用户名: 密码: 验证码:
赤桉干燥预热处理与干燥流变特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为云南地区主要速生人工林树种,赤桉的干燥技术目前没有得到很好的解决,成为赤桉实木加工利用的瓶颈之一。本文针对赤桉速度慢、易皱缩的干燥特性,研究了预热处理对赤桉干燥工艺的影响、赤桉干燥和终了调湿处理中的应力应变特征、干燥后期处理对赤桉皱缩回复的影响,为赤桉干燥技术的优化奠定理论基础。
     通过改变赤桉心材苯醇抽提物的总量和分布,3h以上的汽蒸处理和60℃以上的热水浸泡处理可以显著增大赤桉心材的干缩系数、纵向气体渗透性和水分扩散系数。工艺试验表明,4h的汽蒸处理和4h的80℃热水浸泡可以显著减小皱缩和提高初期干燥速度。
     在前人研究的基础上,结合木材干燥实际,本文建立了赤桉材干燥的横截面一维流变模型,以干缩因子表示干缩应变,以弹簧表示弹性应变,以开尔文体表示粘弹性应变,考虑到调湿处理过程中机械吸附的消除,以改进的开尔文体来表示机械吸附应变,并据此阐述了木材干燥中的表裂、应力转向和表面硬化等现象。
     通过大试样和切片法相结合的方法,重点研究了干燥过程和终了调湿处理过程中的应力应变,结果表明:弹性应变与粘弹性应变不受干燥历史的影响,只与木材的瞬间应力和含水率等有关;机械吸附应变受干燥应力和干燥历史的共同作用;通过表面的有限吸湿,终了调湿处理可以有效减小弹性应变和机械吸附应变;除干燥初期以外,机械吸附应变在干燥中后期和调湿处理中的净应变中均占主导地位;整个干燥和调湿过程中,粘弹性应变量均较小,可以忽略。
     在赤桉皱缩的预防和减小方面做了极具实用价值的探讨,研究了不同处理时机、不同处理方法对控制皱缩的效果,并借用计算机软件Mat1ab 6.0与数码相机使研究手段有了改进,提高了试验的准确性与易行性。结果表明;皱缩回复效果与处理时木材细胞腔内的水分饱和度密切相关,在板材平均含水率为27%时,细胞腔内水分饱和度较高,处理的效果不显著,在板材平均含水率为18%时进行3h的汽蒸处理与3h的90℃湿饱和空气处理均可有效地减少皱缩,汽蒸处理的效果比湿饱和空气的处理更显著。
E. camaldulensis is one of the main fast-growing plantation species in Yunnan Province, but drying defects including severe collapse and twist limit its use widely as solid lumber. Aiming to optimize drying technology and improve drying quality, this dissertation presents studies on preheating and Theological behavior of eucalyptus lumber drying. These studies include: (1) effect of preheating on shrinkage coefficient, longitudinal gas permeability, extractives content, water diffusion coefficient, drying rate and quality; (2) development of strain during drying and elimination of it during final conditioning; (3) effect of conditioning on collapse recovery and its mechanism.Because of change of extractives content and distribution during pretreatment, shrinkage coefficient, longitudinal gas permeability and water diffusion; coefficient increase significantly after pre-steaming over 3h or hot-water pre-soaking over 60℃ . Because of the same reason, drying rate of first period increase and final collapse magnitude decrease with 4h pre-steaming or 4h 80 ℃ hot-water pre-soaking.One-dimensional stress-strain mathematical model across to the grain during drying is established and can be used to illustrated stress-induced phenomena. The model takes into account all the needed components in low- and middle temperature drying: shrinkage, elastic, visco-elastic and mechano-sorptive strains. The recovery of mechano-sorptive strain during conditioning is also taken account. Shrinkage strain is modeled by shrinkage unit. Elastic strain and visco-elastic strain are modeled by spring and Kelvin body, separately. Mechano-sorptive strain is modeled by a modified Kelvin body, in which the conventional Kelvin body is parallel with the pinned-slider and the removal or replacement of the pin represents hydrogen-bond breaking or re-making.Rheological behavior during drying and conditioning is studied by slicing method, the
    
    results show that development of elastic strain and visco-elastic strain are both affected by instantaneous drying stress and independent of drying history, so the law of them is similar; that of mechano-sorptive strain is affected by drying stress and drying history; because of the limited moisture pick-up in surface zone, elastic strain and mechano-sorptive strain decrease significantly during final conditioning; mechano-sorptive strain is the main component of net strain during conditioning as well as the middle- and later- period of drying; visco-elastic strain is little and appears to be negligible.Effect of different conditioning at different moisture content(MC) on collapse recovery were studied with software Matlab 6.0 and digital cameral, the results show that effect of conditioning on collapse recovery is relevant to MC of lumber at conditioning significantly, the effect of conditioning at mean MC of 27% is little, 3h steaming conditioning and 3h 90℃ wet saturation air conditioning at mean MC of 18% both can increase collapse recovery significantly while the former is more significant.
