用户名: 密码: 验证码:
过渡金属电极/溶液界面水分子的表面增强拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面水的取向和构型在许多表面过程中都发挥关键的作用,并深刻影响各种界面的结构和功能,由此而长期成为表面科学、生物、化学和地质等领域的重要基础性课题。为了深入认知水在固/液界面的结构和行为,人们发展了各种原位和非原位的谱学技术,但是由于数量巨大体相(约55摩尔)的信号干扰,难以抽提出微弱的界面水信号,迄今所获得的信息尚十分有限。由于水分子的拉曼散射截面很小,常规拉曼光谱技术无法获得固/液体系的界面水的信息。表面增强拉曼光谱(SERS)由于具有检测表面分子的超高灵敏度而具有独特优势。但是,人们迄今仅在具有高SERS活性的金,银、铜电极体系获得水的SERS信号,并且难度很大,进展有限。因此,在更具应用背景的各种过渡金属(ⅧB族元素)的电极表面获得SERS信号,是一个具有重要科学意义的挑战性课题,也是本论文工作的主攻方向。
     由于无法在具有弱SERS活性的铂族金属上获得水的SERS信号,我们采用了“借力”的策略,即在高SERS活性的金纳米粒子表面沉积一层极薄的过渡金属层,试图借助于金核的电磁场增强的长程作用,以获得铂和钯表面水的SERS。本论文研究的主要内容包括:(1)通过优化实验仪器条件(特别是光谱仪的收集效率),提高了实验的检测灵敏度;设计和采用立式电解池和薄层溶液技术,将研究的电位范围拓宽到有强烈氢析出的反应电位区间;(2)合成核壳结构纳米粒子,在金核表面无针孔沉积包裹极薄的铂或钯金属原子壳层,成功地在过渡金属电极表面得到了水的SERS信号,并探讨了有关电磁场增强机理。(3)为了全面认知水在各种金属表面的吸附过程和深入探讨其SERS机制,通过改变溶液的离子种类、浓度和pH值,考察了这些因素对界面水SERS行为的影响。我们比较了铂和钯基底的水的SERS谱图与金电极的明显差异,并通过量子化学计算的研究,初步提出了有关三种金属/溶液的界面水结构的模型。
The orientation and configuration of interracial water play a vital role in various surface processes and deeply influence the structure and function of different interfaces. Therefore,it has been a key fundamental issue in surface science,biology,chemistry and geology etc.for a long time.In order to completely understand the structure and behavior of water at the solid/aqueous,various in situ and ex situ techniques had been developed. However,until now the information obtained for the interfacial water is very limited because the interference from the bulk water(55 mol/L) is too severe to extract the very signal of interracial water.Normal Raman technique has a too low detection sensitivity to obtain information of the solid/aqueous interface due to the low Raman cross section of water.Surface-enhanced Raman Spectroscopy(SERS) with its ultrahigh detecting sensitivity to surface species has unique advantages over other surface techniques. However,up to now SERS of water can only be observed on silver,gold and copper with great difficulty,and the development is much slower than expected,Therefore,to obtain SERS signals of water from transition metal(ⅤⅢB group) surfaces with a wider application is a very challenging project with important scientific significance,which is the core of present thesis.
     We have tried but we are unable to directly obtain SERS signal of water from Pt group metal surfaces with only weak SERS-activity.Therefore,we utilized a "borrow" strategy,i.e.,by coating a very thin transition-metal layer(Pt or Pd) over the high SERS-activity Au nanoparticles,in virtue of the long range effect of electromagnetic enhancement of Au core,to obtain the SERS signal from Pt and Pd surfaces.The main results of this thesis include:
     (1) The detection sensitivity for detecting surface species was improved by optimizing experimental and instrumental conditions,especially the collecting efficiency of the instrument,including adopting suitable instrumental parameters,designing and utilizing a vertical setup of cell and thin-layer solution method.This also allows the in situ SERS investigation in the severe hydrogen evolution region.
     (2) Pinhole-free Gold core thin platinum or palladium shell nanoparticles with high SERS activity were synthesized and used as substrate to successfully obtain the SERS signal of inteffacial water.A brief discussion on the on electromagnetic enhancement was made on the basis of the result modeled by 3D-FDTD calculation.
     (3) For a completely understanding the process of water adsorbed on various metal surfaces and the SERS mechanism,the influence of solution pH value,the concentration of the electrolyte and the type of cations of supporting electrolyte on the structure of interfacial water was investigated.Significant difference in the SERS of water has been observed on Pt,Pd and Au surfaces.To account for the difference,a quantum chemical study was carried out and three preliminary models for water adsorbed on the three metal surfaces was proposed.
引文
[1]Franks,F.Water:A comprehensive treatise.[M]New York,Plenum,1973,Vols:1-7.
    [2]Eisengerg,D.Kauzmann W.The structure and properties of water.[M]New York,Oxfrod University press,1969.
    [3]Ball,P.Life's matrix:a biography of water.[M]New York,Farrar,Straus and Giroux,1999.
    [4]Robinson,G.W.;Zhu,S.B.;Singh,S.;Evans,M.W.Water in biology,chemistry,and physics.[M]Singapore,World scientific,1996.
    [5]Pratt,L.R.Introduction:water.[J]Chem.Rev.2002,102:2625-2626.
    [6]Drew,Myers.Surfaces,interfaces,and colloids:principles and applications.[M]2~(nd) edition,John Wiley & Sons,Inc.1999.
    [7]Van Helmholtz,H.[J]Ann.Phys.(Leipzig) 1853,89:211.
    [8]Gouy,G,Constitution of the Electric Charge at the Surface of an Electrolyte.[J]Compt.Rend.,1910,149:654-657.
    [9]Gouy,G.Constitution of the Electric Charge at the Surface of an Electrolyte.[J]Radium.J Phys.,1910,9:457-467.
    [10]Chapman,D.L.A contribution to the theory of electro-capillarity.[J]Phil.Mag.,1913,25:475-481.
