的日常管理与清仓查库[J].粮油仓储科技通讯,2006(3):7~9.
    [35]丁鹭飞,耿富录.雷达原理.西安.西安电子科技大学出版社.1995.
    [36]王士恩,柯宇荣,黄浩权.SIR~10H型探地雷达探测方法技术及其初步应用[J].广东水利水电,1999(2):26~30.
    [37]张晓东,赵云,翟麦富.浅谈粮库不同流通功能的仓型选择[J].粮食流通技术.2010(2):13~14,23.
    [38]中华人民共和国标准,粮食平房仓设计规范(GB50320~2001),2001年7月.
    [39]高大平房仓储粮技术规程(试行),国粮仓储[1999]288号码,1999.
    [40] Marfurt KJ, Kirlin RL, Farmer SL, et.al.3~D seismic attributes using asemblance-based coherency algorithm[J]. Geophysics,1998,63(4):1150~1165.
    [41] Hua BL, McMechan GA. Parsimonious2D prestack Kirchhoff depth migration [J].Geophysics,2003,68(3):1043~1051.
    [42]秦瑶.基于探地雷达的粮仓异物与仓储密度探测技术研究[D],博士学位论文,中国科学院研究生院,2010.
    [43]方广有.探地雷达脉冲在平面分层媒质中反射和传播特性.电波科学学报.1993,9:40~45.
    [44]唐宗熙,张彪.微波介质介电常数和磁导率测试方法.计量学报.2007,28(4):383~387.
    [45]张金标,邵云武.介质复数介电常数的微波测量.电子科学学刊.1998,10(1):92~96.
    [46]张静.雷达信号的采集、处理与压缩:[硕士学位论文].大连:大连海事大学,2002.
    [47]赵勇.探地雷达回波信号成像和小波去噪的方法与实现.硕士学位论文,.武汉:武汉大学,2004
    [48]杨鑫,柳晓鸣.基于子波变换的雷达杂波处理方法.大连海事大学学报,2006,32(2):89~92.
    [49] Jun Xie,Yifeng Jiang,Hung-tat Tsui.Segmentation of kidney from ultrasoundimages based on texture and shape priors.IEEE Transactions on Medical Imaging,2005,24(1):45~57.
    [50] Xing M,W u R,Bao Z.H igh resolution ISAR imaging of high speed moving targets.IEEproc. Radar Sonar Navig,2005,152(2):58~67.
    [51]张静,柳晓鸣,索继东.用于雷达信号杂波抑制的小波算法选择.中国航海,2002(3):18~21.
    [52]丁敏,卜祥元.提升小波去地杂波方法.现代电子技术,2006,29(11):32~36.
    [53]侯庆禹,刘宏伟,保铮.宽带目标识别雷达的杂波抑制.现代雷达,2007,29(9):44~47.
    [54]王勇,安建平,卜祥元.基于小波变换的风廓线雷达间歇杂波抑制方法.北京理工大学学报,2008,28(5):437~439.
    [55]苏丽,赵国良,张仁彦.基于改进小波阈值法的平移不变心电信号去噪.哈尔滨工程大学学报,2006,27(6):839~843.
    [56] BUITD,C H EN Guangyi.Translation-invariant denoising using multiwavelets[J].IEEE Transactions on Signal Processing,1998,46(12):3414~3420
    [57]冯象初,甘小冰,宋国乡.数值泛函与小波理论.西安:西安电子科技大学出版社,2003.
    [58] Filiz, Taner B. Dielectric properties of food materials [J]. Food Science andNutrition,2004(44):465~471.
    [59] R.R. Nigmatullin, S.O. Nelson. Recognition of the‘fractional’kinetics incomplex systems: Dielectric properties of fresh fruits and vegetables from0.01to1.8GHz [J]. Signal Processing,2006,86(10):2744~2759.
    [60]赵彧.穿墙探测雷达的多目标定位与成像.硕士学位论文,国防科技大学,2008.
    [61] Mohsenin N N.Electromagnetic radiation properties of foods and agriculturalproducts, New York;Gordon and Breach Science Publishers,1984,375~387.
    [62]王庆惠,史建新等.种子介电常数的测定及发芽实验[J].新疆农机化,2006(4):36~38.
    [63]杨戬,史建新等.棉花种子介电特性的试验研究[J].农产品加工,2005(5):14~19.