引文
1. Alexiou, P.N. Accelerating the kiln drying of regrowth E. piluaris Sm. IUFRO wood drying symposium, Washington, USA, 1989a, 116-125
    2. . et al. Effect of moisture content and density on the viscoelastic properities of E. piluaris SM, in tension across the grain. IUFRO wood drying symposium, Washington, USA, 1989b, 71-77
    3. . et al. Effect of pre-steaming on drying rate, wood anatomy and shrinkage of regrowth Eucalyptus pilularis Sm. Wood science and technology, 1990a,24:103-110
    4. . et al. Effect of pre-steaming on moisture gradients, drying stresses and sets, and face checking in regrowth Eucalypyus piluaris Sm. Wood Science & Technology, 1990b, 24:201-209
    5. . Optimisation of an accelerated drying schedule for regrowth Eucalyptus pilularis Sm. Holz als Roh-und Werkstoff. 1991, 52: 77-82
    6. . Accelerated kiln-drying and drying stress in re-growth blackbutt E. pilularis Sm. Mater Thesis Abstract, Australian National University, 1993
    7. Awoyemi, L. Effect of microwave modification on the hardness of Eucalyptus obliqua wood. J. Inst. Wood Sci. 2003, 16(3):186-188
    8. Beall, F.C. Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci. & Tech. 2002, 36: 197-212
    9. Behnke, C. & K.-E. Militzer. A simulation model for timber drying checked by measurements at technical kilns. Drying Technology, 1994, 12(8): 1841-1862
    10. Bekele, T. 1994, Kiln drying of sawn boards of sawn boards of young Eucalyptus globules Labill. and Eucalyptus camaldulensis Dehnh. Grown on the Ethiopian highlands. Holz als Roh-und Werkstoff. 52: 377-382
    11. Bodig, J. Jayne, BA. Mechanics of wood and wood composites, van Nostrand Reinhold, New York, 1982, 712pp
    12. Booker, J.D. Acoustic emission related to instantaneous strain in Tasmanian eucalypt timber during seasoning. Wood Science and Technology, 1994a, 28: 249-259
    13. . & P.E. Doe. Acoustic emission related to strain energy during drying of Eucalyptus regnans boards. Wood Science and Technology, 1995, 29: 145-156
    14. Booker, R.E. Internal checking and collapse: which comes first? Proc 4th IUFRO Int Wood Dring Conf, Rotorua, New Zealand, 1994b: 133-140
    15.. & J.M. Evans. The effect of drying schedule on the radial permeability of Pinus radiata D.Don. Holz als Roh-und Werkstoff, 1994c, 52: 150-156
    16. Bamhall, G Diffusion and drying of wood. Wood Science and Technology. 1995. 29:209-215
    17. Bramhall, G Fick law and bound water diffusion. Wood Science, 1976, 8(3): 153-161
    
    18. Bramhall, G Sorption diffusion in wood. Wood Science, 1979, 12(1): 3-13
    19. Brando, A. &P. Perre. The "flying wood"- A quick test to characterize the drying behavior of tropical wood. Proc. 5th Int. IUFRO Wood drying Conf., Quebec, Canda
    20. Brown, H.P.; Panshin, A.J.; Forsaith, C.C. Textbook of wood technology. Vol. 2. New York: Mcgraw-Hill 1952
    21. Cai, Z.Y. et al. Creep and creep-recovery models for wood under high stress levels. Wood and Fibre, 2002, 34(3): 425-433
    22. Campbell, GS. & J. Hartely. Drying and Dried Wood. Chapter 16,328-336, 1978
    23. Carrington, A.M.; R.B. Keey; J.C.F. Walker. Free shrinkage of Pinus radiata at an elevated temperature. New Zealand Journal of Forestry Science, 1995, 25(3): 348-357
    24. Carrington, A.M. High-temperature seasoning of softwood boards. Determination of mechanical properties at elevated temperature. M.E. (chem.) Thesis, University of Canterbury, NZ, 1996
    25. Chafe, S.C. The distribution and interrelationship of collapse, volumetric shrinkage, moisture content and density in trees of Eucalyptus regnans F. Muell. Wood science and technology, 1985, 19:329-345
    26.. Radial variation of collapse, volumetric shrinkage, MC, and density in Eucalyptus regnans F. Muell. Wood science and technology, 1986a, 20:253-262
    27.. Collapse, Volumetric shrinkage, specific gravity and extractives in eucalyptus and other species. Part l:the shrinkage and specific gravity ratio. Wood Sci. & Tech. 1986b, 20:293-307
    28. Collapse, Volumetric shrinkage, specific gravity and extractives in Eucalyptus and other species. Part 2:the influence of wood extractives. Wood Sci. & Tech. 1987,21:27-41
    29.. Preheating Green Boards of Mountain ash {Eucalyptus regnans F. Muell) Holzforschung. 1988,48:61-68
    30. Changes in shrinkage and collapse in the wood of E. regnans F. Muell. following extraction Holzforschung, 1990a, 44:235-244
