用户名: 密码: 验证码:
渍害对冬小麦—夏玉米生理生态特性和产量的影响及氮素调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,由于沿淮地区洪涝灾害频繁,降水量主要集中在夏季,6~9月降水量约占年降水量的50%~80%,而这一时期正是主要作物适时收获、播种和生长的关键时期,易造成作物减产或绝收,给当地农村带来巨大损失。沿淮地区发生洪涝危害的主要作物为小麦、水稻、玉米,影响了沿淮地区粮食生产潜力的发挥。如何提高沿淮地区粮食生产能力,减轻渍害对小麦、玉米生产所造成的危害,关系安徽省和全国粮食产业的发展。本文在沿淮地区小麦-玉米连作模式下,通过两年大田试验,系统研究了渍害和不同氮肥运筹方式对小麦-玉米生理生态效应的影响;渍害模式下不同氮肥运筹方式对小麦-玉米的恢复生长的补偿效应。探讨适宜沿淮地区小麦-玉米生产的氮肥运筹方式,以期为沿淮地区小麦-玉米高效栽培提供理论依据和实践尝试。主要研究结果和结论如下:
     1渍害对冬小麦生理生态特性和产量的影响及氮素调控
     (1)孕穗期渍害显著降低旗叶叶绿素含量、Fv/Fo、Fv/Fm、qP、PSII、ETRmax、和Ek。氮肥后移显著提高叶绿素含量和叶绿素荧光各参数。叶绿素含量与Fv/Fm、qP和PSII呈显著正相关,与NPQ呈显著负相关。渍害下氮肥的补偿效应较正常供水明显。氮肥后移运筹方式显著减轻渍害对光合器官的破坏,使小麦生育后期功能叶具有较强的光捕获能力和光化学效率,改善了旗叶光合性能。(2)孕穗期渍害显著降低小麦植株各器官氮素含量,同时降低开花前氮素的转运率。氮肥后移技术提高单茎氮素积累量和花前氮素转运率,表明氮肥后移技术能够弥补渍水逆境导致的氮素流失,保证小麦生育后期足够的氮素供应量。(3)孕穗期渍害缩短籽粒灌浆期、降低籽粒灌浆速率;氮肥后移使灌浆期延长,平均灌浆速率提高,从而较氮肥前移显著提高小麦千粒重,弥补渍害对小麦的影响。不同粒位和不同穗位籽粒灌浆特性表明,第一粒位最大潜力势K低于第二粒位。主茎穗、第一分蘖穗和第二分蘖穗的第一和第二粒位籽粒最大潜力势也表现为主茎穗>第一分蘖>第二分蘖。(4)孕穗期渍害对分蘖穗结实特性影响大于主茎穗,渍害显著增加不孕小穗数,降低结实小穗数。孕穗期渍害显著降低主茎穗结实4粒的小穗数比例和分蘖穗结实3、4粒小穗数的比例及第3、4粒位籽粒粒重和第3、4粒位粒重对单穗粒重的贡献率。氮肥前移增加不孕小穗数,降低结实小穗数和结实粒数。氮肥后移显著提高孕穗期受渍小麦主茎、分蘖穗结实小穗数和粒重,增加主茎和分蘖穗结实3、4粒小穗的比例和结实小穗第3、4粒位的粒重,提高第3、4粒位粒重对单穗粒重的贡献率,减少不孕小穗数,进而较氮肥前移处理显著提高经济产量。氮肥后移运筹方式有利于减轻孕穗期渍害对小麦穗部结实特性的影响。
     2渍害对夏玉米生理生态特性和产量的影响及氮素调控
     (1)苗期渍害降低群体叶面积系数(LAI),造成玉米生长发育受阻,穗下层叶片较早衰老使得群体LAI降低。苗期渍害下营养优先供应穗位叶片的生长以保证光合产物向籽粒的供应和转运。氮肥后移能够通过增大穗位层和穗上层叶片的LAI来弥补穗下层LAI降低导致的群体LAI降低的趋势,且弥补的效应大于渍害导致穗下层LAI降低的效应,进而使得苗期渍害下氮肥后移的群体LAI较氮肥前移增大。(2)苗期渍害显著降低叶绿素含量和叶绿素a/b比率,Fv/Fm、qP、 PSII、P%、ETRmax、和Ek;增大NPQ、D%和X%。渍害使得穗下层叶片Fv/Fm降幅最大,上部叶片的次之,中部叶片降幅最小;氮肥后移能够通过提高穗位层叶绿素含量,达到弥补叶绿素各荧光参数下降的趋势,起到补偿效应。(3)苗期渍害降低玉米植株各器官氮素积累量,增大茎部氮素转运率。苗期渍害导致穗位层的叶片氮素向籽粒转运量和转运率增高,从而导致穗位叶片的早衰。氮肥后移可以提高苗期渍害玉米各器官氮素的累积量,适当提高穗上层、穗下层转运率,降低穗位层氮素转运率,保证玉米生育后期氮素的供应量,提高氮素的吸收利用效率和偏生产力。(4)吐丝后干物质积累量与最终籽粒产量关系密切,苗期渍害显著降低吐丝后群体干物质积累量,氮肥后移促进吐丝后后干物质积累,为提高玉米产量奠定生物量基础。(5)苗期渍害降低籽粒灌浆速率。随着播期推迟,玉米籽粒最大潜力势降低,籽粒灌浆时间缩短,达到最大灌浆速率的时间推迟。苗期渍害降低玉米籽粒最大潜力势(K),较早达到最大灌浆速率(Vm),降低平均灌浆速率(Va);苗期渍害主要影响快增期和缓增期的Va。氮肥后移技术能够弥补Va和T下降的趋势,是渍水条件下氮肥后移技术较氮肥前移技术玉米粒重提高的主要因素。(6)玉米苗期渍害显著降低玉米籽粒产量,达24.2%~28.8%,粒叶比和收获指数下降,播期越晚渍害对玉米产量的影响越大;氮肥后移可以弥补产量下降的趋势,但播期越晚,氮肥的补偿作用相对削弱。
     小麦孕穗期渍害和玉米苗期渍害研究结果均表明,渍水条件下采用适当氮肥后移的运筹方式和渍后及时提供氮素营养补偿可明显减轻渍水逆境对小麦、玉米造成的危害。
Due to the precipitation is concentrated in the summer season, the precipitationduring June to September accounts for50%~80%of annual precipitation, which results infrequently flooding disaster along the Huaihe River and huge losses to local rural. The flooding disasteraffects the yield increased of wheat, rice and corn, therefore leads to food production potential to playalong Huaihe River.How to improve the production capacity along the area of huaihe River, and reducethe effect of waterlogging on wheat and corn yield are related to the development of national foodindustry. Based on the problems existing in production, the present study was conducted toinvestigate the physiological and ecological effects of different nitrogen fertilization on wheat andcorn under waterlogging environment, to find out the reasonable nitrogen fertilization alongHuaihe River. Thus to provide theoretical and practical basis for realizing mechanization ofthe compensation effect of nitrogen and high-efficiency cultivation of wheat and corn. Themain contents and results are as follows:
     1Effects of waterlogging stress on eco-physiological characteristics and grain yield of winterwheat and nitrogen regulation
     To understand the response of number and weight of grain at different spikeletposition and grain position, chlorophyll fluorescence parameters of wheat flag leaf towaterlogging stress at booting stage and the effect of N fertilization, we carried out a fieldexperiment from autumn of2008to summer of2010using winter wheat cultivar―Wanmai54‖as material. The waterlogging stress was imposed for7d at booting stage. Fournitrogen treatments were designed for waterlogging stress and the control (normal watering)of which N application rate was240kg ha-1in all treatments but with different proportionsat land preparation, jointing, and booting