    [64] Hong S. Graham Parkinson,Arthur D.Haigh, Andrew A.P.Gibson. A method ofdetermining the moisture content of bulk wheat grain[J],Journal of food engineering,2007,78:1155~1158.
    [65]杜先锋,张胜全,张永林.基于微波的粮食水分检测技术与系统.武汉工业学院学报.2004,23(6):32~34.
    [66] Shao Yun, Fan Xingtao, Wang Cuishen es al. Estimation rice growth stage usingRadarsat data [A]. Proceeding of IEEE Geosci.and Remote Sensig[C].Singgapore,1997
    [67]沈以熙.水稻小麦油菜籽电特性的测试[J].北京农业工程大学学报,1992,12(3):1~6.
    [68]侯晓冬.利用探地雷达(GPR)进行土中水油盐含量的快速确定研究[D],硕士学位论文,中国海洋大学,2008,36~39.
    [69]秦文.蔬菜物料的介电特性及其应用研究[D],博士论文,成都:西南大学.2006,41~60.
    [70] Wang,Fuming,Lytton,R.L. System Identification Method for BackcalculatingPavement Layer Propertied[J].TRB,1993(1384):1~7.
    [71]张蓓.路面结构层材料介电特性及其厚度反演分析的系统识别方法[D].博士论文,重庆:重庆大学,2003.
    [72]张建华,刘振华.电法测井原理与应用[M].西安:西北大学出版社,2002,189~191.
    [73]王振宇.土木工程的层析成像与广义反演研究[D],博士论文.浙江大学,2003.
    [74] A Д佩特罗夫斯基.地下无线电波法[M].北京:地质出版社,1981,109~231.
    [75] Nickle H, Sender F, Thierbachm R, et.al. Exploring the interior of salt domesfrom borehole[J]. Geophysical prospecting,1983,31(1):131~148.
    [76] DAILY WD, RAMIREZ AL. Insitu porosity distribution using geophysicaltomography[J]. Geophysical Research Letters,1984,11(6):614~616.
    [77] Miwa T, Sato M, Niitsuma H. Subsurface fracture measurement with polarimetricborehole radar[J]. IEEE transaction geoscience and remote sensing,1999,37(2):828~837.
    [78]纪学灵.混凝土超声CT反演策略的研究[D],硕士论文,湖南大学,2008.
    [79]黄靓.混凝土超声CT的数值模拟与试验研究[D].硕士论文,湖南大学,2003.
    [81]冯炜,纪奕才,沈绍祥等.测试土壤含水率和电导率的时域反射仪系统[J].农业机械学报,2009,40(5):59~63.
    [82] D. A. Robinson, S. B. Jones, J. M. Wraith, et.al. A Review of Advances inDielectric and Electrical Conductivity Measurement in Soils Using Time DomainReflectometry[J]. Vadose zone J.,2003(2):444~475.
    [83]宋文荣,吴仪芳,刘建达,等.电磁波层析成像技术—CT在地基勘探中的应用[J].地震学刊,1994(2):62~64.
    [84]赵国敏,王亚汇,王进.工程建设场址地基勘探的一种新方法电磁波井间层析成像技术[J].东北地震研究,1995,11(2):52~58.
    [85]邱维衍.电磁波层析成像_CT_技术在山区场地勘探中的应用[J].福建建筑高等专科学校学报,2001,3(3/4):83~85.
    [86]王进,赵国敏,王亚会.电磁波层析成像技术在金矿探测中的应用[J].贵金属地质,1996,5(1):69~75.
    [87]杨文钦,周广华.采煤工作面电磁波层析成像技术及应用[J].安徽理工大学学报(自然科学版),2007,27(增刊):79~81.
    [88]冯锐,马奎祥,郭鸿等.电磁波层析成像_图像的一致性及地下水探测[J].地震学报,1997,19(5):524~534.
    [89]李才明,王良书,钟楷.电磁波层析成像在钻孔灌注桩质量检测中的应用[J].高校地质学报,2003,9(3):467~473.
    [90] D L Alumbaugh, G. A Newman. Three dimen2sional massively parallel electromagnetic inversion-Ⅱ. Analysis of a crosswell elect romagnetic experiment [J].Geop hys. J. Int,1997(128):355~363.