    31. Effect of brief presteaming on shrinkage, collapse, and other wood-water relationships in Eucalyptus regnans F. Muell. Wood science and technology, 1990b, 24:311-326
    32.A relationship between equilibrium moisture content and specific gravity in wood. J. Inst. Wood Sci. 1991, 12(3): 119-122
    33. and J. Die. Shrinkage and collapse in thin sections and blocks of Tasmanian mountain ash regrowth. Part2: the R-ratio and changes in cell lumen volume. Wood Sci. & Tech. 1992a, 26: 181-187
    34. and J. flic. Shrinkage and collapse in thin sections and blocks of Tasmanian mountain ash regrowth. Part3: collapse. Wood Sci. & Tech. 1992b, 26: 343-351
    35. The effect of boiling time on the change in green wood volume in Eucalyptus regnans F.Muell. Holzforschung, 1992c, 46: 463-466
    36. The effect of boiling on shrinkage, collapse and otherwood-water properties in core segments of Eucalyptus regnans F.Muell. Wood Science and Technology, 1993,27: 205-217
    
    37. . Preheating green boards of Mountain Ash (Eucalyptus, regnans F. Muell). Holzforschung, 1994a, 48:61-68
    38. . Preheating green boards of Mountain Ash (Eucalyptus, regnans F. Muell). 2: Relationships amongst properties Holzforschung, 1994b, 48:163-167
    39. . Effects of preheating on green dimensions and properties in boards of Mountain ash. J. Inst. Wood Sci., 1994c, 13(3): 425-430
    40. . Preheating and continuous and intermittent drying in boards of Eucalyptus, regnans F. Muell. I . Effect on checking and collapse. Holzforschung 1995a, 49:227-233
    41. . Preheating and continuous and intermittent drying in boards of Eucalyptus, regnans F. Muell. II .changes in shrinkage and MC during drying. Holzforschung 1995b, 49:234-238
    42. . & R.A. Ananias. Effect of presteaming on moisture loss and internal checking in high-temperature-dried boards of Eucalyptus globules and Eucalyptus regnans. J. Inst. Wood Sci., 1996, 14(2): 72-77
    43. . and J.M. Carr. Effect of board dimensions and grain orientation on internal checking in Eucalyptus, regnans. Holzforschung 1998, 52:434-440
    44. Chen G et al. The drying stress and check development on high temperature kiln seasoning of sapwood Pinus radiata boards. Part 1. Moisture movement and strain model. Holz als Roh-und Werksteff, 1997, 55: 59-64
    45. Chen, Y. & E.T. Choong. Determine the effect of extractives on moisture movement using a "continues" measuring system. Wood and Fiber Science, 1994a, 26(3): 390-396
    46. Chen, Y. & E.T. Choong, et al. Optimum average diffusion coefficient: an objective index in description of wood drying data. Wood and Fiber Science, 1994b, 26(3): 412-420
    47. Cheng, W; T. Morooka, M.Norimoto. The stress occurring in wood under high temperature steam. Proc 7th Int IUFRO Wood Drying Conf, Tsukuba, Japan, 2001: 256-261
    48. Choong, E.T., T.F. Shupe, Y. Chen. Effect of steaming and hot-water soaking on extractive distribution and moisture diffusivity in southern pine drying. Wood and Fibre Science, 1999, 31(2): 143-150
    49. Choong, E.T. & S.Achamai. Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood and Fiber Science, 1991, 23(2): 185-196
    50. Conners, T.E. Segmented models for stress-strain diagrams. Wood Science and Technology, 1989, 23: 65-73
    51. Dahlblom, O., et al. Numerical simulation of the development of deformation and stress in wood during drying. Proc 4th IUFRO Int Wood Drying Conf, Rotorua, New Zealand, 1994:165-172
    52. Dinwooddie J.M. Timber, its nature and behavior. Van Nostrand Reinhold, New York, 1981, 190pp
    53. Erickson, R.W., Haygreen J., Hossfeld. Drying prefrozen reswood. Forest Prod. J. 1966,16(8):57-65
    
    54. Erickson, R.W. Mechano-sorptive phenomena in drying red oak. IUFRO wood drying symposium, Washington, USA, 1989,79-91
    55. . & R.T. Seavey. Energy quantification and mechano-sorptive behavior in the kiln drying of 2.5 cm thick red oak lumber. Drying Technology, 1992, 10(5): 1183-1206
    56. . The effect of drying temperature on the mechano-sorptive behavior of red oak lumber. Drying Technology, 1994, 12(8): 1943-1961
    57. Felix, S. & P. Morlier. Modeling of stress and strains in a piece of wood under drying. Holzforschung, 1992 (46 ): 369-377
    58. Fuller, J. Lumber drying stress development and prong test implications. Doctor dissertation of North Carolina State University. 1993
    59. . Conditioning stress development and factors that influence the prong test. Res. Rap. FPL-RP-537. Madison, WI: U.S. Department of agriculture, Forest Service. Forest Products Laboratory, 1995a
