用户名: 密码: 验证码:
基于不同能量作用形式的胜利褐煤脱水机理及过程动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国拥有丰富的褐煤资源,但因其含水量高、热值低、易风化和自燃等特性,使得褐煤利用效率低,经济性差,并且脱水后褐煤易复吸自燃,造成资源浪费和环境污染。因此,研究褐煤高效、安全的脱水技术以及抑制脱水褐煤复吸技术势在必行。本文分析了褐煤基本特性,并表征了脱水褐煤的官能团和孔结构;采用不同能量形式对胜利褐煤进行脱水实验研究,揭示了不同能量形式含氧官能团和孔结构的变化规律;分析了不同能量形式褐煤脱水动力学;探讨了褐煤低温传热传质过程中颗粒内部水分随时间和位移的变化;并获得不同能量形式作用褐煤的复吸热力学和动力学特性;完成了低温热烟气快速干燥褐煤的实验装置的设计。
     褐煤基本特性分析包括含氧官能团、孔结构和矿物质赋存形态的分析。结果表明,褐煤全水分28.11%,低位发热量为12.68MJ/kg。FTIR和XPS结果表明褐煤中含有大量亲水基团,如羟基、羧基、羰基和醚氧基。BET结果表明,不同粒度褐煤的吸脱附曲线都属于Ⅱ类,并且出现滞洄环,说明褐煤的孔隙结构比较发达。由kelvin方程计算褐煤孔隙中产生毛细凝聚的最大孔半径为0.43nm。粒度<1mm的褐煤吸脱附曲线上有拐点,说明在较小的孔隙中存在着一端封闭的不透气性孔,即第Ⅱ类孔;而>1mm的没有拐点,是因为褐煤中存在两端都开放的孔型,也可能存在Ⅱ类孔。随着粒度的增大,褐煤的比表面积和孔容降低,而孔径集中分布在10-50nm之间。
     通过不同能量形式(热能和微波能)和能量强度(时间)对褐煤脱水特性的实验研究,获得褐煤脱水曲线和脱水褐煤含氧官能团和孔结构随能量形式和强度的变化规律。随着能量强度的增加和褐煤粒度的减小,其干燥速率增加。但真空干燥速率大于热风干燥速率。随着微波能量强度的增加,脱水速率增加。以温度为尺度,对于热强度作用褐煤的脱水过程,可分为两个阶段,120℃之前脱除褐煤中的自由水和部分孔隙水,120℃之后脱除少量的孔隙水和部分分子水;并且120℃之后将水分脱除到8%以下需25-30min。热强度和微波能量作用褐煤后,其表面部分含氧官能团-OH、-C=O和-COOH脱落。温度对官能团脱除较时间因素影响大。微波干燥褐煤的N2吸脱附曲线属于第Ⅲ类吸附等温线,而热风干燥与真空干燥褐煤的N2吸脱附曲线属于第Ⅱ类。随着温度的增加,真空与热风干燥褐煤的孔容和比表面积都减小,平均孔径增大;微波作用褐煤的比表面积和孔容随着时间的增加而减小。三种能量形式作用褐煤的孔结构分形维数都在2.35-2.5之间。
     不同能量形式作用褐煤脱水的过程动力学研究,结果表明,真空和热风干燥褐煤的动力学过程符合Logarithmic模型;微波干燥褐煤符合Two Term模型,R2均大于0.97。不同温度下,真空干燥褐煤(0.5-1mm)的有效水分扩散系数分布在4.906×10-12-1.727×10-11m2/s之间,水分扩散活化能为18.00kJ/mol。热风干燥褐煤(0.5-1mm)的有效扩散系数分布在4.84×10-10-7.09×10-9m2/s之间,水分扩散活化能为25.24kJ/mol;微波干燥褐煤的有效扩散系数随着粒度的增加而增大。褐煤脱水动力学的不同主要是由脱水机理不同引起。热风干燥过程中的水分传递的推动力主要是湿度梯度和温度梯度。而真空干燥过程中水分传递的推动力主要是由湿度梯度、温度梯度和压力梯度共同作用的形成。真空干燥褐煤和热风干燥褐煤过程中传热传质方向相反。而微波干燥褐煤过程中形成的温度梯度和湿度梯度方向一致,更有利于颗粒内部水蒸气的扩散。
     褐煤脱水过程中水分迁移与颗粒内部干湿界面的移动有关,受干湿界面产生的压强梯度、温度梯度和湿度梯度控制。颗粒内部的毛细管水分的迁移主要与褐煤中的孔结构有关,颗粒孔隙内的毛细管势为2.68kJ/kg。脱水过程中,褐煤颗粒内部由于产生湿应力和热应力而发生收缩现象,产生干燥应力。褐煤的干燥应力主要受颗粒表面的湿度梯度控制。将水势理论应用于褐煤脱水的过程,得到褐煤颗粒内部水分差分模型及相关系数K,随着温度的升高,K值增大。
     对不同能量形式作用的褐煤的水分复吸实验的研究结果表明,在相对湿度相同时,微波作用褐煤的水分复吸量最少。ZKHM的等温吸附Ⅱ类等温曲线,ZKHM和RFHM的吸附曲线上,在相对压力较低时都具有明显的滞洄环。三种脱水煤样的吸附势随着吸附空间的增加而降低。吸附势相同时,WBHM表面吸附同体积水蒸气,所需要的压力最大。水分在WBHM表面的等量吸附热最大,FRHM的等量吸附热最低,主要与褐煤表面的活性位点和表面含氧官能团有关。三种脱水褐煤的等量吸附热随着水蒸气吸附量的增加都呈下降趋势。水蒸气在三种脱水褐煤表面的吸附过程中,有效扩散系数大小关系是:WBHM>REHM>ZKHM。
     设计了褐煤低温热烟气干燥系统,计算了不同温度下热烟气的焓值和出口烟气的含水量为3.47%。当干燥装置进口烟气的含氧量为6%时,干燥装置的漏风系数为0.15。根据热量衡算,干燥装置消耗的总热量为212.95kJ/h,干燥装置中消耗的烟气总量为2473kg/h。
In this paper, the characteristics of lignite were analyzed and the functional groupand pore structure of dewatering lignite were measured. Dewatering experiments forShengli lignite was carried by different methods. It revealed that contain of oxygenfunctional group and pore structure were changed. Lignite dehydration kinetics wasanalyzed. The heat and mass transfer processes were discussed.It’s obtained that thecharacteristics of thermodynamics and kinetics for lignite dried by different methodsand also the experimental apparatus of lignite dried by hot flue gas at low temperaturewas designed.