    [11]Stern,O.The theory of the electrolytic double-layer.[J]Zeitschrift fuer Elektrochemie und Angewandte Physikalische Chemie.,1924,30:508-516.
    [12]Grahame,D.C.The Electrical Double Layer and the Theory of Electrocapillarity.[J]Chem.Rev.,1947,41:441.
    [13]Bockris,J.O'M.;Devananthan,M.A.;Muller,V.K.On structure of charged interfaces.[J]Pro.Royal.Soc.,1963,A274:55.
    [14]Frurnkin,A.Affectation of the adsorption of neutral molecules by means of electrical field.[J]Z.Phys.,1926,35:792-802.
    [15]Watts-Tobin,R.J.[J]Phil.Mag.,1961,6:133.
    [16]Mott,N.F.;Watts-Tobin,R.J.The interface between a metal and an electrolyte.[J]Electrochim.Acta.,1961,4:79-107.
    [17]Bockris,J.O'M.;Potter,E.C.The Mechanism of Hydrogen Evolution at Nickel Cathodes in Aqueous Solutions.[J]J.Chem.Phys.,1952,20:614-628.
    [18]Conway,B.Theory and principles of electrode processes.[M]London,Ronald Press,1965.
    [19]Damaskin,B.B.[J]Elektrokhimiya.,1965,1:1258 and 1966,2:828.
    [20]Frumkin,A.;Polianovkaya,N.;Grigoryev,N.;Bagotskaya,I.Electrocapillary phenomena on gallium.[J]Electrochim.Acta.,1965,10:793-802.
    [21]Parsons,R.Primitive four state model for solvent at the electrode-solution interface.[J]J.Electroanal.Chem.,1975,59:229-237.
    [22]Parsons,R.The electrical double layer in non-aqueous solvents.[J]Electrochim.Acta,1976,21:681-686.
    [23]Guidelli,R.in:A.F.Silva(Ed.),Trends in Interracial Electrochemistry,[M]Riedel,Dordrecht,1986,387-452.
    [24]Guidelli,R.;Schmickler,W.Recent developments in models for the interface between a metal and an aqueous solution.[J]Electrochim.Acta,2000,45:2317-2338.
    [25]Doering.D.;Madey,T.E.The adsorption of water on clean and oxygen-dosed Ru(011).[J]Surf.Sci.,1982,123:305.
    [26]Trasatti,S.Effect of the nature of the metal on the dielectric properties of polar liquids at the interface with electrodes.A phenomenological approach.[J]J.Electroanal.Chem.,1981,123:121-139.
    [27]Lang.N.D.;Kohn,W.Theory of Metal Surfaces:Charge Density and Surface Energy.[J]Phys.Rev.B1,1970,4555-4568.
    [28]Lang.N.D.;Williams,A.R.Theory of atomic chemisorption on simple metals.[J]Phys.Rev.B 18,1978,616-636.
    [29]Badiali,J.P.;Rosinberg,M.L.;Goodisman,J.Contribution of the metal to the differential capacity of an ideally polarisable electrode.[J]J.Electroanal.Chem.,1983,143:73-88.
    [30]Badiali,J.P.;Rosinberg,M.L.;Vericat,F.;Blum,L.Microscopic model for the liquid metal-ionic solution interface.[J]J.Electroanal.Chem.,1983,158:253-267.
    [31]Amokrane,A.;Badiali,J.P.in Modem aspects of electrochemistry.[M]Bockris,J.O'M.;Conway,B.E.and White,R.E.eds.vol.22,chapter 1.Plenum,New York,1992.
    [32]Schmiclder,W.;Henderson,D.J.The interphase between jellium and a hard sphere electrolyte.A model for the electric double layer.[J]J.Chem.Phys.,1984,80:3381-3386.and The capacitance for a single crystal face of an fcc metal/electrolyte interface.[J]J.Chem.Phys.,1985,82:2825-2826.
    [33]Schmickler,W.Electronic effects in the electric double layer.[J]Chem.Rev.,1996,96:3177-3200.
    [34]Schmickler,W.;Henderson D.J.New models for the structure of the electrochemical interface.[J]Prog.Surf.Sci.,1986,22:323.
    [35]Brodsky,A.M.;Watanabe,M.;Reinhardt,W.P.,The double layer impedance at a rough electrode:a random walk method.[J]Electrochim.dcta.,1991,36:1695-1697.
    [36]Parsons,R.;Trasatti,S.Diffuse double layer in aqueous KCl+ MgCl_2 mixtures.[J]Trans.Faraday Soc.,1969,65:3314-3323.
    [37]Torrie,G.M.;Valleau,J.P.Electrical double layers.I.Monte Carlo study of a uniformly charged surface.[J]J.Chem.Phys.,1980,73:5807-5816.
    [38]Torrie,G.M.;Patey,G.N.,Effects of lateral interactions in multicomponent adsorption.[J]Electrochim.Acta,1991,36:1685-1687.
    [39]Spohr,E.Some recent trends in computer simulations of aqueous double layer.[J]Electrochim.Acta,2003,49:23-27.
    [40](a) Stuve,E.M.;Kizhakevariam,N.Chemistry and physics of the "liquid"/solid interfaces:a surface science perspective.[J]J.Vac.Sci.Technol.,1993,11:2217-2224.and references therein.(b) Lim,D.S-W.;Stuve,E.M.Solvation and ionization of hydroxyl groups in water-ice layer on silver(110).[J]Surf.Sci.,1999,425:233-244.
    [41]Ogasawara,H.;Yoshinobu,J.;Kawal,M.Water adsorption on Pt(111):from isolated molecule to three-dimensional cluster.[J]Chem.Phys.Lett.,1994,231:188-192.
    [42](a) Nakamura,M.;Ito,M.Ring hexamer like cluster molecules of water formed on a Ni(111)surface.[J]Chem.Phys.Lett.,2004,384:256-261.(b) Nakamura,M.;Ito M.Coadsorption of water dimer and ring-hexamer clusters on M(111)(M=Cu,Ni,Pt) and Ru(001) surfaces at 25K as studied by infrared reflection absorption spectroscopy.[J]Chem.Phys.Lett.,2005,404:346-350.