    60. . Modeling prong test response during conditioning of red oak lumber. Res. Rap. FPL-RP-540. Madison, WI: U.S. Department of agriculture, Forest Service. Forest Products Laboratory, 1995b
    61. . Stress Based Kiln Monitor/Control: Concept & Industrial Trial. U.S. Patent 5,873,182 & 5,992,407
    62. Ganowicz, R. & L. Muszynski. Simulation of drying stresses in wood. Proc 4th IUFRO Int Wood Drying Conf, Rotorua, New Zealand, 1994: 211-220
    63. Glossop, P.R. Effect of hot-water soaking or freezing pretreatments on drying rates of two Eucalypyus. Forest Products J., 1994,44(10):29-32
    64. Greenhill W.L. Collapse and its removal. CSIRO Dir For Prod Tech Pap 24 Melbourne Vic, 1938
    65. Grossman, P.U.A. Requirements for a model that exhibit mechano-sorptive behavior. Wood Science & Technology, 1976, 10: 163-168
    66. Gui, Y.Q. et al. An application of finite element analysis to wood drying. Wood and Fibre, 1994, 26(2): 281-293
    67. Guti-errez, A, J.C. Rio, F.J. Gonzalez-vila. Variation in the composition of wood extractives from Eucalyptus globulus during seasoning. Journal of wood chemistry and technology, 1998, 18(4): 439-446
    68. Hanhijarvi, A. & D. Hunt Experimental indiction of interaction between viscoelastic and mechano-sorptive creep. Wood Science and Technology, 1998a, 32: 57-70
    69. . Deformation properties of Finnish spruce and pine wood in tangential and radial directions in association to high temperature drying. Part 1: experimental techniques for conditions simulating the drying process and results on shrinkage, hygrothermal deformation, modulus of elasticity and strength. Holz als Roh-und Werkstoff, 1998b, 56: 373-380
    70. . Part 2: Experimental results under constant conditions. Holz als Roh-und Werkstoff, 1999, 57: 365-372
    
    71. . Part 3: Experimental results under drying conditions (MS creep). Holz als Roh-und Werkstoff, 2000a, 58: 63-71
    72. . Part 4: Modeling. Holz als Roh-und Werkstoff, 2000b, 58: 211-216
    73. . Deformation kinetics based Theological model for the time-dependent and moisture induced deformation of wood. Wood Science and Technology
    74. . & P. Helnwein, A.Ranta-Manunus. Two-dimensional material model for structural analysis of drying wood as viscoelastic-mechanosorptive-plastic material.Cost E15 Workshop in Helsinkin, Iune 12-13, 2001
    75. Haque, M.N. et al. Model fitting for visco-elastic creep of Pinus radiata during kiln drying. Wood Science and Technology, 2000, 34: 447-457
    76. Haque, M.N. Modelling of solr kilns and the development of an optimized schedule for drying hardwood timber. Ph.D. thesis Department of Chemical Engineering, University of Sydney. 2002
    77. Hardtke H-J., Grimsel M., Militzer K-E. Drying stress in wood and the demands of continuum mechanics. Proc 5th IUFRO Int Wood Dring Conf Quebec City Canada 1996, 111-115
    78. Hart, C.A. Relative humidity, EMC and collapse shrinkage in wood. Forest Prod J. 1984,34:45-54
    79. Harris, R.A. et al. Steaming of red oak prior to kiln- drying: effects on moisture movement. Forest Prod. J. 1989, 39(11/12): 70-72
    80. Haslett, A.N.; Kininmonth, J.A. Pretreatments to hasten the drying of Nothofagus fusca. NZJ For Sci. 1986, 16: 237-246
    81. Haslett, A.N.; B. Davy; M. Dakin et al. Effect of pressure drying and pressure steaming on warp and stiffness of radiata pine lumber. Forest Product Journal, 1999, 49(6): 67-71
    82. . & M. Dakin, Effect of pressure steaming on twist and stability of radiata pine lumber. Forest Product Journal, 2001, 51(2): 85-87
    83. Haslett, T, I. Simpson, S. Riley. Comparison of Final conditioning using water sprays and water bath steaming. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 90-95
    84. Hayashi, K. & S. Terazawa. Cell collapse in balsa wood. Drying Technology, 1992, 10(5): 1249-1265
    85. Hill, J.L. & Lessard, R.A. Automated kiln drying systems of the third kind. Proc. 4734.5 Eastern Hardwoods: the resource, the industry and the markets. For. Prod. Res. Society. 1986: 104-114
    86. Holmes, S.; C.J. Kozlik. Collapse and moisture distribution in pre-steamed and kiln-dried incense-cedar squares. Forest Product Journal, 1989, 39(2): 14-16
    87. Hunt, D.G Limited mechano-sorptive creep of beech wood. J. Inst. Wood Sci., 1982, 9(3): 163-168
    88. Hunt, D.G Creep trajectories for beech during moisture changes under load. J. Master Sci. 1984, 19: 1456-1467