     The oxygen-containing functional group, pore structure and mineral occurrenceform of lignite were analyzed. It turned out that total water content and lower heatingvalue of lignite respectively were28.11%and12.68MJ/kg. FTIR and XPS resultsshowed that it contained a large number of hydrophilic group in lignite, such ashydroxyl, carboxyl, carbonyl and ether oxygen radicals. BET results indicated that theabsorption and desorption curves of lignite with different granularity were typeⅡ andit displayed an increase in hysteresis, particularly at high relative pressures. Thebiggest pore radius of capillary condensation was0.43nm by equation Kelvin. Andthere were differences between the adsorption and desorption curves <1mmand>1mm, because the pore shapes were different. The specific surface area and porevolume of lignite decreased with the increasing of granularity. Pore diameters weredistributed between10to50nm.
     Dewatering properties of lignite dried by different form of energy andenergy intensity were studied in Chapter3.The results showed that drying curvesdisplayed acceleration and slacken stages. When the energy intensity decreased andthe granularity of lignite reduced, the drying rate increased.But the drying rate oflignite dried at vacuum condtions was greater than the lignite dried by hot air. Withthe increase of the intensity of microwave energy, drying rate of ligniteincreased.Thermal drying lignite strength, microwave drying can reach higher dryingrate in a relatively short time. After drying by heat intensity and microwave energy,the oxygen containing functional groups of lignite surface fell off, such as-OH, C=O and-COOH. The influence of temperature on functional groups removal wasgreater than the time. The absorption and desorption curves of lignite dried bymicrowave were type Ⅲ,where as the absorption and desorption curves of lignitedried by hot air and vacuum were typeⅡ.The pore volume and specific surface area of lignite dried by vacuum and hot air decreased, but the average pore size increased.The pore volume and specific surface area of lignite dried by microwave decreasedwith the time increased. The fractal dimensions of pore structure were2.35-2.5.
     Dehydration dynamics of lignite dried by different methods were studied inChapter4.The results showed that Logarithmic model were fit for describing thedehydration dynamics of lignite dried by vacuum and hot air. Two Term model wassuited to the dehydration dynamics of lignite dried by microwave. And the correlationcoefficients were more than0.97.The effective moisture diffusion coefficient oflignite dried by vacuum and hot air(0.5-1mm) respectively were4.906×10-12-1.727×10-11m2/s-1and4.84×10-10-7.09×10-9m2/s-1. The moisturediffusion activation energy of lignite dried by vacuum and hot air(0.5-1mm)respectively were18.00kJ/mol and25.24kJ/mol.The effective moisture diffusioncoefficient of lignite dried by microwave increased with the increase of lignitegranularity.The effective moisture diffusion coefficients of lignite dried by differentmethods were mainly influenced by the pore structure. The differences fordehydration kinetics of dried lignite were mainly controlled dehydrationmechanism.The results showed that the driving force of water transfer in lignite driedby hot air were moisture gradient and temperature gradient. The results showed thatthe driving force of water transfer in lignite dried by vacuum were moisture gradient,temperature gradient and pressure gradient. The direction for heat and mass transfer inthe lignite dried by vacuum and hot air were opposite. While the direction for heat andmass transfer in the lignite dried by microwave were the same.
     Moisture migration for drying lignite was related to the dry wet interface in theparticles. Moisture migration in the capillary of particles was related to the shape ofpore. The capillary potential in the pore was2.68kJ/kg.The contractions in the lignitedue to wet stress and thermal stress during the process of lignite dehydration. Dryingstress was mainly controlled by the moisture gradient on the surface of the particles.The water potential theory was applied to the process of lignite dewatering. Particlesinternal Moisture difference model was obtained. The water content distribution atdifferent time and location were obtained.