stage (10:0:0for N1,7:3:0for N2,5:5:0for N3,nd3:5:2for N4) the results showed that (1) The maximum chlorophyll content of flagleaves occurred at the booting stage. Under normal watering condition, Fv/Fm, Fv/Fo, andqP showed―high-low‖variation, and the maximum values were observed between May3 and May11. However, under waterlogging stress at booting stage, Fv/Fm, Fv/Fo, and qPshowed "low-high-low" curve. Compared to control treatment, waterlogging at bootingstage significantly decreased Fv/Fm, Fv/Fo, qp, andPSII(P<0.05), and NPQ significantlyincreased (P<0.05). With the delay of nitrogen fertilization, Fv/Fm, Fv/Fo, qP, andPSIIincreased significantly compared to the forward nitrogen fertilization treatments. Postponeof nitrogen supply improved photosynthetic capacity by increasing photosynthetic pigmentcontents, and enhancing photosynthetic efficiency under water deficit. The chlorophyllcontent was positively correlated with Fv/Fm, qP, andPSII(P<0.05), but negativelycorrelated relationship with NPQ (P<0.01). From the chlorophyll fluorescence rapid lightcurves, we found that, compared to normal watering, waterlogging stress at booting stagesignificantly decreased the maximal relative electron transport rate (ETRmax), initial slope(), and half saturation point of light intensity (Ek). Postpone of nitrogen fertilizerapplication alleviated the photodamage to PSΙΙ caused by water stress, and thecompensation effect of late nitrogen fertilization occurred earlier than that of early nitrogenfertilization.(2) Waterlogging stress in the booting stage significantly decreased thenitrogen content of different organs, and decreased translocation of nitrogen stored invegetative organs before anthesis. Postpone of nitrogen application can increase thenitrogen content and translocation rate before anthesis, which resulted in adequate nitrogensupplied in the later stage of wheat.(3) Waterlogging stress decreased filling period, andfilling rate. Postpone of nitrogen application can resulte in longer filling period, highermean filling rate, and ultimately increased1000-grain weight. The research of fillingcharacterics of different grain and spike positon indicated that potential grain weight (K)of1stwas higher than that of2nd, potential grain weight (K)of main stem was higher than1sttiller and2ndtiller.(4) Seed-setting characteristics of main stem were superior to tillerspike. In the N1treatment the sterile spikelet per spike was significantly increased, and thegrain number per spike was significantly decreased. Compared with N4treatment, sterilespikelet per spike of N1treatment increased by25.5%and29.8%in2008-2009and2009-2010growing seasons, respectively. The grain number per spike of N1treatmentdecreased by5.7%. Waterlogging had greater effect on the tiller spike than the main stemspike. Waterlogging at booting stage significantly increased sterile spikelet per spike by10.6%and4.5%, and the grain number per spike decreased by2.8%and1.4%in the twogrowing seasons, especially for spike with four grains on main stem and three grains perspike of tiller spike, the grain weight in the third and the fourth grain positions. With thedelay of nitrogen fertilization, spikelet per spike, single weight per spike increased significantly, the sterile spikelet per spike decreased compared to the prior N fertilizationtreatments. Postponed nitrogen fertilization could compensate the decrease of spike withthree and four grains and increase the grain weight in third and the fourth grain positionsunder waterlogged environment at booting stage, increase the contribution rate of the thirdand the fourth grains weight to the grain weight per spike. Therefore, with the postponednitrogen fertilization, grain yield and spikelet grain number and grain weight at differentspikelet of wheat were enhanced. Results indicate that postponed N fertilization alleviatesthe effect of waterlogging at booting stage on the seed-setting characterisitics of spike andsingle grain weight.