    89. Hunt, D.G; Shelton CF. Progress in the analysis of creep in wood during concurrent moisture changes. J. Master Sci. 1987, 22: 313-320
    
    90. Hunter, A.J. On movement of water through wood - the diffusion coefficient. Wood Science and Technology, 1993, 27: 401-408
    91. Dlic, J. & W.E. Hillis, Video image processor for woo anatomical quantification Holzforschung, 1983, 37: 47-50
    92. Die, J. and W.E. Hillis. Prediction of collapse in dried Eucalyptus wood. Holzforschung, 1986, 40:109-112
    93.. Shrinkage-related degrade and its association with some physical properties in Eucalyptus. regnans F. Muell. Wood science & technology, 1999a, 33: 425-437
    94.. Influence of prefreezing on shrinkage-related degrades in Eucalyptus, regnans F. Muell. Holz als roh-und werlstoff, 1999b, 57:241-245
    95.. Advantages of prefreezing for reducing shrinkage-related degrade in eucalypts: general consideration and review of the literature. Wood Sci. and Tech. 1996,30: 277-284
    96. Innes, T.C. Collapse free pre-drying of Eucalyptus, regnans F. Muell. Holz Roh-w, 1995a, 53(6): 403-406
    97.. Stress model of a wood fibre in relation to collapse. Wood Science and Technology, 1995b, 29(5): 363-376
    98.. Collpse and internal checking in the latewood of Eucalyptus, regnans F. Muell. Wood Science and Technology, 1996a, 30:373-383
    99. Predrying of collapse prone wood free of surface and internal checking. Holz Roh-W, 1996b, 54(3): 195-199
    100., A.L. Redman. Comparative drying characteristics of six regrowth Australian hardwoods. 8th international IUFRO wood drying conference, Brasov, Romania, 2003: 101-105
    101. Ito, Y. Stress release method of kiln-dried hardwood lumber: relief of the stress occurring in wood during drying. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 110-113
    102. Jung, H-S. Stress in drying wood in relation to moisture gradient. IUFRO wood drying symposium, Washington, USA, 1989, 92-96
    103. Kabir, M.F., W.M. Daud, K.B. Khalid et al. Viscoelastic properties of rubber wood as influnced by moisture content, grain direction, frequenty and temperture. J. Inst. Wood Sci., 1999, 15(2): 100-104
    104. Keep, L.B. the determination of time-dependent strains in Pinus radiata under kiln-drying conditions, ME Thesis, University of Canterbury, Christchurch, NZ, 1998
    105. Keey, R.B.; T.A.G Langrish & J.C.F. Walker. Kiln-Drying of Lumber. Springer, 2000
    106. Kininmonth J.A. Effect of steaming on the fine structure of Nothofagus fusca. NZJ For Sci. 1971,1:129-139
    107. Kobayashi, I. & T.hisada. Application of surface strain measuring for wood drying. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 344-347
    
    108. Kollman,F.F.R, et al.木材学与木材工艺学原理 :实体木材 ,中国林业出版社 , 1991, p.411, 431
    109. Koponen, S. et al. Modeling longitudinal elastic and shrinkage properties of wood. Wood Science and Technology, 1989, 23: 55-63
    110. Leicester, R.H. A rheological model for mechano-sorptive deflection of beams. Wood Science & Technology, 1971, 5: 211-220
    111. Little, R.L. & W.W. Moscheler. 1994, Cool water spray for relief of drying stress. 4th IUFRO International Wood Drying Conference, Rotorua, New Zealand, 337-340
    112. Lu, J.P. & R.H. Leichester. Mechano-sorptive effects on timber creep. Wood Science and Technology, 1997,31:331-337
    113. Lu, W. & R.W. Erickson. Mechano-sorptive behavior of solid wood stressed in compression perpendicular to the grain. Forest Prod. J. 1996, 46(4): 63-68
    114. Martenson, A. Stress development in drying timber - a theoretical description. 4th IUFRO international wood drying conference, Rotorua, New Zealand, 1994a, 173-180
    115 . Mechano-sorptive effects in wood material. Wood Science and Technology, 1994b 28: 437-449
    116. & S. Svensson. Stress-strain relationship of drying wood. Part 1: Development of a constitutive model. Holzforschung, 1997a, 51: 472-478
    117. & S. Svensson. Stress-strain relationship of drying wood. Part 2: Verification of a one-dimensional model and development of a two- dimensional model. Holzforschung, 1997b, 51: 565-570
    118. Matsumura, J.; K. Oda; R.E. Booker; et al. Flow pathways and resin content of Pinus radiata with pre-steaming. 7* International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 416-421
    119. Matsumoto, T.; H. Matsumoto; N. Fujimoto; et al. Influence of thermal treatments on the mechanical properties of wood. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 430-433