    [43]Glebov,A.L.;Graham,A.P.;Menzel,A.Vibrational spectroscopy of water molecules on Pt(111)at submonolayer coverages.[J]Surf Sci.,1999,427-428:22-26.
    [44]Nakamura,M.;Shingaya,Y.;Ito,M.The vibrational spectra of water cluster molecules on Pt(111)surface at 20K.[J]Chem.Phys.Left.,1999,309:123-128.
    [45](a)Pirug,G.;Bonzel,H.P.in:Structure of Electrified Surfaces,Edited by Lipkowski J.and Ross P.N.,VCH,New York,1992,Chapt.5 and references therein.(b) Nakamura,M.;Ito,M.Infrared spectroscopic study of water coadsorbed with Na on the Ru(001) surface.[J]Surf.Sci.,2002,144-148:502-503.(c) Kizhakevariam,N.;Villegas,I.;Weaver,M.J.Infrared Spectroscopy of Model Electrochemical Interfaces in Ultrahigh Vacuum:Roles of Adsorbate and Cation Double-Layer Hydration in the Pt(111)-Carbon Monoxide Aqueous System.[J]J.Phys.Chem.,1995,99:7677-7688.
    [46]Bange,K.;Madey,T.E.;Sass,J.K.The structure of the surface hydration shell of bromide on Ag (110).[J]Surf Sci.,1985,162:252-258.
    [47]Kizhakevariam,N.;Stuve,E.M.;DohI-Oelze,R.Coadsorption of water and chlorine on Ag(110):Evidence for adsorbate-induced hydrophilicity.[J]J.Chem.Phys.,1991,94(1):670-678.
    [48]Villegas,I.;Weaver,M.J.Infrared Spectroscopy of Model Electrochemical Interfaces in Ultrahigh Vacuum:Evidence for Coupled Cation-Anion Hydration in the Pt(111)/K~+,Cl~- System[J]J.Phys.Chem.1996,100:19502-19511.
    [49]Wagner,F.T.;Moylan,T.E.A comparison between water adsorbed on Rh(111) and Pt(111),with and without predosed oxygen.[J]Surf,Sci.1987,191:121-146.
    [50](a)Wagner,F.T.;Moylan,T.E.[J]Surf.Sci.1989,216:361.(b) Ito,M.;Nakamura,M.Hydration processes of electrolyte anios and cations on Pt(111),Ir(111),Ru(001) and Au(111) surfaces:coadsorption of water molecules with electrolyte ions.[J]Faraday Discuss.,2002,121:71-84.
    [51]Sass,J.K.;Bange,K.;Dohl,R.;Piltz,E.;Unwin,R.Double Layer Simulation Studies in Ultrahigh Vacuum of Anion and Cation Hydration at Metal Surfaces.[J]Ber.Bunsenges.Phys.Chem.,1984,88:354-359.
    [52]Villegas,I.;Kizhaevariam,N.;Weaver,M.J.Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum:some implications for ionic and chemisorbate solvation at electrode surfaces.[J]Surf.Sci.,1995,335:300-314.
    [53]Villegas,I.;Weaver,M.J.Progressive cation solvation at Pt(111) model electrochemical interfaces in ultrahigh vacuum as probed by infrared spectroscopy and work-function measurements.[J]Electrochimiea Acta.,1996,41(5):661-673.
    [54]Pirug,G.;Bonzel,H.P.UHV simulation of the electrochemical double layer:adsorption of HClO_4/H_2O on Au(111).[J]Surf.Sci.,1998,405:87-103.
    [55](a) Shingaya,Y.;Ito,M.Interconversion of a bisulfate anion into a sulfuric acid molecule on a Pt (111) electrode in a 0.5 M H_2SO_4 solution.[J]Chem.Phys.Lett.,1996,256:438-444.(b) Shingaya,Y.;Ito,M.Coordination number and molecular orientation of hydronium cation/bisulfate anion adlayers on Pt(111).[J]Surf Sci.,1996,368:318-323.
    [56]Gunster,J.;Souda,R.Thickness dependent reactivity of amorphous water layers on Pt(111)interacting with sodium.[J]Chem.Phys.Lett.,2003,371:534-539.
    [57]Ciszewski,A.R.;Blaszczyszyn,R.Interaction of water with field emitter tips.[J]Progr Surf Sci.,1995,48:99-108.
    [58]Scovell,D.L.;Pinkerton,T.D.;Medvedev,V.K.;Stuve,E.M.Phase transitions in vapor-deposited water under the influence of high surface electric fields.[J]Surf Sci.2000,457: 365-376.
    [59]Bryl,R.;Blaszczyszyn,R.;Galewska,E.Interaction of water with clean and gold-precovered tungsten field emitters:adsorption and desorption.[J]Vacuum 1997,48:329-332.
    [60]Stintz,A.;Panitz,J.A.Negative cluster ion formation from water ice in high electric fields.[J]Int.J.Mass Spectrom.Ion Processes 1994,133:59-64.
    [61]Plsek,J.;Hruby,P.;Nikiforov,K.;Knot,Z.Properties of physisorbed water layers on gold revealed in a FEM study.[J]Appl.Surf Sci.,2005,252:1553-1560.
    [62]Oro,D.M.;Lin.Q.;Zhang,X.;Dunning,F.B.;Waiters,G.K.Use of spin-labeling techniques to study the dynamics of surface Penning ionization.[J]J.Chem.Phys.,1992,97:7743-7747.
    [63]Yencha,A.J.;Kubota H.;Fukuyama T.;Kondow T.;Kuchitsu K.Penning ionization electron spectroscopy and photoelectron spectroscopy of molecular solids.Ⅱ.Ammonia and water.[J]J.Electron Spectrosc.Relat.Phenom.1981,23:431-440.
    [64]Canepa,M.;Cantini,P.;Mattera.L.;Narducci E.;Salvietti M.;Terreni S.;An experimental investigation of the dissociation of H_2O on O(n×1)-Ag(110):Formation of OH(1×m) ordered layers.[J]Surf.Sci.1995,322:271-284.