     Moisture re-absorption experiment of lignite dried by different methods werecarried out in the Chapter6.The results showed that the lignite dried by microwavere-absorbed least water.The absorption and desorption curves of lignite dried byvacuum were type Ⅱ.And it displayed hysteresis at low relative pressure.The adsorption potential of dried lignite declined with the increasing of adsorption space.The heat of adsorption on WBHM was most, while FRHM was least. It was mainlyrelated to active sites and oxygen-containing functional group on the surface oflignite.The heat of adsorption of the lignite dried by different methods decreased withthe increasing of the water vapor adsorption amount.The water vapor effectivediffusion coefficient was WBHM>REHM>ZKHM
     The drying system of lignite dried by hot flue gas at low temperature wasdesigned.The enthalpies of hot flue gas at different temperatures were calculated. Thewater content of exports of flue gas was3.47%.when the oxygen content of importflue gas was6%, the air leakage coefficient of the drying device was0.15. Accordingto heat balance, the total consumption quantity of heat of drying device was212.95kJ/h, and the consumption amount of the flue gas was2473kg/h.
引文
[1]崔民选.2007年中国能源报告[M].北京:社会科学文献出版社,2007
    [2]尹之群.我国褐煤资源及其利用前景[J].煤炭科学技术,2004,32(8):12-14.
    [3]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999.
    [4]潘大勇,蒋宝和,曹雷鸣,等.清河发电公司试燃用蒙东褐煤的措施与实践[J].电力设备,2007,8(3):78-80.
    [5]马驹.全国主要煤炭基地煤炭运输铁路水路分工研究[J].铁道工程学报,2008,(6):20-23.
    [6]吕向前,刘炯天.浮选精煤中水的存在形式与脱除[J].煤炭技术,2005(1):47-49.
    [7] Kocherbitov Vitaly, Ulvenlund Stefan, Kober Mariaet al. Hydration of MicrocrystallineCellulose and Milled Cellulose Studied by Sorption Calorimetry [J]. The Journal of PhysicalChemistry B,2008,112(12):3728-3734.
    [8] Christian Bergins. Mechanical/thermal dewatering of lignite Part2: A rheological model forconsolidation and creep process [J]. Fuel,2004,83(3):267-276.
    [9] Vassileva Christina G. Behaviour of inorganic matter during heating of Bulgarian coals [J].Fuel Processing Technology,2005,86(12–13):1297-1333.
    [10]Evans G D. The brown-coal water system Part4: Shinkage on drying [J]. Fuel,1973,52:186-190.
    [11] R. Kaji, Y. Muranaka, K. Otsukaet al. Water absorption by coals:effects of pore structure andsurface oxygen[J]. Fuel,1986,65(2):288-291.
    [12] Butler J C. The Fate of Trace Elements During MTE and HTD Dewatering of Latrobe ValleyBrown Coals [J]. Coal Preparation,2007(27):210-229.
    [13]赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008(7):799-802.
    [14]李东涛,李文,李保庆.煤中氢键研究的新进展[J].化学通报,2001(7):411-415.
    [15]傅雪海,焦宗福,秦勇等.低煤级煤平衡水条件下的吸附实验[J].辽宁工程技术大学学报,2005(2):161-164.
    [16]赵志根,蒋新生谈煤的孔隙大小分类[J].标准化报道,2000,21(5):23-24.
    [17]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报.1987,12(4):51-57.
    [18] Gan H, Nandi S P, Walkeer P L. Nature of the porosity American coals [J]. Fuel,1972,51(2):272-277
    [19] Everett D H, Stone F S, eds. The structure and properties of porous materials[M]. New YorkLondon: Academic Press,1959.
    [20]姚多喜,吕劲.淮南谢一矿煤的孔隙性研究[J].中国煤田地质,1996,8(4):31-33,78.
    [21]吴俊.中国煤成烃基本理论与实践[M].北京:煤炭工业出版社.1994:136-146.
    [22]李明潮,张五侪.中国主要煤田的浅成煤成气[M].北京:科学出版.1990:109-120.
    [23]张新民,张遂安,钟玲文等.中国的煤层甲烷[M].西安:陕西科学技术出版社.1991,36-49.
    [24]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社.1992.1-19.
    [25]张占存.煤的吸附特征及煤中孔隙的分布规律[J].煤矿安全,2006(9).
    [26]赵虹,郭飞,杨建国.印尼褐煤的吸附特性及脱水研究[J].煤炭学报,2008(7):799-802.
    [27]李培,周永刚,杨建国等.蒙东褐煤脱水改质的孔隙特性研究[J].动力工程学报,2011(3):176-180.
    [28]吴弋峰,初茉,畅志兵等.干燥提质对褐煤表面结构的影响[J].煤炭工程,2012(2):99-101.
    [29]肖宝清,周小玲.煤的孔隙特性与煤中水分关系的研究[J].矿冶,1995,4(1):90-94.
    [30]赵志根,唐修义.低温氮吸附法测试煤中微孔隙及其意义[J].煤田地质与勘探,2001,29(5):28-30.
    [31]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(5):551-555.
    [32]任庚坡,张超群,姜秀民,于立军大同煤的表面微观结构分析[J]燃烧科学与技术。2007,13(3):266-269.
    [33] Mandelbort B. B. The fractal geometry of nature [M]. San Francisco: Freman,1982.
    [34]纪发华,张一伟.分形几何学在储层非均质性描述中的应用[J].石油大学学报:自然科学版,1994,18(5):161-167.
    [35]张瑞.分形几何在自动袜机电子控制系统中的应用[D].杭州:浙江工业大学,2009.
    [36]顾璠,许晋源,沈红梅.煤颗粒燃烧的孔隙特性研究[J].燃料化学学报,1993,21(4):425-428.
    [37] Zajdlik R, Jelemensky L, Remiarova B, et al. Experimental and sotherm incestigation ofsingle coal combustion[J].Chemical Engineering Science.2001,38(14):1355-1361.