    120. Mcmillen, J. Stresses in wood during drying. Res. Rap. !652 USDA Forest Service. Forest Products Lab. Madison, WI. 1963
    121. Milota MR., Wu QL. Resolution of the stress and strain components during of softwood. In:Rudolph V, Keey RB(eds) Drying'94. Proc 9th Int Drying Symp Gold Coast, 1994, Australia Vol B: 735-743
    122. Molinsk, W. et al. Acoustic emission generated upon mechano-sorptive creep of wood bent across to the fain under asymmetrical moistening. Holzforschung, 2000, 54: 305-308
    123. Moren, TJ. Check formation during low temperature drying on Scots pine: theoretical consideration and some experimental results. IUFRO wood drying symposium, Washington, USA, 1989, 97-100
    124. Moren, T.J., et al. Creep response to drying of timber boards of Scots pine. Forest Pro. J., 1993, 43(10): 58-64
    125. Moren, T. Steaming conditioning after low temperature drying. Holz als Roh-und Werkstoff. 1994a, 52:77-82
    
    126. Moren, T. Heating and Conditioning by Steaming during Low Temperature Drying. 4th IUFRO International Wood Drying Conference, Rotorua, New Zealand, 1994b, 341-348
    127. Morgan, K., et al. Numerical modeling of stress reversal in timber drying. Wood Science, 1982, 15(2): 139-149
    128. Nassif, N.M. Continuously varying schedule (CVS)- A new technique in wood drying. Wood Science and Technology, 2001, 17: 139-144
    129. Neumann, R.J. Kiln drying young E. globules boards from green. IUFRO wood drying symposium, Washington, USA, 1989, 107-115
    130. North way, R.L. An assessment of techniques to monitor drying stresses and dimensional changes in timber from plantation-grown eucalyptus for kiln schedule development and kin control. 7th International IUFRO Wood drying Conference, Tsukuba, Japan, 2001: 54-59
    131. Oliver A.R. A model of the behavior of wood as it dries with special reference to eucalyptus materials. Research report CM91-1 Civil and Mechanical Engineering Department, Australia Univ Tasmania, Hobart, 1991
    132. Ormarsson, S.; O. Dahlblom; H. Petersson. A numerical study of the shape stability of sawn timber subjected to moisture variation. Parti: theory. Wood science and technology, 1998, 32: 325-334
    133. Ormarsson, S.; O. Dahlblom; H. Petersson. A numerical study of the shape stability of sawn timber subjected to moisture variation. Parti: simulation of drying board. Wood science and technology, 1999, 33: 407-423
    134. Palka, L.C. Predicting the effect of specific gravity moisture content temperature and strain rate on the elastic properties of softwoods. Wood Sci. Technol. 1973, 7: 127-141
    135. Pang, S. et al. Simulation of Pinus radiata veneer drying: moisture content and temperature profiles. Forest Pro. J. 1997,47(7/8): 51-58
    136. Pang, S. Modeling of stress development during drying and relief during steaming in Pinus radiata Lumber. Drying Technology, 2000,18(8): 1677-1696
    137. Pang, S. Modeling of stresses and deformation of radiata pine lumber during drying. 7th International IUFRO Wood Drying Conference, Tsukuba, Japan, 2001: 238-245
    138. Passard, J. & P. Perre. Wood rheology and drying process.
    139. Perre, P. & J. Passard. A control-volume procedure compared with the Finite-Element method for calculating stress and strain during wood drying. Drying Technology, 1995, 13(3): 635-660
    140. Perre, P. How to get a relevant material model for wood drying simulation? Cost Action E15 Advances in Drying of Wood, 1st workshop "state of the art for kiln drying" in Edinburgh 13/14th, Oct 1999
    141. Ranta-Maunus, A. The visco-elastic of wood at varying moisture content Wood Science and Technology, 1975,9:189-205
    
    142. Ranta-Maunus, A. Impact of mechano-sorptive creep to the long-term strength of timber. Holz als Roh-und Werkstoff, 1990, 48: 67-71
    143. Ranta-Maunus, A. Computation of moisture transport and drying stresses by a 2-D FE-program. 4th IUFRO international wood drying conference, Rotorua, New Zealand, 1994:187-194
    144. Ranta-Maunus, A. Analysis of casehardening. ( 网上资料 )
    145. Redman, A.L. Predrying treatments for Tasmanian Eucalypt timber. 7th international IUFRO wood drying conference, Tsukuba, Japan, 2001:96-99
    146. Resch, H. & C, Hansman. Test to dry eucalyptus boards in vacuum using high frequency heating Holzforschung und Holzverwertung, 2002,54(3): 59-61