    [65]Krischok,S.;Hofft,O.;Gunster,J.;SoMa,R.;Kernpter,V.The chemistry of alkali atoms on solid water:a study with MIES and UPS.[J]Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms.;2003,203:124-129.
    [66]Suzuki,T.;Kurahashi,M.;Yamauchi Y.;Spin-resolved electronic structure of the outermost surface in the H_2O/Na/Fe(001) coadsorption system:spin-polarized metastable deexcitation spectroscopy study.[J]Surf.Sci.2001,476:63-70.
    [67]Kurahashi,M.;Suzuki,T.;Ju,X.;Yamauchi,Y.A metastable-atom deexcitation spectroscopy (MDS) study of water adsorption on Cu(100):a new feature at around the Fermi level.[J]Chem.Phys.Lett.;2003,377:519-522.
    [68](a)Bingelli,M.;Carnal,D.;Nyffenegger,R.;Siegenthaler,H.;Christoph,R.;Rohrer,H.Electrolytic scanning tunneling microscopy and point contact studies at electrochemically polished Au(111) substrates with and without Pb adsorbates.[J]J.Vac.Sci.Technoi.B;1991;9;1985-1992.(b) Jacobi,K.;Bedurftig,K.;Wang,Y.;Ertl,G.From monomers to ice-new vibrational characteristics of H_2O adsorbed on Pt(111).[J]Surf.Sci.;2001,472:9-20.
    [69]Haiss,W.;Lackey,D.;Sass,J.K.;Besocke,K.H.Atomic resolution scanning tunneling microscopy images of Au(111) surfaces in air and polar organic solvents.[J]J.Chem.Phys.1991,95:2193-2196.
    [70](a) Ikemiya,N.;Gewirth,A.A.Initial stages of water adsorption on Au surfaces.[J]J.Am.Chem.Soc.;1997,119:9919-9920.(b) Pan,J.;Jing,T.W.;Lindsay,S.M.Tunneling Barriers in Electrochemical Scanning Tunneling Microscopy.[J]J.Phys.Chem.;1994,98:4205-4208.
    [71]Schmickler,W.;Henderson,D.A Model for the Scanning Tunneling Microscope Operating in an Electrolyte Solution.[J]J.Electroanal.Chem.;1990,290:283.(b) Schmickler,W.;Henderson,D.New Models for the Structure of the Electrochemical Interface.[M]1987;IBM Thomas J.Watson Research Center.
    [72]Nagy,G.Structure of platinum/water interfaces as refelected by STM measurements.Electrochim.Acta.;1995,40:1417-1420.and Water structure at the graphite(0001) surface by STM measurements.[J]J.Electroanal.Chem.1996,409:19-23.
    [73]Morgenstem,K.;Rieder,K-H.Dissociation of water molecules with the scanning tunnelling microscope.[J]Chem.Phys.Lett.2002,358:250-256.
    [74]Morgenstern,M.;Michely,T.;Comsa,G.Anisotropy in the adsorption of H_2O at low coordination sites on Pt(111).[J]Phys.Rev.Lett.;1996,77:703-706.
    [75]Morgenstern,K.;Nieminen,J.Intermolecular bond length of ice on Ag(111).[J]Phys.Rev.Lett.;2002,88:066102-1-4
    [76](a) Mitsui,T.;Rose,M.;Fomin,E.;Ogletree,D.;Salmeron,M.Water diffusion and clustering on Pd(111).[J]Science 2002,297:1850-1852.(b) Fomin,E.;Tatarkhanov,M.et al.Vibrationally assisted diffusion of H_2O and D_2O on Pd(111).[J]Surf.Sci.;2006,600:542-546.
    [77]Ogasawa,H.;Brena,B.et al.Structure and bonding of water on Pt(111).[J]Phys.Rev.Lett.;2002,89:276102-1-4.
    [78]Andersson,K.;Nikitin,A.;Pettersson,L.G.M.;Nilsson,A.;Ogasawara H.Water dissociation on Ru(001):an activated process.[J]Phys.Rev.Lett.;2004,93:196101-1-4.
    [79]Weissenrieder,J.;Mikkelsen,A.;Andersen,J.N.Experimental evidence for a partially dissociated water bilayer on Ru(0001).[J]Phys.Rev.Lett.;2004,93:196102-1-4.
    [80]Feibelman,P.Partial dissociation of water on Ru(0001).[J]Science,2002,295:99-101.
    [81]Menzel,D.Water on a metal surface.[J]Science,2002,295:58-59.
    [82]Hoffmann,O.;Doblhofer,K.;Gedscher,H.Infrared reflexion-absorption measurements on emersed gold electrodes.[J]J.Electroanal.Chem.1984,161:337-344.
    [83]Hansen,W.N.;Wang,C.L.;Humphreys,T.W.A study of electrode immersion and emersion.[J]J.Electroanal.Chem.1978,93:87-98.
    [84]Kolb,D.M.;Hansen,W.N.Electroreflectance spectra of emersed metal-electrodes.[J]Surf.Sci.1979,79:205.
    [85]Reniers,F.The development of a transfer mechanism between UHV and electrochemistry environments.[J]J.Phys.D.Appl.Phys.2002,35:R169-188.
    [86]Soriaga,M.P.Ultra-high vacuum techniques in the study of single-crystal electrode surfaces.[J]Prog.Surf.Sci.;1992,39:325-443.
    [87]Melendres,C.A.;Hahn,F.;Lamy,C.Potential control ofemersed electrodes.[J]Electrochim.Acta;2001,46:3493-3502.
    [88]Yee,N.C.;Chottiner,G S.;Scherson,A.Surface dynamics of coadsorbed CO and D_2O on Pt(100)in ultrahigh vacuum as studied by time-resolved infrared reflection absorption spectroscopy.[J]J.Phys.Chem.B;2005,109:7610-7613.