    [38] Daud W M,Ali W S,Slulaiman M Z.The effects of carbonization temperature on poredevelopment in palm-shell-based acticated carbon[J].Carbon,2000,38(14):1925-1932.
    [39]晏蓉,赵思安,郑楚光.比表面分析法研究劣质动力煤的燃烧特性[J].煤炭转化,1995,18(2):56-63.
    [40]张静英.煤的着火燃尽特性及其燃烧过程中空隙结构变化研究[D].武汉:华中理工大学,1997.
    [41] Nakamura K, Takashi M, Kuwahara, et al.Demonstration test and pratical studies oncombustion technologies of micro-pulverized coal [A].International Conference on PowerEngineering-97[C]. Tokyo,1997,V2,2.
    [42] Bale H. D, Schmidt P. W. Small-angel-X-ray scanning incestigation of submicroscopicporosities. Phys Rew Lett.1984,53(5):964.
    [43] Avnir D, Jaroniec M.An isotherm equation for adsorption on fractal surfaces ofheterogeneous porous materials[J].Langmuir,1989,56(6):1431-1433.
    [44]亓中立.煤的孔隙分形规律的研究[J].煤矿安全,1994(6):2-5,22.
    [45]王文峰,徐磊,傅雪海应用分形理论研究煤孔隙结构[J].中国煤田地质,2002,14(2):26-28.
    [46]杨珂.微观剩余油仿真模型研究[D].东营:中国石油大学(华东),2009.
    [47]张婷,徐守余,杨珂.储层微观孔隙结构分形维数应用[J].大庆石油学院学报。2010,34(3):44-48.
    [48]姜秀民,杨海平,闰澈,张超群,郑楚光.刘德昌超细化煤粉表面形态分形特征[J].中国电机工程学报,2003,23(12):165-169.
    [49]秦跃平,傅贵.煤孔隙分形特性及其吸水性能的研究[J].煤炭学报,2000,25(1):55-59
    [50]徐龙君,张代钧,鲜学福.煤的吸附特征及其应用[J].煤炭转化,997(2):25-31.
    [51]鲜学福,徐龙君,张代钧.煤微孔表面的分形维数及其变化规律的研究[J].燃料化学学报,1996(1):81-86.
    [52]鲜学福,徐龙君,张代钧.煤微孔的分形结构特征及其研究方法[J].煤炭转化,1995(1):31-38.
    [53]罗陨飞.煤的大分子结构研究_煤中惰质组结构及煤中氧的赋存形态[D].太原理工大学,2002.
    [54]李敏.煤表面含氧官能团的研究[D].太原理工大学,2004.
    [55]李少章,朱书全.煤的表面疏水性与其组成之间的关系[J].洁净煤技术,2004,10(3):15-18.
    [56] Begreev A, Bandosz T J.H2S adsorption/oxidation unmodified activated carbons: importanceof prehumidification [J].Carbon,2001,39(15),2303-2311.
    [57]邱介山,王艳斌,邓贻钊.几种活性炭表面酸性基团的测定及其对吸附性能的影响[J].炭素技术,1996,4,11.
    [58] Karanfil, Tanju Kilduff et al. Role of granular activated carbon surface chemistry on theadsorption of organic compounds.l.Priority Pollutants[J].Environmental Science and Technoloy1999,33(18),3217-3224.
    [59]Bainbridge J R, Satchwell K. Experiments in Fleissner Drying Victorian brown coal[J]. Fuel,1947,26:28-38.
    [60] Allardice D. J., Clemow L. M., Favas G.et al. Ther characterisation of different forms ofwater in low rank coals and some hydrothermally dried products[J]. Fuel,2003,82:661-667.
    [61]Aida T, Nishisu A, Yonedaet M al. Preprints of Symposia-American Chemical Society[J].Division of Fuel Chemistry,2001(46):325.
    [62]筏羲人,徐德恒,肖衍繁,刘庆普译.高分子表面的基础和应用,北京,化学工业出版社,1990,79-80.
    [63] Gong B, Pigram P J, Lamb R N etal. Surface characterization of mineral matter in anAustralian bituminous coal(whybrow seam,NSW) using x-ray Photoelectron and laser ionizationmass analysis, Fuel Proeessing Teehnology,1997,50(1),69-86.
    [64]李登新,吴家珊,宋永玮.热处理低阶煤的表面性质及其对型煤抗压强度的影响,煤炭转化,1994,17(2),31-35.
    [65]刘粉荣,李文,郭慧卿等. XPS法研究煤表面碳官能团的变化及硫迁移行为(英文)[J].燃料化学学报,2011(2):81-84.
    [66]常海洲,王传格,曾凡桂等.不同还原程度煤显微组分组表面结构XPS对比分析[J].燃料化学学报,2006,34(4):389-394.
    [67]刘利,崔文权,陈鹏等.利用XPS研究低温干燥脱水过程中煤的氧化规律[J].煤炭技术,2010,29(5):189-191.
    [68]向军,胡松,孙路石等.煤燃烧过程中碳、氧官能团演化行为[J].化工学报,2006,57(9):2180-2184.
    [69]段旭琴,王祖讷,孙春宝.神府煤显微组分表面性质研究[J].中国矿业大学学报,2007(5):630-635.
    [70]Liang D H. Secondary ion mass spectromettry of high-sulfur coal: Observation andinterpretation of polysulfur ions[J]. Chinese Science Bulletin,1999,44(13):1242-1245.