     2Effects of waterlogging stress on eco-physiological characteristics and grain yield of summermaize and nitrogen regulation
     To understand the response of chlorophyll (Chl) fluorescence parameters,photosynthetic pigment contents, leaf area index (LAI), rapid light curve (RLC) and grainyield of maize to waterlogging stress at seedling stage and the effect of N fertilizationregulation, we carried out a field experiment from2009to2011using summer maizecultivar "Zhengdan958" as material. The waterlogging stress was imposed for7d atseedling stage. Four N treatments were designed for waterlogging stress and the control(normal watering) of which N application rate was240kg ha-1in all treatments but withdifferent proportions at land preparation, jointing, and big trumpet stage (10:0:0for N1,7:3:0for N2,5:5:0for N3, nd3:5:2for N4) the results showed that (1) Waterlogging stressin the seedling stage significantly decreased leaf area index (LAI), especially LAI ofunder-ear layer, which resuted in earlier death of leaf. The nutrient element prior to the earlayer leaf under waterlogging stress in order to ensure the photosynthetic product suppliedand translocated to grain. Postpone of nitrogen application can increased the LAI of earlayer and above-ear layer to compensate the decrease of under-ear layer, and thecompensation effect was higher than the decrease effect of waterlogging stress, whichresulted in higher LAI compared to the earlier nitrogen application.(2) Waterlogging stressdecrease the maximal efficiency of PSII photochemistry (Fv/Fm) in dark-adapted leaves.Moreover, the contents of Chl and Chla/b, the actual PSII efficiency (PSII), photochemicalquenching coefficient (qP), and the fraction of light used in PSII photochemistry (P%) alsodropped under waterlogging stress. But non-photochemical quenching (NPQ), thermalenergy dissipation (D%), and excess of energy excitation (X%) showed different responsewhich increased under waterlogging stress. As to different N fertilization, postpone of Nsupply could improve photosynthetic capacity by increasing LAI, Chl contents, and alleviating the photosynthetic efficiency decrease under waterlogging stress. From thechlorophyll fluorescence rapid light curves, The results showed that compared with control,waterlogging stress at seedling stage significantly decreased the maximal relative electrontransport rate (ETRmax), initial slope (), and half saturation point of light intensity (Ek).Postpone of N fertilizer application alleviated the photodamage to PSΙΙ caused bywaterlogging stress, and the compensation effect of late N fertilization occurred earlierthan that of early N fertilization. Photosynthetic characters of maize under waterloggingstress at seedling stage exhibited positive responses to N supply which indicates thatpostpone of N fertilizer supply is recommended to improve photosynthetic efficiency andalleviate photodamage under waterlogging stress at seedling stage.(3) Waterlogging stressin the seedling stage can significantly decreased nitrogen accumulation of different organsand can increase the nitrogen translocation of stem, which also can increase the nitrogentranslocation of ear layer leaf and resulted in earlier death of ear layer leaf. Postpone ofnitrogen application can increase the nitrogen content of different organs, nitrogentranslocation of under-ear layer and above-ear layer leaf and decrease the translocation ofear layer leaf, which resulted in adequate nitrogen in the later stage of maize and increasedthe nitrogen uptake efficiency and partial factor productivity from applied nitrogen.(4)The dry matter accumulation after flowering stage is close to the grain yield. Waterloggingstress in the seedling stage can significantly decreased the dry matter accumulation afterflowering stage. Postpone of nitrogen application can enhance the accumulation of drymatter and lay the foundation for increased grain yield.(5) Waterlogging stress in theseedling stage decreased filling rate. With the postpone of planting data, the potential grainweight (K) decreased, the filling period decreased. Waterlogging stress decreased K andaverage filling rate (Va), and earlier reached the maximum filling rate (Vm), which maininfluence the Vaof fast filling stage and slow filling stage. Postpone of nitrogen applicationcan compensate the decrease of Vaand filling period (T).(6) Waterlogging stress in theseedling stage significantly decreased grain yield of about24.2%~28.8%, grain/leaves andharvest index decreased. The influence of waterlogging stress enhanced with postpone ofplating date. Postpone of nitrogen application can compensate the decrease trendecny ofgrain yield, but the compensate effect weakened with postpone of plating date