    [89]Bard,A.J.;Faulkner,L.R.Electrochemical Methods(New York:Wiley);1980
    [90]Pettinger,B.;Picardi,G.;Schuster,R.;Erti,G Surface enhanced Raman spectroscopy:towards single molecule spectroscopy.[J]Electrochemistry(Tokyo) 2000,68:942-949.
    [91]lwasita,T.ed.Infrared Spectroscopy in Electrochemistry Electrochim.Acta(Special Issue)[J]1996,41,Oxford,UK:Pergamon.
    [92]Weaver,M.J.;Zou,S.Z.Vibrational spectroscopy of electrochemical interfaces:some walls and bridges to surface science understanding.[J]Adv.Spectrosc.(UK:Chichester) 1998,26:219-272.
    [93]Santos,E.;Schuerrer,C.;Bnmetti,A.;Schmickler,W.Second Harmonic Generation from Ag(111)Electrodes Covered by Various Organosulfur Compounds.[J]Langmuir;2002,18:2771-2779.
    [94]Sheridan,B.;Martin,D.;Power,J.;Barrett,S.;Smith,C.;Lucas,C.;Nichols,R.;Weightman,P.;Reflection Anisotropy Spectroscopy:A New Probe for the Solid-Liquid Interface.[J]Phys.Rev.Lett,2000,85:4618-4621.
    [95]Itaya,K.;In situ electrochemical scanning tunneling microscopy:adlayers of organic molecules.[J]Electrochemistry.(Tokyo;Japan),2001,69:304-11.
    [96]Tidswell,L.;Markovic,N.;Lucas,C.;Ross,P.;In situ x-ray-scattering study of the Au(001)reconstruction in alkaline and acidic electrolytes.[J]Phys.Rev.B:Condens.Matter;1993,47:16542-16553.
    [97]Park,S.;Tong,Y.;Wieckowski,A.;Weaver,M.J.Infrared reflection-absorption properties of platinum nanoparticle films on metal electrode substrates:control of anomalous optical effects.[J]Electrochem.Commun.;2001,3:509-513.
    [98]Kolb,D.M.UV techniques in the study of electrode surfaces.[J]Zeits.fur Phys.Chem.Neue Folge.;1987,154:179-199.
    [99](a) Krasnopoler,A.;Stuve,E.M.Evidence of specific and nonspecific adsorption of perchlorate (ClO_4) on silver(110).[J]J.Vac.Sci.Technol.A.1995,13:1681-1686.
    (b) Trassatti,S.Surface science and electrochemistry:concepts and problems.[J]Surf.Sci.1995,335:1-9.
    (c) Villegas,I.;Kizhakevariam,N.;Weaver,M.J.Infrared spectroscopy of model electrochemical interfaces in ultrahigh vacuum:some implications for ionic and chemisorbate salvation at electrode surfaces.[J]Surf.Sci.;1995,335:300-314.
    [100]Pirug,G.;Bonzel,H.P.UHV simulation of the electrochemical double layer:adsorption of HClO_4/H_2O on Au(111).[J]Surf Sci.;1998,87-103.
    [101]Toney,M.F.;Howard,J.H.;Richer,J.;Borges,G.L.;Gordon,J.G;Melroy,O.R.;Wielser,D.G.;Yee,D.;Sorensen,L.B.Voltage-dependent ordering of water molecules at an electrode-electrolyte interface.[J]Nature 1994,368:44.
    [102](a)Toney,M.F.;Howard,J.H.;Richer,J.;Borges,G.L.;Gordon,J.G.;Melroy,O.R.;Wielser,D.G.;Yee,D.;Sorensen,L.B.Distribution of water molecules at Ag(111)/electrolyte interface as studied with surface X-ray scattering.[J]Surf.Sci.;1995,335:326-332.
    (b) Gordon,J.;Melroy,O.R.;Toney,M.F.Sturcture of metal-electrolyte interfaces:copper on gold(111),water on silver(111)[J]Electrochim.Acta.1995,40:3-8.
    [103]Wang,J.;Ocko,B.M.;Davenport,A.J.;Isaacs,H.S.In situ x-ray-diffraction and-reflectivity studies of the Au(111)/electrolyte interface:Reconstruction and anion adsorption.[J]Phys.Rev.B; 1992,46(16):10321-10338.
    [104]Schmickler,W.;Henderson,D.;Melroy,O.R.The dependence of the oxygen-metal distance for water adsorbed at a metal electrode.[J]Chem.Phys.Lett.1993,216(3-6):424-428.
    [105]Wang,J.;Ocko,B.M.;Davenport,A.J.;Isaacs,H.S.In situ x-ray-diffraction and-reflectivity studies of the Au(111)/electrolyte interface:Reconstruction and anion adsorption.[J]Phys.Rev.B;1992,46(16):10321-10338.
    [106]Magnussen,O.M.;Ocko,B.M.;Adzic,R.R.;Wang,J.X.X-ray diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface.[J]Phys.Rev.B.;1995,51:5510-5513.
    [107]Fenter,P.;Geissbuhler,P.et al.Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity[J]Geochim.Cosmochim.Acta;2000,64:1221-1228.
    [108]Nakamura,M.;et al.Surface X-ray diffraction study of Cu UPD on Au(111) electrode in 0.5 M H_2SO_4 solution:the coadsorption structure of UPD copper;hydration water molecule and bisulfate anion on Au(111).[J]Surf.Sci.;2002,514:227-233.
    [109]Hecht,D.;Strhblow,H.H.A surface analytical inverstigation of the electrochemical double layer on silver electrodes in chloride solutions.[J]J.Electroanal.Chem.;1997,436:109-118.
    [110]陈燕霞;黄开启;田中群;[J]电化学,1998,4(2):135.
    [111]Kalaji,M.Alan Bewick-a tribute.[J]J.Electroanal.Chem.2004,563:1.
    [112]Bewick,A.Kunimatsu,K.Infrared spectroscopy of the electrode-electrolyte interphase[J]Surf.Sci.;1980,101:131-138.
    [113]Bewick,A.;Russell,J.W.Structural investigation by infra-red spectroscopu of adsorbed hydrogen on platinum.[J]J.Electroanal.Chem.;1982,132:329-344.