    [71]梁汉东,李艳芳,左丹英等.煤表面二次离子质谱分析的无机定性分析方法[J].中国矿业大学学报,2001(2):73-76.
    [72]筏羲人,徐德恒,肖衍繁等译.高分子表面的基础和应用[M].北京工业出版社,1990.
    [73]上官炬.改性半焦烟气脱硫剂的物理结构和表面化学特性变化机理[D].太原理工大学,2006.
    [74]李永昕,吉文欣.超声辐照前后水煤浆浆体的动电势变化研究[J].燃料化学学报,2002(6):559-562.
    [75]郭梦熊,霍卫东,安征等.不同挥发分煤的浮选理论与实践[J].煤炭科学技术,1999, l,46-45.
    [76]谢微.含氧化合物红外光谱信息特征的研究[D].四川大学分析化学,2006.
    [77]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究[J].中国矿业大学学报,2002,31(5):362-366.
    [78]黄庠永,姜秀民,张超群等.颗粒粒径对煤表面羟基官能团的影响[J].燃烧科学与技术,2009(5):457-460.
    [79]朱学栋,朱子彬,韩崇家等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999(4):335-339.
    [80]张卫,曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报,2005(5):545-548.
    [81]武中臣,熊智新,王海东等.褐煤品质的里叶变换近红外光谱定量分析[J].光谱实验室,2008,25(5):819-823.
    [82]王天威.褐煤改质的基础研究[J].应用能源技术,2007,(09):12-16.
    [83]李春柱.维多利亚褐煤科学进展[M].北京:化学工业出版社,2009.
    [84]井汲忠思,葛松山.关于劣煤的应用[J].煤炭转化,1984,01.
    [85] Kudra T, Mujumdar A S.先进干燥技术[M].化学工业出版社,2005.
    [86] Mendes Paula, etal. Impulse drying technology: The state of the art and the recent advances[J]. Association Technique of Industrie Papetiere:2004,58:25-34.
    [87]刘相东,杨彬彬.多孔介质干燥理论的回顾与展望[J].中国农业大学学报,2005,10(4):81-92.
    [88]杨俊红.植物性含湿多孔介质在干燥过程中优化传热传质机理的研究[D].天津大学,2007.
    [89]张洪沉,丁绪淮,顾毓珍.化工过程及设备[M].北京:高等教育出版社,1957.
    [90]邹积琴,王宝和.碱式碳酸镁纳米花的干燥动力学研究〔J〕.干燥技术与设备,2008,6(4):194-198.
    [91]毛慧欧,任立义.物料干燥过程传质传热最优化方法的研究[J].辽宁化工,1997,26(1):14-17.
    [92] Zhao H, Chen G.Heat and mass transfer during low intensity convection drying[J].ChemicalEngineering Science,1999,54(17):3899-3908.
    [93] Choi J, Kim M, Kim J, et al.Drying characteristics of bean-curd refuse[J].Journal of theTaiwan Institute of Chemical Engineers,2009,41(20):157-161.
    [94]魏砾宏,王雪花,李润东,等.脱水污泥等温干燥特性实验研究及回归分析[J].环境科学学报,2011,31(1):123-129.
    [95] Mastumoto S, Pei D C.A mathematical analysis of pneumatic drying of grains-constantdrying rate[J].International Journal of Heat Transfer,1984,27(6):843-849.
    [96] Martin H, saleh A H.The drying of fine granular material in a pneumatic drier [J].International Chemical Engineering,1984,24(1):13-22.
    [97] Pelegrina A H, Crapiste G H.Modeling the pneumatic drying of food particles [J]. Journal ofFood Engineering,2001,48(4):301-310.
    [98] Chen Z, Wu W, Agarwal P K.Steam-drying of coal Part1:modeling the behavior of a singleparticle[J].Fuel,2000,79(8):961-973.
    [99] Hager J, Hermansson M, Wimmerstedt, R.Modeling steam drying of a single porous ceramicsphere:experiments and simulations[J].Chemical Engineering Science,1997,52(8):1253-1264.
    [100]淮秀兰,王立.粒状物料干燥过程中的传热传质分析[J],北京科技大学学报,1998,20(5):484-489.
    [101]邱学农,张景春.颗粒状物料干燥过程水分分布的数值解[J].山东建材学院学报,1995,9(4):70-74.
    [102]郝正虎,吴玉新,吕俊复,张守玉,王秀军,彭定茂.单颗粒褐煤烟气干燥过程模型研究[J].中国电机工程学报,2012,32(11):47-54.
    [103] Tae-Jin Kang, Hueon Namkung, Li-Hua Xu, Sihyun Lee, Sangdo Kim, Hyok-BoKwon,Hyung-Taek Kim. The drying kinetics of Indonesian low rank coal (IBC) using a lab scalefixed-bed reactor and thermobalance to apply catalytic gasification process [J]. Renewable Energy,2013,54:138-143.
    [104] Daniel G. P., Ismael F. P., Pedro F. V. and Juan Carlos G. L. Determination of moisturecontent in power station coal using microwaves [J]. Fuel,1996,75(2)133-138.
    [105]熊程程,向飞,吕清刚.温度和相对湿度对褐煤干燥动力学特性的影响[J].化工学报,2011,62(10):2898-2904.