     All the resultes indicated that proper postpone of nitrogen application underwaterlogging stress or supply nitrogen timely after waterlogging stress can alleviate theeffect of waterlogging stress on wheat and maize.
引文
[1]Mann C C. Crop scientists seek a new revolution. Science,1999,283:310~314.
    [2]Huang J, Carl P, Scott R. Enhancing the crops to feed the poor. Nature,2002,418:678~684.
    [3]张雷明,上官周平,毛明策,等.长期施氮对旱地小麦灌浆期叶绿素荧光参数的影响.应用生态学报,2003,14(5):695~698
    [4]王小燕,王东,于振文.水氮互作对小麦旗叶光合特性、籽粒产量及氮素和水分利用率的影响.干旱地区农业研究,2009,27(6):17~22
    [5]李金才,常江,魏凤珍.小麦湿害生理及其与小麦生产的关系.植物生理学通讯,1997,33(4):304~312
    [6]李金才,魏凤珍,余松烈,等.孕穗期渍水对冬小麦根系衰老的影响.应用生态学报,2000,11(5):723~72
    [7]向厚文,褚瑶顺,梁少川,等.小麦耐渍性鉴定及渍害预防.湖北农业科学,1993,(5):10~16
    [8]姜东,陶勤南,张国平.渍水对小麦扬麦5号旗叶和根系衰老的影响.应用生态学报,2002,13(11):1519~1521
    [9]范雪梅,姜东,戴廷波,等.不同水分条件下氮素供应对小麦植株氮代谢及籽粒蛋白质积累的影响.生态学杂志,2006,25(2):149~154
    [10]范雪梅,姜东,戴廷波,等.花后干旱或渍水逆境下氮素对小麦籽粒产量和品质的影响.植物生态学报,2006,30(1):71~77
    [11] Musgrave M E. Waterlogging effects on yield and photosynthesis in eight wheat cultivars. CropScience,1994,34:1314~1320
    [12] Xu Z Z, Zhou G S, Wang Y L, et al. Changes in chlorophyll fluorescence in maize plants withimposed rapid dehydration at different leaf ages. Journal of Plant Growth and Regulation,2008,27:83~92
    [13]Hichem H, Naceur E A, Mounir D. Effects of salt stress on photosynthesis, PSII photochemistry andthermal energy dissipation in leaves of two corn (Zea mays L.) varieties. Photosynthetica,2009,47:517~526
    [14]Hola D, Benesova M, Honnerova J, et al. The evaluation of photosynthetic parameters in maizeinbred lines subjected to water deficiency: can these parameters be used for the prediction ofperformance of hybrid progeny? Photosynthetica,2010,48(4):545~558
    [15]郭庆法,王庆成,汪黎明.中国玉米栽培学.上海:上海科技出版社,2004,497~500,767
    [16]李瑞秋,高小彦,吴敦肃.淹水对玉米某些形态和生理的影响.植物学报,1991,33(6):473~477
    [17]Rai R K, Srivastava J P, Shahi J P. Effects of waterlogging on some biochemical paramentersduring early growth stage of maize. Indian Journal of Plant Physiology,2004,9(1):65~68
    [18]陈国平,赵仕老,刘志文,等.玉米涝害及其防御措施的研究.作物栽培生理学术讨论会论文集.北京:中国农科院作物育种栽培研究所,1988,125~130
    [19]张玉琼,张鹤英.淹水逆境下玉米若干生理生化特性的变化.安徽农业大学学报,1998,25(4):378~381
    [20]王小燕,于振文.不同施氮量条件下灌溉量对小麦氮素吸收转运和分配的影响.中国农业科学,2008,41(10):3015~3020
    [21]蔡大同,苑泽圣.氮肥不同时期施用对优质小麦产量和加工品质的影响.土壤肥料,1994,(2):19~24
    [22]王晓英,贺明荣,刘永环,等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响.生态学报,2008,28(2):685~694
    [23]Behera S K, Nayak L, Biswal B. Senescing leaves possess potential for stress adaptation: thedeveloping leaves acclimated to high light exhibit increased to tolerance to osmotic stress duringsenescence. Journal of Plant Physiology,2003,160:125~131
    [24]Xu Z Z, Zhou G S. Photosynthetic recovery of a perennial grass Leymus chinensis after differentperiods of soil drought. Plant Production Science,2007,10:277~285
    [25]David M M, Coelho D, Barrote I, et al. Leaf age effects on photosynthetic activity and sugaraccumulation in droughted and rewatered Lupinus albus plants. Australian Journal of PlantPhysiology,1998,25:299~306
    [26]He P, Osaki M, Takebe M, et al. Changes of photosynthetic characteristics in relation to leafsenescence in two maize hybrids with different senescent appearance. Photosynthetica,2002,40:547~552
    [27]He J X, An L Z, Lin H H, et al. Evidence for transcriptional and post-transcriptional control ofprotein synthesis in water-stressed wheat leaves: a quantitative analysis of messenger and ribosomalRNA. Journal of Plant Physiology,1999,155:63~69
    [28]Skeriver K, Mundy J. Regulation of gene expression in response to abscisic acid and osmotic stress.Plant Cell,1990,2:503~512
    [29]Bray E A. Molecular responses to water deficit. Plant Physiology,1993,103:1035~1040
    [30]Hsu S Y, Kao C K. Ammonium ion, ethylene, and abscisic acid in polyethylene glycol-treated riceleaves. Biology Plant,2003,46:617~619
    [31]Gardner F P, Pearce R B, Mitchell R L. In: Physiology of Crop Plant. Ames: Iowa state universitypress,1985,3~30
    [32]邵孝候,俞双恩,马绍川,等.拔节孕穗期受渍对小麦干物质产量、矿质营养和品质的影响.1995,灌溉排水,14(3):16~19