    [114]Bewick,A.;Russell,J.W.Structural investigation by electrochemically infrared spectroscopy of adsorbed hydrogen rhodium.[J]J.Electroanal.Chem.;1982,142:337.
    [115]Habib,A.;Samant,M.G.;Seki,H.In-situ FT-IR spectroscopic study of bisulfate and sulfate adsorption on platinum electrodes.Part 1.Sulfuric acid.[J]J.Electroanal.Chem.;1989,258:163-177.
    [116]Habib,A.;Bockris,J.O'M.Potential-dependent water orientation:an in situ spectroscopic study.[J]Langmuir;1986,2:380-388.
    [117]张久俊;陆君涛;冯子刚;查全性;[J]物理化学学报;1990,6(3):318.
    [118]Russell,E.;Lin,A.S.;O'Grady,W.E.;In situ far-infrared evidence for a potential dependence of silver-water interactions[J]J.Chem.Soc.Faraday Trans.;1993,89(2):195-198.
    [119]Griffiths,K.;Kasza,R.V.;Esposto,F.J.;Callen,B.W.;Bushby,S.J.;Norton,P.R.Infra-red hehaviour of sub-monolayer coverages of water on metal surfaces.[J]Surf.Sci.;1994,20:60-64.
    [120]lwasita,T.;Nart,F.C.In situ infrared spectroscopy at electrochemical interfaces.[J]Prog.Surf.Sci.;1997,271-340.
    [121]Hirata,K.;Song.M-B.;lto,M.In-situ infrared spectroscopy of water and electrolytes adsorbed on a Pt(111) electrode surface in acid solution.Structural changes of adsorbed water molecules upon an electrode potential.[J]Chem.Phys,Lett.;1996,250:335-341.
    [122]Shingaya,Y.;Hirota,K.;Ogasawara,H.;Ito,M.Infrared spectroscopic study of electric double layers on Pt(111) under electrode reactions in a sulfuric acid solution.[J]J.Electroanal.Chem.;1996,409:103-108.
    [123]Shingaya,Y.;Ito,M.Model double layer structures on M(111)(M=Pt;Rh;Au;Cu and Ag) in a sulfuric acid solution.[J]Electrochim.Acta;1998,44:745-751.and 889-895.
    [124]Nakamura,M.;Shingaya,Y.;Ito,M.Hydration processes on metal surfaces studied by IR and STM:a model for the potential drop across the electric double layers.[J]Surf.Sci.;2002,502-503:474-484.
    [125]lwasita,T.;Xia,X.H.Adsorption of water at Pt(111) electrode in HClO4 solution:the potential of zero charge.[J]J.Electroanal.Chem.;1996,411:95-102.
    [126](a)Osawa,M;Dynamic Processes in Electrochemical Reactions Studied by Surface-Enhanced Infrared Absorption Spectroscopy(SEIRAS)[J]Bull.Chem.Soc.Jpn 1997,70:2861-2880.
    (b)Ataka,K.;Osawa,M.In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solution.[J]Langmuir;1998,14:951-959.
    (c) Shiroishi,H.;Ayato,Y.;Kunimatsu,K.;Okada,T.Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS(surface-enhanced infrared absorption spectroscopy).[J]J.Electroabal.Chem.2005,581:132-138.
    [127]Ataka,K.;Yotsuyannagi,T.;Osawa,M.Potential-dependent reorientation of water molecules at an electrode/electrolyte interfaces studied by surface-enhanced infrared absorption spectroscopy.[J] J.Phys.Chem.1996,100:10664-10672.
    [128]Futamata,M.In-situ ATR-IR study of water on gold electrode surface.[J]Surf.Sci.;1999,427-428:179-183
    [129]Futamata,M.;Diesing,D.Adsorbed state of pyridine;uracil and water on gold electrode surfaces.[J]Vibrational Spectroscopy.1999,19:187-192.
    [130]Futamata,M.Characterization of the first layer and second layer adsorbates on Au electrodes using ATR-IR spectroscopy.[J]J.Electroanal.Chem.;2003,550-551:93-103.
    [131]Futamata,M.;Luo,L.Q.;Nishihara,C.ATR-SEIR study of anions and water adsorbed on platinum electrode.[J]Surf.Sci.;2005,590:196-211.
    [132]Bain,C.;Sum-frequency vibrational spectroscopy of the solid/liquid interface.[J]J.Chem.Soc.Faraday Trans.;1995,91:1281-1296.
    [133]Richmond,G.in:Modern Techniques for In-Situ Interface Characterisation;[M]edited by H.Abruna.p.256,VCH;1991.
    [134](a) Vidal,F.;Tadjeddine,A.Sum-frequency generation spectroscopy of interfaces.[J]Reports on Progress inphysics.2005,68:1095-1127.
    (b)Tadjeddine,A.;Rille,A.L.;Pluchery,O.;Vidal,F.;Zheng,W.Q.;Peremans,A.Sum and difference frequency generation at the electrochemistry.[J]Phys.Stat.Sol.A 1999,175:89-107.
    [135]Tadjeddine,A.;Pluchery,O.;et al.What can we learn from the non-linear optical investigation of the liquid/solid interface?[J]J.Electroanal.Chem.;1999,473:25-33.
    [136](a) Tadjeddine,A.;Peremans,A.;Guyot-sionnest,P.Vibrational spectroscopy of the electrochemical interface by visible-infrared sum-frequency generation.[J]Sues Sci.;1995,335:210-220.
    (b) Le Rille,A.;Tadjeddine,A.;Zheng,W.Q.;Peremans,A.Vibrational spectroscopy of a Au(hk1)-electrolyte interface by in situ visible-infrared difference frequency generation.[J]Chem.Phys.Lett.;1997,271:95-100.
    [137](a) Peremans,A.;Tadjeddine,A.Vibrational spectroscopy of electrochemically deposited hydrogen on platinum.[J]Phys.Rev.Lett.1994,73:22,3010-3013.