    [106] Zhao Weidong, Liu Jian zhong, ZhouJunh, e t al. Investigation of the isothermaldewatering of brown coal by thermo-balance [J]. Proceedings of the CSEE,2009,29(14):71-79.
    [107] Li Xianchun, Song Hui, Wang Qi, et al. Experimental study on drying and moisturerse-adsorption kinetics of an Indonesian low rank coal [J]. Journal of Environmental Sciences,2009,21(supplement1): S127-S130.
    [108] Fyhr C, Kemp I. C. Evaluation of the thin-layer method used for measuring single particledrying kinetic [J]. Institution of Chemical Engineers Trans IChemE Part A,1998,76:815-822.
    [109]郭治,杜万斗,初茉,吴弋峰.褐煤干燥动力学模型研究[J].神化科技,2011,9(5):66-69.
    [110] Hasatani M, Itaya Y. Drying-induced strain and stress: a review [J]. Drying Technology,1996,14:1011-1040.
    [111]王维,陈国华.固体干的物料解释和建模综述[J].干燥技术与设备,2006,4(4):180-188.
    [112] Kowalski, S J. Drying processes involving permanent deformations of dried materials.International Journal of Engineering Science [J],1996b,34:1491-1506.
    [113] Kowalski S J, Rybicki A. Drying stress formation by inhomogeneous moisture andtemperature distribution [J]. Transport in Porous Media,1996,24:139-156.
    [114]王涛.褐煤的脱水提质及干蜘热分解动力学研究[D].大连理工大学,2011.
    [115]张丰豪.大庆褐煤中矿物元素的赋存形态及颗粒物的生成特性[D].华中科技大学,2007.
    [116]Saito M, Murtata H, Sadakata M. Combustion behavior of pulverized coal particle in a hightemperature high oxygen concentration atmosphere[J]. Fuel,1991,70:709-719.
    [117] Dacombe P. J, Hampartsoumian E., Pourkashania M n. Fragmentation of large coal particlein a drop-tube furnace[J]. Fuel,1995,73(8):1365-1367.
    [118] K. Matsuoka, H. Akiho, W. C. Xu, et al. The physical character of coal char formed duringrapid pyrolysis at high pressure [J]. Fuel,2005,84:63-69.
    [119] Wall T. F, Liu G. S, Wu H. W, et al. The effects of pressure on coal reactions duringpulverized coal combustion and gasification [J]. Progress in Energy and Combustion Science,2002,28:405-433.
    [120] Kang S. G, Sarofim A. F, Beer J. E. Effect of char structure on residual ash formation duringpulverized coal combustion[J].24th Symposium on Combustion,1992:1153-1159.
    [121] Hurley J. P., Schobert H. H. Ash formation during pulverized sub-bituminous coalcombustion: inorganic transformation during middle and late stage of burn out [J]. Energy andFuels,1993,7:542-553.
    [122] Helble J. J, Sarofim A. F. Influence of char fragmentation on ash particle size distribution[J].Combustion and Flame,1989,76:183-196.
    [123] Chang Liping, Qin Zheng, Wang Meijun,Zhang Yulong.Effects of FeCl3Additon onRransformation of Organic Sulfur During the Pyrolysis Upgrading of Ximeng Brown Coal[J].Journal of Taiyuan University of Technology,2012,43(4):406-410.
    [124]邸传耕,吕舜.低温干燥对褐煤性能的影响[J].煤炭加工与综合利用,2008,(4):28-30.
    [125]戴中蜀,郑昀晖,马立红.低煤化度煤低温热解脱氧后结构的变化[J].燃料化学学报,1999,27(3):256-260.
    [126]孙成功,吴家珊,李保庆.低温热改质煤表面性质变化及其对浆体流变特性的影响[J].燃料化学学报,1996,24(2):174-180
    [127] Martina vabova, Zuzana Weishauptova, Oldrich Pribyl. Water vapour adsorption oncoal[J].Fuel,2011,90:1892–1899.
    [128] Delphine Charrière, Philippe Behra.Water sorption on coals[J].Journal of Colloid andInterface Science,2010,344:460–467.
    [129] Alan L. McCutcheon,*Wesley A. Barton, and Michael A. Wilson.Characterization of WaterAdsorbed on Bituminous Coals[J]. Energy&Fuels2003,17:107-112.
    [130]文友先,刘俭英,杨文斌,王巧华.稻谷吸附的热力学性能研究[J].粮食与饲料工艺,2000,9(10):14-16.
    [131]李先春,余江龙,胡广涛,汪琦.印尼褐煤干燥和水分再吸收特性的试验研究[J].现代化工,2009,(增刊):5-8.
    [132]宋玲玲,冯莉,刘炯天,等.碱液处理对褐煤孔隙结构的影响[J].中国矿业大学学报,2012,41(4):629-634.
    [133] Yang Yunlong, Liu Xiao, Jing Xiaoxia, Li Zhiqiang, Chang Liping. Effect of Drying Timeon the Change of Pore Strucure an Re-adsorption Behavior of Lignite[J]. Journal of TaiyuanUnibersity of Techology,2013,44(4):416-410.
    [134] Fu Zhixin,Song Xueping,Gao Guoshuang,Wang Jianfeng,Sun Zhanxiu.Experimentalresearch on moisture re-adsorption of dewatered lignite[J]. Clean Coal Technology.2011,17(5):74-77.
    [135] Shen Wangjun, Liu Jianzhong, Yu Yujie, Zhu Jiefeng, Zhou Junhu, Chen Kefa. ExperimentalStudy on Drying and Reabsorption of the Lignite of Ximeng [J]. Proceedings of the CSEE,2013,33(17):63-70.