    147. Rice, R.W. & R.L. Youngs. The mechanism and development of creep during drying of red oak. Holz als Roh-undW. 1990,48:73-79
    148. Rice, R.W. et al. One- and two-dimensional moisture profiles in red oak. Wood and Fiber Science. 1991, 23(3): 328-341
    149. Rozas, C, R. Sanchoz, P. Pinedo. Drying of Eucalyptus nitens and E. globules for blocks, furniture and flooring. 8th international IUFRO wood drying conference, Brasov, Romania, 2003: 185-191
    150. Ruben, A. Ananias. Preheating Chilean Eucalyptus globules at 80 ℃ water-saturated air. Holzforschung , 1995, 49:179-181
    151. Salin, J.-G Prediction of checking surface discoloration and final moisture content by numerical methods. Proc 2nd IUFRO Int Wood Drying Conf Seattle Washington DC, 1989, 71-78
    152. Salin, J.-G Numerical prediction of checking during timber drying and a new mechano-sorptive creep model. Holz Roh-W. 1992, 50: 195-200
    153. Salin, J-G Calculation of moisture profiles and stress development during drying of round wood for log houses. 4th IUFRO international wood drying conference, Rotorua, New Zealand, 1994:181-186
    154. Sandland, K.M. 2001, Prediction of required duration of the conditioning process to reduce the casehardening level in LT-dried sawn timber-Inertial experiments. Holz als Roh-und Werkstoff. 59: 183-189
    155. Santos, J.A. Mechanical behavior of Eucalyptus wood modified by heat. Wood science and technology, 2000, 34: 39-43
    156. Shang D.-K. et al. The experimental research and analysis of permeability of basalt and wood particle aggregates. Holz als Roh- und Werkstoff, 1999, 57: 271-275
    157. Shupe, T.F. & E.T. Choong. The effects of previous drying and extractives on the radial and tangential shrinkage of outer wood, middle wood and core wood of two sweetgum trees. F.P.J. 1996,46(9):94-97
    158. Shupe, T.F. & E.T. Choong. Et al. The effects of previous drying and moisture content of some southern bottom land hardwoods. Wood and Fiber Science, 1998, 30(3): 273-280
    159. Siau J.F. & Y.Kanagawa et al. The use of permeability and capillary theory to characterize the structure of wood and membrane. Wood and Fiber, 1981,13(1): 2-12
    
    160. Siau J.F. Chemical potential and nonisothermal diffusion, Letter to editor. W. & F S, 1984, 16(4):628-629
    161. Siau J.F. Transport processes in wood. Springer-Verlag Berlin Heidelberg, New York, Tokyo, 1984
    162. Siau J.F. & Bao F.C. Experiments in nonithermal diffusion of moisture of moisture in wood. W S & T, 1986, 18(1): 84-89
    163. Siau J.F. Application of a thermodynamic model to nonisothermal diffusion experiments. W S & T, 1993, 27(2): 131-136
    164. Siau, J.F. Wood: influence of moisture on physical properties, 1995, p. 54-58
    165. Stohr, H.P. Shrinkage differential as a measure for drying stress determination. Wood Science and Technology, 1988, 22: 121-128
    166. Svensson, S. Strain and shrinkage force in wood under kiln drying conditions. 1: Measuring strain and shrinkage under controlled climate conditions equipment and preliminary results. Holzforschung, 1995, 49: 363-368
    167. Svensson, S. Strain and shrinkage force in wood under kiln drying conditions. 2: Strain, shrinkage and stress measurements under controlled climate conditions. Holzforschung, 1996,50:463-469
    168. Svensson, S. & A. Martenson. Simulation of drying stresses in wood. Part 1. Comparison between one-and two-dimensional models. Holz Roh-W. 1999,57:129-136
    169. Tejada, Alvaro et al. Reduction of growth stress in logs by direct heat treatment: assessment of a commercial-scale operation. Forest Prod. J. 1997, 47(9): 86-93
    170. Thuvander, F. & G Kifetew; L.A. Berglund. Modeling of cell wall drying stresses in wood. Wood Science and Technology, 2002, 36: 241-254
    171. Tiemann, wood technology. 3rd ed., Pitman Publ. Corp., New York, Toronto, London. 1951 p. 180
    172. Toratti, T. & S. Svensson. Mechano-sorptive experiments perpendicular to grain under tensil and compressive loads. Wood Sci. &. Tech., 2000, 34: 317-326
    173. Ugolev, B.N. General laws of wood deformation and Theological properties of hardwood. Wood Science and Technology 1976, 10:169-181
    174. Ugolev, B.N. & N.V. Skuatov. Stress-strain state of wood at kiln drying. Wood Science and Technology 1992, 26:209-217
    175. Vermass, H.F. et al. Low temperature of Eucalyptus grandis. Holzforschung. 1988,42(4): 265-271
    176. Vermass, H.F. et al. Evaluation of Low Temperature and acceleration-low temperature drying schedule for Eucalyptus grandis. Holzforschung. 1989,43:207-212