    (b) Tadjeddine,A.;Peremans,A.;Guyot-Sionnest,P.Vibrational spectroscopy of the electrochemical interface by visible-infrared sum-frequency generation.[J]Surf.Sci.;1995,335:210-220.
    (c) Peremans,A.;Tadjeddine,A.;Electrochemical deposition of hydrogen on platinum single crystal studied by infrared-visible sum-frequency generation.[J]J.Chem.Phys.;1995,103:7197-7203.
    [138](a)Zheng,W.Q.;Pluchery,O.;Tadjeddine,A.SFG study of platinum electrode in perchloric acid solution.[J]Surf.Sci.;2002,502-503:490-497.
    (b) Zheng,W.Q.;Tadjeddine,A.Adsorption processes and structure of water molecules on Pt(110) electrodes in perchloric solution.[J]J.Chem.Phys.;2003,119:13096-13099.
    [139]Schultz,Z.D.;Shaw,S.K.;Gewirth,A.A.Potential dependent organization of water at the electrified metal-liquid interface.[J]J.Am.Chem.Soc.;2005,127:15916-15922.
    [140]Nihoyanagi,S.;Ye,S.;Uosaki,K.;Dresen,L.;Humbert,C.;Thirv,P.;Peremans,A.Potential-dependent structure of the interracial water on the gold electrode.[J]Surf.Sci.;2004,573:11-16.
    [141]Yeganeh,M.S.;Dougal,S.M.;Pink,H.S.Vibrational spectroscopy of water at liquid/solid interfaces:crossing the isoelectric point of a solid surface.[J]Phys.Rev.Lett.;1999,83:1179-1182.
    [142]Shimazu,B.;Kita,H.In situ measurements of water adsorption on a platinum electrode by an electrochemical quartz crystal microbalance.[J]J.Electroanal.Chem.;1992,341:361-367.
    [143]Kautek,W.;Sabre,M.;Soares,D.M.;[J]Ber.Bunsenges Phys.Chem.;1995,99(4):667.
    [144]Tsionsky,V.;Katz,G.;Oileadi,E.;Daikhin.Admittance studies of the EQCM on rough surfaces.The double layer region.[J]J.ElectroanaL Chem.;2002,524-525:110.119.
    [145]Zilberman,G.;Tsionsky,V.;Gileadi,E.Solvent structure at the metal/solution interface and the response of the EQCM.[J]Electrochim.Acta;2000,45:3473-3482.
    [146]Hugelmann,M.;Schindler,W.In situ distance tunneling spectroscopy at Au(111)/0.2 M HClO_4.From Faraday regime to quantized conductance channels.[J]J.Electrochem.Soc.;2004,151:E97-D101.
    [147]Hiesgen,R.;Eberhardt,D.;Meissner,D.Direct investigation of the electrochemical double layer using the STM.[J]Surf.Sci.;2005,597:80-92.
    [148]Spohr,E.Some recent trends in computer simulations of aqueous double layers.[J]Electrochim.Acta;2003,49:23-27.
    [149]Kornyshev,A.A.;Spohr,E.;Vorotyntsev,M.A.in:Bard,A.J.et al.(Eds.);Encyclopedia of Electrochemistry;vol.1;Wiley-VCH;New York;2002;pp.33-132.
    [150]Schmickler,W.Recent progress in theoretical electrochemistry.Chapter 5.[J]Annul reports section C(Physical Chemistry),1999,95:117-162.
    [151]Ogasawara,H.;Brena,B.;Nordlund,D.;Nyberg,M.;Pelmenschikov,A.;Pettersson,L.G.M.;Nilsson,A.Structure and Bonding of Water on Pt(111).[J]Phys.Rev.Lett.2002,89:276102-1-4.
    [152]Nagy,G.;Denuault,G.MD simulation of water at imperfect platinum surfaces:part I structure.[J]J.Electroanal.Chem.;1997,433:153-159.and MD simulation of water at imperfect platinum surfaces:part 2 electrostatics.[J]J.Electroanal.Chem.;1997,433:161-166.and MD simulation of water at imperfect platinum surfaces:part Ⅲ hydrogen bonding.[J]J.Electroanal.Chem.;1998,450:159-164.
    [153](a)Spohr,E.A computer simulation study of iodide ion solvation in the vicinity of a liquid water/metal interface.[J]Chem.Phys.Lett.;1993,207(2-3):214-219.
    (b) Spohr,E.;[J]Acta Chem.Scand.;1995,49:189.
    [154]Bocker,J;Nazmutdinov,R.R.;Spohr,E.;Heinzinger,K.Molecular dynamics simulation studies of the mercury-water interface.[J]Surf.Sci.;1995,335:372-377.
    [155]Spohr,E.Ion adsorption on metal surfaces.The role of water-metal interactions.[J]Journal of Molecular Liquids.1995,64:91-100.
    [156]Toth,G.;Spohr,E.;Heinzinger,K.Structure and dynamics of water and hydrated ions near platinum and mercury surfaces as studied by MD simulations.[J]Electrochim.Acta;1996,41:2131-2144.
    [157](a) Spohr,E.Computer simulation of the structure of the electrochemical double layer.[J]J.Electroanal.Chem.;1998,450:327-334.
    (b)Kohlmeyer,A;Hartnig,C.;Spohr,E.Orientational correlations near interfaces.Computer simulations of water and electrolyte solutions in confined environments.[J]J.Molecular liquids;1998,78:233-253.
    [158]Toth,G.Molecular dynamics study of alkali cations at the water/liquid mercury interface.[J]J.Electroanal.Chem.;1998,443:73-80.
    [159]Kohlmeyer,A.;Witschei W.;Spohr,E.Molecular dynamics simulations of water/metal and water/vacuum interfaces with a polarizable water model.[J]Chem.Phys.;1996,213:211-216.
    [160](a)Philpott,M..;Glosli,J.N.Molecular dynamics simulation of interfacial electrochemical processes:Electric double layer screening.[J]SOLID-LIQUID ELECTROCHEMICAL INTERFACES ACS SYMPOSIUM SERIES 1997,656:13-30.