    [33]Upadhyaya H, Panda S K. Responses of Camellia sinensis to drought and rehydration. BiologyPlant,2004,48:597~600
    [34] Griffiths H, Parry M A J. Plant responses to water stress. Ann Botany,2002,89:801~802
    [35] Lawlor D W. Limitation to photosynthesis in water-stressed leaves: stomata vs metabolism and therole of ATP. Ann Botany,2002,89:871~885
    [36] Liu W J, Yuan S, Zhang N H, Lei, et al. Effects of water stress on photosystem II in two wheatcultivars. Biology Plant,2006,50:597~602
    [37]郑丕尧.作物生理学导论.北京:北京农业大学出版社,1992:121~127
    [38]王晨阳,马元喜,周苏玫,等.土壤渍水对冬小麦根系活性氧代谢及生理活性的影响.作物学报,1996,22(6):712~719
    [39]郭天财,王之杰,王永华.不同穗型小麦品种旗叶光合作用日变化的研究.西北植物学报,2002,22(3):554~560
    [40]郭天财,王之杰,胡廷积,等.不同穗型小麦品种群体光合特性及产量性状的研究.作物学报,2001,27(5):633~639
    [41]范雪梅,姜东,戴廷波,等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响,应用生态学报,2005,16(10):1883~1888
    [42]范雪梅,姜东,戴廷波,等.花后干旱和渍水下氮素供应对小麦旗叶衰老和粒重的影响.土壤学报,2005,42(5):875~879
    [43]Nielsen D C, Vigil M E. Legume green fallow efect on soil water content at wheat planting andwheat yield. Agronomy Journal,2005,97:684~689
    [44]Stone L R, Schlegel A J. Yield-water supply relationships of grain sorghum and winter wheat.Agronomy Journal,2006,98:1359~1366
    [45]张忠学,于贵瑞.不同灌水处理对冬小麦生长及水分利用效率的影响.灌溉排水学报,2003,22(2):l~4
    [46]陈国平,赵仕孝,刘志文.玉米的涝害及其防御措施的研究Ⅱ、玉米在不同生育期对涝害的反应.华北农学报,1989,4(1):16~22
    [47]陈国平,赵仕孝,杨洪友,等.玉米涝害及其防御措施的研究Ⅰ、芽涝对玉米出苗及苗期生长的影响.华北农学报,1988,3(2):12~17
    [48]杨京平,陈杰.计算机模拟渍水时期及持续时间对春玉米生长及产量的影响.生物数学学报2001,16(3):353~361
    [49]魏和平,利容千.淹水对玉米不定根形态结构和ATP酶活性的影响植物生态学报.2000,24(3):293~297
    [50]梁哲军,陶洪斌,王璞.淹水解除后玉米幼苗形态及光合生理特征恢复.生态学报,2009,29(7):3977~3986
    [51]白莉萍,隋方功,孙朝晖,等.土壤水分胁迫对玉米形态发育及产量的影响.生态学报,2004,24(7):1556~1560
    [52]白向历,孙世贤,杨国航,等.不同生育时期水分胁迫对玉米产量及生长发育的影响.玉米科学,2009,17(2):60~63
    [53]郑盛华,严昌荣.水分胁迫对玉米苗期生理和形态特性的影响.生态学报,2006,26(4):1138~1143
    [54]崔震海,张立军,樊金娟,等.玉米苗期不同供水条件下穗部性状与产量的相关分析.华北农学报,2008,23(1):123~127
    [55]马东辉,赵长星,王月福,等.施氮量和花后土壤含水量对小麦旗叶光合特性和产量的影响.生态学报,2008,28(10):4896~4901
    [56]谢祝捷,姜东,曹卫星,等.花后干旱和渍水条件下生长调节物质对冬小麦光合特性和物质运转的影响.作物学报,2004,30(10):1047~1052
    [57]吴进东,李金才,魏凤珍,等.花后渍水高温交互效应对冬小麦旗叶光合特性及产量的影响.作物学报,2012,38(6):1071~1079
    [58]惠海滨,林琪,刘义国,等.灌水量和灌水期对超高产小麦灌浆期光合特性及产量的影响.西北农业学报,2012,21(8):77~83
    [59]刘丽平,欧阳竹,武兰芳,等.阶段性干旱及复水对小麦光合特性和产量的影响.生态学杂志,2012,31(11):2797~2803
    [60]Stoddart J L, Thomas H. Leaf senescence. In: Boulter D. and Parthier B.(eds.): Encyclopedia ofPlant Physiol. Berlin: Springer Verlag.1982,592~636
    [61]Crafts-Brandner S J, Salvucci M E, Egli D B. Changes in ribulosbisphosphatecarboxylase/oxygenase and ribulosebisphsphate5-phosphate kinase abundances and photosyntheticcapacity during leaf senescence. Photosynthesis Research,1990,23:223~230
    [62]Crafts-Brandner S J, Poneleit C G. Carbon dioxide exchange rates, ribulosebisphosphatecarboxylase/oxygenase and phosphoenolpyruvate carboxylase activities, and kernel growthcharacteristics of maize. Plant Physiology,1987,84:255~260
    [63]Buchanan-Wollaston V. The molecular biology of leaf senescence. Journal of Experimental Botany,1997,48:181~191
    [64]Yang X H, Lu C M. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maizeplants. Physiology Plant,2005,124:343~352
    [65]Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosyntheticelectron transport and quenching of chlorophyll fluorescence. Acta Biochemical et BiophysicaSinica,1989,990:87~92.
    [66]Yang C W, Wang P, Li C Y, et al. Comparison of effects of salt and alkali stresses on the growthand photosynthesis of wheat. Photosynthetica,2008,46:107~114
    [67]王强,温晓刚,卢从明,等.超高产杂交稻华安3号冠层不同衰老程度叶片的光合功能.植物生态学报,2004,28(1):39~46
    [68]林世青,许春晖,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用.植物学通报,1992,9:1~16.
    [69]冯永军,史宝胜,董桂敏,等.叶绿素荧光动力学在植物抗逆性及水果保鲜中的应用.河北农业大学学报,2003,26(S1):89~92
    [70]桂仁意,刘亚迪,郭小勤.不同剂量137Cs-γ辐射对毛竹幼苗叶片叶绿素荧光参数的影响.植物学报,2010,45(1):66~72
    [71]Bidinger F, Muserave R B, Fisher R A. Contribution of stcred preanthesis assimilate to grain yieldin wheat and barley. Natwe,1997,270:431~433
    [72]Plaut Z, Butow B J, Blumenthal C S, et al. Transport of dry matter into developing wheat kernelsand its contribution to grain yield under post-anthesis water deficit and elevated temperature. FieldCrops Research,2004,86:185~198
    [73]Paponov I, Engels C. Effect of nitrogen supply on leaf traits related to photosynthesis during grainfilling in two maize genotype with different N efficiency. Journal of Plant Nutrition and SoilScience,2003,166:756~763