    177. Vermass, H.F. & M.Borriska. Collapse during low temperature drying of E. grandis W. Hill and Pinus Silvestris L. 4th IUFRO international wood drying conference, Rotorua, New Zealand, 1994:141-150
    178. Vinden, P. & G Torgovinkov. Technique of wood microwave modification. Chinese wood industry, 2001, 15(5): 35-36
    17
    
    179. Visser, J. J. & H. F. Vermass. Biological-drying of Pinus radiata and Eucalyptus cladocalyx trees. J. Inst. Wood Sci., 1989, 11(5): 197-201
    180. Wang, H-W & R. L. Youngs Drying stress and check development in the wood of two oaks. IAWA Journal, 1996, 16(1): 15-30
    181. Wang, Z. & E. T. Choong; V. K. Gopu. Effect of presteaming on drying stresses of red oak using a coating and bending method. Wood and Fibre Science, 1994, 26(4): 527-535
    182. Welling, J. A model for the determination of drying stresses during kiln drying of lumber. Holz ais Roh-und Werkstoff, 1988, 46: 295-300
    183. Wiedenbeck, J. K. et al. Air permeability, shrinkage and moisture sorption of lodge pole pine stem wood. Wood and Fiber Science, 1990, 22(3): 229-245
    184. Wilkes, J. Collapse in billets of Eucalyptus spp. . J. Inst. Wood Sci., 1988, 11(3): 114-116
    185. Wilkins, A. P. & J. Wilkes. Observations on the mechanism of collapse in wood. J. Inst. Wood Sci., 1987, 11(2): 89-92
    186. Wu QL. An investigation of some problems in drying of Tasmanian Eucalypt timbers, M. Eng Sci. Thesis, University of Tasmanian, Hobart, Australia, 1989
    187. Wu QL. Rheological behavior of Doglas-fir as related to the process of drying. PhD Thesis, Oregon State University, Corvalis OR. America, 1993
    188. Wu, Q. & M. R. Millota. Effect of creep and mechano-sorptive effect on stress development during drying. Drying technology, 1994, 12(8): 2057-2085
    189. Wu, Q. & M. R. Millota. Rheological behavior of Douglas fir perpendicular to the grain at elevated temperature. Wood and Fiber Science, 1995, 27(3): 285-295
    190. Wu, Q. & M. R. Millota. Mechano-sorptive deformation of Douglas Fir specimens under tangential tensile stress during moisture adsorption. Wood and Fiber Science, 1996, 28(1): 128-132
    191. Yang, J. L. Relationship between microdensity and collapse in Eucalyptus regnans. J. Inst. Wood Sci., 1996, 14(2): 78-82
    192. Yang, J. L. An attempt to reduce collapse through introducing cell-well deformations. Wood and Fiber Science. 1998, 30(1): 81-90
    193. Zahid, D. M., ZH. Khan, M. A. Quraishi. Chemical modification of farm-grown eucalyptus wood to reduce seasoning deformation. Journal of Research(Science), Bahauddin Zakariya University, Muitan, Pakistan, 2001, 12(1): 08-14
    194. Zink, A. G. & R. W. Davidson; R. B. Hanna. Strain measurement in wood using a digital image correlation technique. Wood and Fiber Science, 1995, 27(4): 346-359
    195.成俊卿,木材学,北京,科学出版社,1980
    196.顾炼百,等《短周期工业材木材干燥技术的研究》鉴定材料,南京,1996
    
    197.陈太安,顾炼百,等汽蒸处理对青冈栎干缩系数及气体渗透性的影响.南京林业大学学报,2003,27(2):62-64
    198.陈太安,顾炼百.汽蒸处理回复赤桉干燥皱缩的研究.南京林业大学学报,2004.28(3)
    199.鲍甫成.中国重要树种液体渗透性的研究.林业科学,1992,28:237-245
    200.鲍甫成.木材渗透性可控制性原理研究.林业科学,1992,28:336-342
    201.鲍甫成.木材流体可渗性有效毛细管半径和数量的研究.林业科学,1993,29:521-530
    202.鲍甫成,等.中国主要人工林树种木材性质[M].北京:中国林业出版社,1998
    203.吕建雄,鲍甫成,姜笑梅,等汽蒸处理对木材渗透性的影响。林业科学,1994,30:352-357
    204.赵寿岳.中间处理减轻栎木板材干燥开裂的效果.林产工业,,1999,22(3):8-11
    205.杜国兴.木材水分非稳态扩散的研究南京林业大学学报,1991,15(2):76-82
    206.杜国兴,等汽蒸处理、干燥温度对马尾松内含物分布的影响林业科技开发,1994,2:25-26
    207.杜国兴.木材的干缩特性及其干裂势的研究.木材干燥学术讨论会论文集.1997,p:154-158
    208.曹金珍,等.木材的机械吸湿蠕变.北京林业大学学报 1998,20(5)
    209.刁秀明,等阔叶材干燥应力的研究—温度对干燥应力的影响林业科技,1994,19(2):37-41
    210.刁秀明.杯弯法测试木材干燥应力的研究,林产工业,1995,22(4):16-20
    211.刘应安.木材干燥应力测试的一种新方法,林业科技开发,1989,1:12-14
    212.龚仁梅.汽蒸处理对木材干燥应力的影响。林业科技,1996
    213.李维桔.木材弹性及木材干燥应力,2:木材干燥应力,南京林产工业学院学报,1982,4:73-79
    214.周宝华.木材干燥过程中内应力的初步研究,南京林产工业学院学报,1982,2:76-89
    215.李大纲.杨木高温干燥过程中水分迁移及流变特性的研究,博士学位论文,南京林业大学,1998
    216.刘元.桉树木材超微结构及其对干燥皱缩的影响,中南林学院学报 1995,15(1)
    217.刘元.木材皱缩机理及其特性研究 中南林学院学报1994,14(2)
    218.刘元.热处理对桉树皱缩的影响,林业科学,1994,30(2):140-144
    219.王忠厚,主编.制浆造纸化验与物检,中国轻工业出版社,p61-62
    220.王喜明.山杨小径木皱缩材组织结构的变化及其皱缩机理的探讨1991
    221.王喜明.紫椴小径材高温干燥工艺的研究林业科学,1993,29(3):287-292
    222.王喜明.水分移动引起木材皱缩形成机理的研究国家自然基金项目,2001
    223.彭海源.山杨小径材超微结构及其与干燥皱缩的关系 1989
    224.侯海旺.干燥工艺条件对木材皱缩特性的影响林产工业,2000,6
    225.杨家驹,等编著.世界商品木材的拉英汉名称,中国林业出版社 2000
    226.朱政贤.木材干燥(第二版),中国林业出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700