    [136]华人民共和国国家标准.商品煤样人工采取方法[S].GB475-2008.
    [137]中华人民共和国国家标准.煤中全水分的测定方法[S].GB/T211-2007
    [138]中华人民共和国国家标准.煤的工业分析方法[S].GB/T212-2008
    [139]中华人民共和国国家标准.煤的元素分析方法[S].GB/T476-2001.
    [140] Painter P. C., Sobkowiak M., Youtcheff J. FT-ir study of hydrogen bonding in coal[J]. Fuel,1987,66(7):973-978.
    [141]肖建新,陈善庆,卢继霞.镜质体芳核C=C键红外吸收波数的变化规律及意义[J].科学通报,1997,24:2642-2644.
    [142]严继民,张启元,高敬琮.吸附与凝聚[M].北京:科学出版社,1986.
    [143] Brunauer S, Deming L. S, Deming W. S.The adsorpt ion of gases and vapore [J]. J AmerChem Soc,1940,62(6):1723~1725.
    [144]严继民,张培元.吸附与凝聚[M].北京:科学出版社,1979.
    [145] EverettDH, StoneFS, ed.The structure and properties of porous materials [M]. London:Butterworth,1958.
    [146]汪政德,张茂林,梅海燕,孙良田,李士伦,吴清松.毛细凝聚和吸附-脱附回路的物理化学解释[J].新疆石油地质,2002,23(3):233-236.
    [147]何更生.油层物理[M].北京:石油工业出版社,1993.192-207.
    [148]段旭琴,王祖讷,孙春宝.神府煤显微组分表面性质研究[J].中国矿业大学学报.2007(5):630-635.
    [149]段旭琴,王祖讷.煤显微组分表面含氧官能团的XPS分析[J].辽宁工程技术大学学报(自然科学版).2010,29(3):498-501.
    [150]贾燕.褐煤结构的实验分析[D].太原理工大学,2002.
    [151]王涛,于才渊.基于薄层干燥模型的褐煤干燥动力学研究.干燥技术与设备,2011,9(3),110-119.
    [152]王冲,董建勋,等.褐煤深度脱水的实验研究[J].洁净煤技术,2012,18(1):49-52.
    [153]徐成海,张世伟,关奎之.真空干燥.北京:化学工业出版社,2004.
    [154]马学文,翁焕新.温度与颗粒大小对污泥干燥特性的影响[J].浙江大学学报(工学版),2009,43(9):1663-1670.
    [155] CalbanT,ErsahanH.Drying of a Turkish lignite in a batch fluidized bed[J].Energy sources,2003,25(12):1129-1135.
    [156] T,M A,Labuza TP. Effecet of geometry on the effective moisture transfer diffusioncoefficient[J]. Journal of Food Engineering,30(3-4):433-447.
    [157]张玉荣,周显青热风和真空干燥玉米的品质评价与指标筛选[J].农业工程学报,2010,26(3):346-352.
    [158]张志军,徐成海,张世伟,等.粮食真空干燥的技术经济与环境分析[J].节能,2006(8):10-13.
    [159]赵祥涛.高水分玉米真空低温干燥工艺性试验研究[J].粮食储藏,2007(4):51-54.
    [160]杨景超,肖雷,许丽华,张文娟.基于微波技术的褐煤脱水试验研究[J].煤炭工程,2012,(9):93-95.
    [161]张卫,曾凡桂.中等变质程度煤中羟基的红外光谱分析[J].太原理工大学学报,2005(5):545-548.
    [162] Barra Jose V., Munoz Edger, Moliner Rafael. FTIR study of the evolution of coal structureduring the coalification process [J]. Fuel,1996,24(6):725-735.
    [163]王宝和.干燥动力学综述[J].干燥技术与设备,2009,7(01):27-39.
    [164] Li X, Song H, Wang Q, et al. Experimental study on drying and moisture re-adsorptionkinetics of an Indonesian low rank coal[J]. Journal of Environmental Sciences,2009,21:S127-S130.
    [165] Doymaz I. Convective air drying characteristics of thin layer carrots[J].Journal of FoodEngineerining.2004,61:359-364.
    [166] White G.M., Ross I.J.,Poneleit C.G.Fully exposed drying of popcorn[J].Transactions of theASAE,1981,24:466-468.
    [167] Adnan Midilli,Hayadar Kucuk.Mathematical modeling of thin layer drying of pistachio byusing solar energy[J].Energy Conversion and Management.2003.44:1111-1122.
    [168] Yaldiz O., Ertekin C.Thin layer solar drying some different vegetables [J].DryingTechnology.2001.19(3):583-596
    [169] Duffie JA, Beckman W A.Solar engineering of thermal process [M].New York:Wiley,1991.
    [170]曾钦,李军,王慧香,等.内蒙古某褐煤干燥特性的实验研究[J].洁净煤技术,2011,17(2):57-59.
    [171] KudraT, Mujumdar A5.先进干燥技术[Ml.化学工业出版社,2005.
    [172]熊程程,褐煤干燥过程的试验研究及动力学分析[D],2011,中国科学院.
    [173]耿朋飞,高帅,韩翔宇,杨瑞科,鲁丹丹,范秀圆.微波技术在褐煤干燥中的应用[M].江西煤炭科技,2013.(2)56-61.