    [74]Xu Z Z, Zhou G S. Combined effects of water stress and high temperature on photosynthesis,nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta,2006,224:1080~1090
    [75]Wu F Z, Bao W K, Li F L, et al. Effects of water stress and nitrogen supply on leaf gas exchangeand fluorescence parameters of Sophora davidii seedlings. Photosynthetica,2008,46(1):40~48
    [76]胡梦芸,张正斌,徐萍,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究.作物学报,2007,33(10):1711~1719
    [77]任巍,姚克敏,于强,等.水分调控对冬小麦同化物分配与水分利用效率的影响研究.中国生态农业学报,2003,11(4):92~94
    [78]张其德,刘合芹,张建华,等.限水灌溉对冬小麦旗叶某些光合特性的影响.作物学报,2000,26(6):869~872
    [79]张秋英,李发东,刘孟雨,等.水分胁迫对冬小麦旗叶叶绿素a荧光参数光合速率的影响.干旱地区农业研究,2002,20(3):80~84
    [80]潘庆民,于振文.追氮时期对冬小麦籽粒品质和产量的影响.麦类作物学报,2002,22(2):65~69
    [81]马新明,熊淑萍,李琳,等.亏缺灌溉下小麦水分利用效率与光合产物积累运转的相关研究.应用生态学报,2005,16(1):83~87
    [82]赵辉,戴廷波,姜东,等.高温下干旱和渍水对冬小麦花后旗叶光合特性和物质转运的影响.应用生态学报,2007,18(2):333~338
    [83]梁银丽,康绍忠.节水灌溉对冬小麦光合速率和产量的影响.西北农业大学学报,1998,26(4):16~19
    [84]徐璇,周瑞,谷艳芳,等.不同水氮耦合对小麦旗叶主要光合特性的影响.河南大学学报(自然科学版),2010,40(1):53~57
    [85]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    [86]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响.应用生态学报,2005,16,1261~1264
    [87]Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: the basics. Annual Review ofPlant Physiology and Plant Molecular Biology,1991,42:313~349
    [88]Küster A, Altenburger R. Development and validation of a new fluorescence-based bioassay foraquatic macrophyte species. Chemistry Osphere,2007,67:194~201
    [89]Adrienn G, Irma T, Agnes G, et al. Comparison of the drought stress responses of tolerant andsensitive wheat cultivars during grain filling: changes in flag leaf photosynthetic activity, ABAlevels, and grain yield. Journal of Plant Growth and Regulation,2009,28:167~176
    [90]Dawson S P, Dennison W C. Effects of ultraviolet and photosynthetically active radiation on fiveseagrass species. Marine Biology,1996,125:629~638
    [91]宋玉芝,蔡炜,秦伯强.太湖常见浮叶植物和沉水植物的光合荧光特性比较.应用生态学报,2009,20(3):569~573
    [92]Xu Z Z,Yu Z. Nitrogen metabolism in flag leafand grain of wheat in response to irrigation regime.Journal of Plant Nutrition and Soil Science,2006,169:118~126
    [93]谭维娜,戴廷波,荆奇,等.花后渍水对小麦旗叶光合特性及产量的影响.麦类作物学报,2007,27(2):3l4~3l7
    [94]王正航,武仙山,昌小平,等.小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析.作物学报,2010,36(2):217~227
    [95]张秋英,李发东,刘孟雨,等.不同水分条件下小麦旗叶叶绿素a荧光参数与子粒灌浆速率.华北农学报,2003,18(1):26~28
    [96]梁新华,许兴,徐兆桢,等.干旱对春小麦叶绿素a荧光动力学特征及产量间关系的影响.干旱地区农业研究,2001,19(3):72~77
    [97]郭天财,方保停,王晨阳,等.水分调控对小麦旗叶叶绿素荧光动力学参数及其产量的影响.干旱地区农业研究,2005,23(2):6~10
    [98]Van kooten O, Snei J F H. The use of chlorophyll nomenclature in plant stress physiology.Photosynthesis Research,1990,25:147~150
    [99]巩擎柱,吕金印,徐炳成,等.水分胁迫和种植方式对小麦叶绿素荧光参数及水分利用效率的影响.西北农林科技大学学报(自然科学版),2006,34(5):83~92
    [100]Lal A, Ku M S B, Edwards G E.Analysis of inhibition of photosynthesis due to water stress in theC4species Zea mays and Amaranthus cruentus: Electron transport, CO2fixation and carboxylationcapacity. Australian Journal of Plant Physiology,1996,23:403~412
    [101]Ehleringer J R, Helliker B R, Cerling T E. C4photosynthesis, atmospheric CO2, and climate.Oecologia,1997,112:285~299
    [102]Yu L X, Setter T L. Comparative transcriptional profiling of placenta and endosperm indeveloping maize kernels in response to water deficit. Plant Physiology,2003,131:568~582
    [103]Leakey A D B, Bernacchi C J, Dohleman F G, et al. Will photosynthesis of maize (Zea mays L.) inthe US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2uptake under free-air concentration enrichment (FACE). Global Change Biology,2004,10:951~962
    [104]Kim S H, Sicher R C, Bae H, et al. Canopy photosynthesis, evapotranspiration, leaf nitrogen, andtranscription profiles of maize in response to CO2enrichment. Global change biology,2006,12:588~600
    [105]齐华,白向历,孙世贤.水分胁迫对玉米叶绿素荧光特性的影响.华北农学报,2009,24(3):102~106
    [106]刘明,孙世贤,齐华.水分胁迫对玉米苗期叶绿素荧光参数的影响.玉米科学,2009,17(31):95~98
    [107]Dobermann A. A critical assessment of the system of rice intensification (SRI). AgriculturalSystems, pp261~281
    [108]马吉锋,朱艳,姚霞,等.小麦叶片氮含量与荧光动力学参数的关系.作物学报,2007,33(2):297~30
    [109]EvansJ R. Nitrogen and Photosynthesis in the flag leaf of wheat (Triticum aestivum L.). PlantPhysiology,1983,70:1605~1608
    [110]王启现,王璞,王秀玲,等.黄淮海平原玉米施氮量对后茬小麦土壤剖面硝态氮和产量的影.生态学报,2006,26(7):2275~2280