    [91] L Yu M Chouteau, D E Boerner, J Wang. On the imaging of radio frequency electromagnetic data for cross-borehole mineral exploration[J]. Geophys.J. I nt.1998,135:523~541.
    [92] Timothy C Johnson, Partha S Routh and Michael DKnoll. Fresnel volume georadarattenuation difference tomography[J]. Geop hys. J. Int.2005(162):9~24.
    [93]岳崇旺.井间电磁波层析成像研究与应用[D].吉林大学硕士学位论文,2007.
    [94] Marc L Buursink, Timothy C Johnson, Partha SRouth, Michael D Knoll. Crossholeradar velocitytomography with finite-f requency Fresnel volume sensitivities[J].Geophys. J. Int.2008(172):1~17.
    [95]常旭,刘伊克.地震正反演与成像[M].第1版.北京:华文出版社,2001.
    [96] Vetle Vinje, Einar Iversen, Havar Gjoystdal. Traveltime and amplitudeestmation using wavefront construction [J]. Goephysics,1993,58(8):1157~1166.
    [97]赵连锋.井间地震波速与衰减联合层析成像方法研究[D].博士论文,成都理工大学,2003.
    [98]和锐,杨建思,张翼.地震层析成像方法综述[J]. CT理论与应用研究,2007,16(1):35~48.
    [99]张卦,刘洪,李幼铭.射线追随踪方法的发展现状[J].地球物理学进展,2000,15(l):36~45.
    [100] Thurber C.H. Rapid solution of ray tracing problems in heterogeneousmedia,Bull sels. Soc.Am.,1980(70):1137~1148.
    [101] Vidale J. Finite~difference traveltime calculation[J]. Bulletin of theSeismological Society of American,1988(78):2062~2076.
    [102] Asawaka E., Kawanaka T. Seismic ray tracing using linear travel timeinterpolation [J]. Geophysics,1993,57(2):326~3310.
    [103] Moser T. Shortest path calculation of seismic rays[J]. Geophysics,1991(56):59~67.
    [104] Fischer R, Lees J M. Shortest path ray tracing with sparse graphs [J].Geophysics,1993(58):987-996.
    [105] Klimes L, Kvasnicha M.3D network ray tracing [J].Geophys.J. Int.,1994(116):726~738.
    [106]黄联捷,李幼铭,吴如山.用于图像重建的波前法射线追踪[J].地球物理学报,1992(35):223~233.
    [107]王辉,常旭.基于图形结构的三维射线追踪方法[J].地球物理学报,2000,43(4):534~541.
    [108]张美根,程冰洁,李小凡,王妙月.一种最短路径射线追踪的快速算法[J].地球物理学报,2006,49(5):1467~1474.
    [109]李志辉,刘争平.最短路径法射线追踪的MATLAB实现[J].工程地质计算机应用,2004(36):16~21.
    [110]段心标,金维俊.井间地震层析成像初始速度模型[J].地球物理学进展,2007(6):1831~1835.
    [111]赵火焱,赵明阶,黄卫东等.基于最小走时射线的LSQR成像反演方法研究[J].重庆交通大学学报(自然科学版).2010,29(2):315~318.
    [112]徐树芳.矩阵计算的理论与方法[M].北京.北京大学出版社,1995.
    [113] Liu F T. Simultaneous inversion of earthquake hypocenters and velocitystructure(1)~theory and method. Chinese J. Geophys,1984,27(2):167~175.
    [114] Paige C C, Saunders M A. LSQR: Sparse Linear equations and least squaresproblems. AMC Transactions, Math,1982,8(2):195~209.
    [115]王志和,凌云.Dijkstra最短路径算法的优化及其实现[J].微计算机信息.2007(33):275~277.
    [116]杨薇,刘四新,冯彦谦.跨孔层析成像LSQR算法研究[J].物探与化探.2008,32(2):199~202.
    [117]蒋玉英.电磁波在粮仓储粮中传播衰减特性的研究[J].粮油加工,2010(7):59~61.
    [118]蒋玉英等.微波检测粮仓储粮水分技术的研究[J]计算机工程与应用,2010,(29):239~241.
    [119]余章明等.电磁波在储粮水分检测技术中的应用研究[J].河南工业大学学报(自然科学版),2009,30(5):78~82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700