    [174]郑阳,廖传华,黄振仁.基于毛细理论的含湿多孔介质内水分迁移过程[J].干燥技术与设备,2005,3(3):129-131.
    [175]潘永康.现代干燥技术[M].北京:化学工业版社,1998.
    [176]李有荣,多孔物料干燥过程中的体积收缩特性[J].重庆大学学报,1994,17(2):136-140.
    [177] R.B.基伊.干燥原理及应用[M].上海科学技术文献出版社,1986.
    [178]习岗,李伟昌.现代农业和生物学中的物理学[M].北京:科学出版社,2001,133-139.
    [179] A.C.金兹布尔格,高奎元译.食品干燥原理与技术基础[M].北京:轻工业出版设,1984.
    [180]杨奇林.数学物理方程与特殊函数[M].北京:人民教育出版社,2004.
    [181]徐涛.数值计算方法[M].吉林:吉林科学技术出版社,1998.
    [182]陶长元,刘信安,杜军.固体表面对水蒸气的亲和性与分维[J].化学研究与应用,1995,7(2):199-201.
    [183] Skaar O. Wood–water relations [M]. Berlin: Springer Verlag;1988.
    [184] Callum C.L, Bandosz T.J., McGrother S.C., Müller E.A., Gubbins K.E.. A molecular modelfor adsorption of water on activated carbon: comparison of simulation and experiment [J].Langmuir1999;15:533-44.
    [185] Nishino J. Adsorption of water vapor and carbon dioxide at carboxylic functional groups onthe surface of coal [J]. Fuel2001,80:757–764.
    [186] Kaji, R.; Muranaka, Y.; Otsuka, K.; Hishinuma, Y. Fuel,1986,65,288-291.
    [187] Mahajan, O. P.; Walker, P. L., Jr.Fuel,1971,50,308-317.
    [188] Baker, F. S.; Sing, K. S. W.; Stryker, L. J.Chem. Ind.1970,718.
    [189] Alan L. McCutcheon,*Wesley A. Barton, and Michael A. Wilson.Characterization of WaterAdsorbed on Bituminous Coals [J]. Energy&Fuels,2003,17,107-112.
    [190] Larsen J. W., Hall P., Wernett P. C.[J]. Energy Fuel,1995,9,324-330.
    [191]高德霖,张琪,孙小玉.气相吸附平衡的推算-吸附势理论和微孔吸附容积充填理论[J].精细化工原料及中间体,2003,11:2-8.
    [192] Ozawa S, Kusurni S, Og ino Y J. Physical adsor pt ion of gasesathigh pressu res: Animprovement of the Dubin in A stakhov adsrption equation[J]. Colloid&I nterface Science,1976,56:83-91.
    [193]苏现波,陈润,林晓英,宋岩.吸附势理论在煤层气吸附/解吸中的应用[J].地质学报,2008,82(10):1382-1389.
    [194]顾惕人,朱步瑶,李外郎,等.2001.表面化学[M].北京:科学出版社,275-280.
    [195]顾惕人.波拉尼吸附势理论及其在溶液吸附中的应用[J].化学通报,1982,1(1):1-6.
    [196] S. Brunauer, P.H. Emmett, E.J. Teller, Am. Chem. Soc.1938,60:309.
    [197] S. Brunauer, The Adsorption of Gas and Vapours [M], Clarendon Press, Oxford andPrinceton University Press, Princeton,1945.
    [198] R.L. Bond, Porous Carbon Solids [M], Academic Press, London,1967.
    [199] D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics [M],88th ed., CRC Press,Boca Raton, FL,2007.
    [200] C. Skaar, Wood Water Relations[M], Springer Verlag, Berlin,1988.
    [201] Charriere D, Behra P. Water sorption on coals[J]. J Colloid Interf Sci.2010,344:460-467.
    [202] Smith D.M., F.L. Williams, Fuel,1984(63):251.
    [203]Cossarutto L., Zimny T., Kaczmarczyk J., Siemieniewska T., Bimer J., Weber J.V.,Carbon.2001(39):2339.
    [204] Harding AW, Foley NJ, Norman PR, Francis DC, Thomas KM. Diffusion barriers in thekinetics of water vapor adsorption/desorption on activated carbons[J].Langmuir1998;14:3858–64.
    [205] J. Crank. The Mathematics of Diffusion[M], seconded, Oxford University Press, New York,1975.
    [206] Fletcher AJ, Uygur Y, Thomas KM. Role of surface functional groups in the adsorptionkinetics of water vapor on microporous activated carbons[J]. J Phys Chem C2007;111:8349–59.
    [207]降文萍,崔永君,张群,等.不同变质程度煤表面与甲烷相互作用的量子化学研究[J].煤炭学报,2007,32(3):292-295.
    [208]降文萍.煤阶对煤吸附能力影响的微观机理研究[J].中国煤层气,2009,6(2):19-22.
    [209]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990.
    [210]胡涛,马正飞,姚虎卿.吸附热预测吸附等温线[J].南京工业大学学报,2002,24(2):34-39.
    [211]胡涛,马正飞,姚虎卿.吸附热预测吸附等温线[J].南京工业大学学报,2002,,2(2):34-39.
    [212]冯俊凯,沈幼庭,杨瑞昌.锅炉原理与计算(第三版)[M].北京:科学出版社,2003.15-25.
    [213] Luikov A.V., MoskoW.M.Heat and mass transfer [J].1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700