    [111]Jiang D, Dai T, Jing Q, et al. Effects of long-term fertilization on leaf photosyntheticcharacteristics and grain yield in winter wheat. Photosynthetica,2004,42:439~446
    [112]Shangguan Z P, Zheng S X, Zhang L M, et al. Effect of nitrogen fertilization on leaf chlorophyllfluorescence in field grown winter wheat under rainfed conditions. Agricultural Sciences in China,2005,4(1):l5~20
    [113]Sigunga D O, Janssen B H, Oenema O. Effects of improved drainage and nitrogen source on yields,nutrient uptake and utilization efficiencies by maize (Zea mays L.) on Vertisols in sub-humidenvironments. Nutrient Cycling in Agroecosystems,2002,62:263~275
    [114]张绪成,上官周平.施氮量对小麦叶片硝酸还原酶活性、一氧化氮含量和气体交换的影响.应用生态学报,2007,18(7):1447~1452
    [115]韩燕来,葛东杰,汪强,等.施氮量对豫北潮土区不同肥力麦田氮肥去向及小麦产量的影响.水土保持学报,2007,21(5):151~154
    [116]赵俊晔,于振文.施氮量对小麦旗叶光合速率和光化学效率、籽粒产量与蛋白质含量的影响.麦类作物学报,2006,26(5):92~96
    [117]赵广才,刘利华,杨玉双,等.不同追肥比例对小麦产量和品质的影响.北京农业科学,2000,18(5):7~9
    [118]刘凤楼,宋美丽,冯毅,等.施肥量与氮肥基追比对西农979产量和品质的效应.麦类作物学报,2010,30(3):482~487
    [119]王晨阳,朱云集,夏国军.氮肥后移对超高产小麦产量及生理特性的影响.作物学报,1998,24(6):978~983
    [120]苗艳芳,常爱芬,张会民,等.氮肥分配比例对小麦产量及群体质量的影响.麦类作物学报,1999,19(4):43~45
    [121]张娟,张永丽,武同华,等.氮肥底追比例对超高产栽培中小麦光合特性和干物质积累与分配的影响.麦类作物学报,2011,31(3):508~513
    [122]武际,郭熙盛,杨晓虎,等.氮肥施用时期及基追比例对土壤矿质氮含量时空变化及小麦产量和品质的影响.应用生态学报,2008,19(11):2382~2387
    [123]张起君.玉米高产开发原理与技术.山东科学技术出版社,1992
    [124]郭庆法,王庆成,汪黎明.中国玉米栽培学.上海:上海科技出版社,2004,124
    [125]夏来坤,陶洪斌,许学彬,等.不同施氮时期对夏玉米干物质积累及氮肥利用的影响.玉米科学,2009,17(5):138~140,144
    [126]吕丽华,赵明,赵久然,等.不同施氮量下夏玉米冠层结构及光合特性的变化.中国农业科学,2008,41(9):2624~2632
    [127]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化.应用生态学报,2008,19(4):799~806
    [128]黄绍敏,宝德俊,皇甫湘荣,等.小麦一玉米轮作制度下潮土硝态氮的分布及合理施用氮肥研究.土壤与环境,1999,8(4):271~273
    [129]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响.生态学报,2007,27(1):197~204
    [130]杨荣,苏永中.土壤硝态氮和氮平衡的影响.生态学报,2009,29(3):1459~1469
    [131]曹承富,汪芝寿,孔令聪.氮肥运筹对夏玉米产量及籽粒灌浆的影响.安徽农业科学,1993,21(3):236~240
    [132]申丽霞,王璞.不同氮肥运筹方式对夏玉米产量和氮素利用的影响.山西农业科学,2009,37(2):36~3
    [133]王宜伦,李潮海,谭金芳,等.氮肥后移对超高产夏玉米产量及氮素吸收和利用的影响.作物学报,2011,37(2):339~347
    [134]王俊忠,黄高宝,张超男,等.施氮量对不同肥力水平下夏玉米碳氮代谢及氮素利用率的影.生态学报,2009,29(4):2045~2052
    [135]Elliot G C, Lauchli A. Phosphorus efficiency and phosphate-iron interaction in maize. AgronomyJournal,1985,77:399~403
    [136]Simmonis A D. Studies on Nitrogen use Efficiency in Cereals. In: Jenkinson D, and Smith K.(eds),Nitrogen Efficiency in Agricultural Soils. Elsevier, London,1988, pp.110~124
    [137]朱兆良,文启孝.中国土壤氮素.南京:江苏科技出版社,1992.213~249
    [138]张玉良.农业化学与生物圈.北京:中国环境科学出版社,1987
    [139]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO-3N在土壤剖面的累积及移动.土壤学报,2003,40(4):538~546
    [140]周顺利.高产条件下冬小麦、夏玉米氮营养特性的基因型差异及氮肥推荐.北京:中国农业大学,2000
    [141]李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究应用.生态学报,2008,19(1):65~70
    [142]李宗新,董树亭,王空军,等.不同肥料运筹对夏玉米田间土壤氮素淋溶与挥发影响的原位研究.植物营养与肥料学报,2007,13(6):998~1005
    [143]Sugiharto B, Miyata K, Nakamoto H, et al. Regulation of expression of carbon-assimilatingenzymes by nitrogen in maize leaf. Plant Physiology,1990,92:963~969
    [144]Bullock D G, Anderson D S. Evaluation of the Minolta SPAD-502chlorophyll meter for nitrogenmanagement in corn. Journal of Plant Nutrition,1998,21:741~755
    [145]Egli P, Schmid B. Relationships between leaf nitrogen and limitations of photosynthesis incanopies of Solidago altissima. Acta oecologica,1999,20:559~570
    [146]Fritschi F B, Ray J D. Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio.Photosynthetica,2007,45:92~98
    [147]Hák R, Rinderle-Zimmer U, Lichtenthaler H, et al. Chlorophyll a fluorescence signatures ofnitrogen deficient barley leaves. Photosynthetica,1993,28:151~159
    [148]冯波,刘延忠,孔令安,等.氮肥运筹对垄作小麦生育后期光合特性及产量的影响.麦类作物学报,2008,28(1):107~112
    [149]罗付香,杨世民,袁继超,等.氮肥调控对川麦39灌浆期旗叶光合特性的影响.麦类作物学报,2006,26(4):79~84
    [150]曹翠玲,李生秀.供氮水平对小麦生殖生长时期叶片光合速率、NR活性和核酸含量及产量的影响.植物学通报,2003,20(3):319~324
    [151]孙旭生,林琪,李玲燕,等.氮素对超高产小麦生育后期光合特性及产量的影响.植物营养与肥料学报,2008,14(5):840~844
    [152]邹铁祥,戴廷波,姜东,等.氮、钾水平对小麦花后旗叶光合特性的影响.作物学报,2007,33(10):1667~1673
    [153]Peng C L, Lin Z F, Lin G Z, et al. The anti-photoxidat ion of anthocyanins-rich leaves of a purplerice cult ivar. Science China (Ser C),2006,36(3):209~216
    [154]Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. Journal ofExperimental Botany,2000,51:447~458
    [155]韩系英,宋凤斌,王波,等.土壤水分胁迫对玉米光合特征的影响.华北农学报,2006,21(5):28~32
    [156]何萍,金继运,林褒.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,1998,3(3):66~71
    [157]李潮海,刘奎,周苏玫,等.不同施肥条件下夏玉米光合对生理生态因子的响应.作物学报,2002,28(2):265~269
    [158]王帅,韩晓日,战秀梅,等.氮肥不同追施方法对春米光合特性的影响.杂粮作物,2008,28(3):169~171
    [159]Chaerle L, Hagenbeek D, Bruyne E D, et al. Thermal and chlorophyll-fluorescence imagingdistinguish plant pathogen interactions at an early stage. Plant Cell Physiology,2004,45:887~896
    [160]Shangguan Z P, Shao M A, Dyckmans J. Effects of nitrogen nutrition and water deficit on netphotosynthetic rate and chlorophyll fluorescence in winter wheat. Journal of Plant Physiology,2000,56:46~51
    [161]Langsdorf G, Buschmann C, Sowinska M, et al. Multicolor fluorescence imaging of sugar beetleaves with different nitrogen status by flash lamp UV excitation. Photosynthetica,2000,38:539~551
    [162]鞠正春,于振文.追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响.应用生态学报,2006,17(3):395~398
    [163]李春喜,石惠恩,姜丽娜.小麦不同种植密度粒重分布特性的研究.西北植物学报,1999,19(1):132~137
    [164]李春喜,姜丽娜,石惠恩,等.小麦不同分蘖位结实特性与粒重分布的研究.耕作与栽培,1999,(6):5~9
    [165]潘洁,姜东,曹卫星,等.小麦穗籽粒数、单粒重及单粒蛋白质含量的小穗位和粒位效应.作物学报,2005,31(4):431~437
    [166]屈会娟,李金才,沈学善,等.播种密度对不同穗型冬小麦品种结实粒数、粒重的小穗位和粒位效应的影响.作物学报,2009,35(10):1~9
    [167]裴雪霞,王姣爱,党建友,等.小麦结实粒数、粒重和品质的小穗位和粒位效应.中国农业科学,2008,41(2):381~390
    [168]Pal M S, Zhang G P, Chen J X. Influence of genotypes and nitrogen fertilization on leafmorphogenesis and tillering behaviors in winter wheat. Journal of Triticeae Crops,2000,20(1):28~33
    [169]Chen Y, Yuan L P, Wang X H, et al. Relationship between grain yield and leaf photosynthetic ratein super hybrid rice. Journal of Plant Physiology and Molecular Biology,2007,33:235~243
    [170]贺明荣,王振林,张杰昌.小麦开花后光合物质在不同穗位间的分配及其与穗粒重的关系.作物学报,2000,62(2):190~194
    [171]郭文善,彭永欣.小麦栽培与生理.南京:东南大学出版社,1992,42~49
    [172]董正国.小麦粒重的分布规律.国外农学-麦类作物,1991,(8):47~49
    [173]侯远玉.小麦品种间不同穗粒位粒数与粒重的变异.四川农业大学学报,1997,15(2):218~222
    [174]李孟良,时侠清.麦穗不同粒位粒重差异及喷药效果研究.种子,2001,(1):17~19
    [175]张晓融,王世之.小麦穗、小穗及籽粒差异的解剖结构及生理原因的研究.作物学报,1993,19(2):103~109
    [176]茹振钢,李淦,胡铁柱,等.强筋小麦不同穗位及花位籽粒粒重和品质的变化.麦类作物学报,2006,26(5):134~136
    [177]王志敏,王树安,苏宝林.小麦穗粒数的调节.作物高产高效生理学研究进展.北京:科学出版社,1996:108~116
    [178]蔡大同,苑泽圣.氮肥不同时期施用对优质小麦产量和加工品质的影响.土壤肥料,1994,(2):19~24
    [179]沈学善,朱云集,郭天财,等.施硫对豫麦50籽粒灌浆特性及产量的影响.西北植物学报,2007,27(6):1265~1269
    [180]Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesisin natural assemblages ofmarine phytoplankton. Journal of Marine Research,1980,38:687~701
    [181]Ralph P J, Gademann R. Rapid light curves: a powerful tool to assess photosynthetic activity.Aquatic Botany,2005,82:222~237
    [182]赵世杰,刘华山,董新纯,等.植物生理实验指导.北京:中国农业科技出版社,1998,68~54
    [183]Guarini J M, Moritz C. Modelling the dynamics of the electron transport rate measured by PAMfluorimetry during rapid light curve experiments. Photosynthetica,2009,47:206~214
    [184]Diez J A, Caballero R, Roman R, et al. Integrated fertilizer and irrigation management to reducenitrate leaching in central Spain. Journal of Environmental Quality,2000,29:1539~1547
    [185]李娜娜,田奇卓,王树亮,等.两种类型小麦品种分蘖成穗对群体环境的响应与调控.植物生态学报,2010,34(3):289~297
    [186]Demmig-Adams B, Adams W W III, Barker D H, et al. Using chlorophyll fluorescence to assessthe fraction of absorbed light allocated to thermal dissipation of excess excitation. PhysiologyPlant,1996,98:253~264
    [187]陈屏昭,罗家刚,王磊,等.亚硫酸氢钠影响脐橙叶片光合作用的原因.西北农业学报,2004,13:69~75
    [188]郑蓉,黄耀华,连巧霞,等.刚竹属13个竹种叶绿素荧光特性比较.江西农业大学学报,2008,30:263~267
    [189]Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments, morphology and leaf gas exchangeduring ex-vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relativehumidity and air temperature. Environmental and Experimental Botany,2006,55:183~194
    [190]Aro E M, Suorsa M, Rokka A, et al. Dynamics of photosystem II: a proteomic approach tothylakoid protein complexes. Journal of Experimental Botany,2005,56:347~356
    [191]Zhang T, Shen Z G., Xu P, et al. Analysis of photosynthetic pigments and chlorophyll fluorescencecharacteristics of different strains of Porphyra yezoensis. Journal of Applied Phycology,2011,24:881~886
    [192]赵营,同延安,赵护兵.不同供氮水平对夏玉米养分累积、转运及产量的影响.植物营养与肥料学报,2006,12(5):622~627
    [193]宋海星,李生秀.玉米生长量、养分吸收量及氮肥利用率的动态变化.中国农业科学,2003,36(1):71~76
    [194]傅应春,陈国平.夏玉米需肥规律的研究.作物学报,1982,8(1):1~8
    [195]Osaki M, Makoto L, Toshiaki T. Ontogenetic changes in the contents of ribulose-1,5-bisphosphatecarboxylase/oxygenase, phosphoenolpyruvate carboxlase and chlorophyll in individual leaves ofmaize. Soil Science and Plant Nutrition,1995,41:285~293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700