    (b) Philpott,M.;Glosli,J.N.Electric potential near a charged metal surface in contact with aqueous electrolyte.[J]J.Electroanal.Chem.;1996,409:65-72.
    [161]Phiipott,M.R.;Glosli,J.N.;Zhu,S.B.Molecular dynamics simulation of adsorption in electric double layers.[J]Surf.Sci.;1995,335:422-431.
    [162]Giosli,J.N.;Philpott,M.R.Molecular dynamics study of interfacial electric fields.[J]Electrochim.Acta;1996,41:2145-2158.
    [163]Nazmutdinov,R.R.;Probst,M.;Heinzinger,K.;Quantum chemical models for electrified interfaces.[J]Chem.Phys.Letr;1994,222:101-106.
    [164]Schweighofer,K.J.;Xia,X.F.;Berkowitz,M.L.Molecular Dynamics Study of Water next to Electrified Ag(111) Surfaces.[J]Langmuir;1996,12(16):3747-3752.
    [165]Xia,X.F.;Perera,L.;Essmann,U.;Berkowitz,M.L.The structure of water at platinum/water interfaces molecular dynamics computer simulations.[J]Surf.Sci.;1995,335:401.
    [166]Xia,X.F.;Berkowitz,M.L.;Electric-Field Induced Restructuring of Water at a Platinum-Water Interface:A Molecular Dynamics Computer Simulation.[J]Phys.Rev.Lett.;1995,74(16):3193-3196.
    [167]Feibelman,P.J.Partial dissociation of water on Ru(0001).[J]Science;2002,295:99-102.
    [168]Menzel,D.Water on a metal surface.[J]Science;2002,295:58-59
    [169](a) Feibelman,P.J.What the stretch frequency spectrum of D_2O/Ru(0001) does and does not mean.[J]Chem.Phys.Lett.;2004,389:92-95.
    (b) Materzanini G.;Tantaardini G.F.;Lindan P.J.D.and Saalfrank P.[J]Phys.Rev.;2005,71:155414-1-17.
    [170]Meng,S.;Xu,L.F.;Wang,E.G.;Gao,S.W.Vibrational recongnition of hydrogen-bond water networks on metal surface.[J]Phys.Rev.Lett.;2002,89:176104-1-4.
    [171]Ludwig,R.How does water bind to metal surfaces:hydrogen atoms up or hydrogen atoms down?[J]Angew.Chem.Int.Ed.;2003,42:3458-3460.
    [172]Vassilev,P.;Van Santen,R.A.;Koper,M.T.M.Ab initio studies of a water layer at transition metal surfaces.[J]J.Chem.Phys.;2005,122:054701-1-12.
    [173]Roudgar,A.;Grob,A.Water bilayer on the Pd/Au(111) overlayer system:coadsorption and electric field effects.[J]Chem.Phys.Lett.;2005,409:157-162.
    [174]Meng,S.;Wang,E.G.;Gao,S.W.Water adsorption on metal surfaces:a general picture from density functional theory studies.[J]Phys.Rev.B;2004,69:195404-1-13.
    [175]Bovensiepen,U.;Gahl,C.;Stabler,J.;Wolf,M.Ultrafast electron dynamics in amorphous and crystalline D_2O layers on Ru(001).[J]Surf.Sci.;2005,584:90-97.
    [176](a)Thiel,P.;Madey,T.E.The interaction of water with solid surfaces:fundamental aspects.[J]Surface Science Reports;1987,7:211-385.
    (b)Henderson,M.A.The interaction of water with solid surfaces:fundamental aspects revisited.[J]Surface Science Reports;2002,46:1-308.
    (c)Michaelides,A.;Ranea,V.A.;Andres,P.L.;King,D.A.General Model for Water Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces.[J]Phys.Rev.Lett.;2003,90:216102-1-4.
    (d) Hopkins,A.J.;McFearin,C.L.;Richmond,G.L.Investigations of the solidaqueous interface with vibrational sum-frequency spectroscopy.[J]Current Opinion in Solid State and Materials Science;2006:in press.
    [177](a)Walrafen,G.E.Raman spectral studies of the effects of electrolyte on water.[J]J.Chem.Phys.1962,36:1035-1042.
    (b)Walrafen,G.E.Raman spectral studies of water structure.[J]J.Chem.Phys.1964,40:3249-3256.
    (c)Walrefen,G.E.;Blatz,L.A.Weak Raman bands from water.[J]J.Chem.Phys.1973,59:2646-2650.
    (d)Walrafen,G.E.;Hokmabadi,M.S.;Yang,W.H.Raman isosbestic points from liquid water.[J]J.Chem.Phys.1986,85:6964-6969.
    (e) Castner,E.W.;Chang,Y.J.;Chu,Y.C.;Walrafen,G.E.The intermolecular dynamics of liquid water.[J]J.Chem.Phys.1995,102:653-659.
    (f) Walrafen,G.E.;Chu,Y.C.Nature of collagen-water hydrogen forces:a problem in water structure.[J]J.Chem.Phys.2000,258:427-446.
    (g) Walranfen,G.E.New spectroscopic method for aqueous solutions:Raman ξ-function dispersion for NaCIO4 in water.[J]J.Chem.Phys.2005,122:094510-1-11.
    [178]Pettinger,B.in Adsorption of Molecules at metal electrodes;[M]edited by Lipkowski,J.and Ross,R.N.;VCH,New York,1991:chapt.6.
    [179]Fleischmann,M.;Hendra,P.J.;McQuillan,A.J.[J]Chem.Phys.Left.;1974,26:163.
    [180]Jeanmaire,L.;Van Duyne,R.P.Surface raman spectroelectrochemistry part Ⅰ.Heterocyclic;aromatic;and aliphatic amines adsorbed on the anodized allver electrode.[J]J.Electroannal.Chem.;1977,84:1-20.
    [181]Albrecht,M.G.;Creighton,J.A.Anomalously intense Raman spectra of pyridine at silver electrode.[J]J.Am.Chem.Soc.;1979,99:5215-5217.
    [182]Albrecht,M.G.and Creighton,J.A.;Intense Raman spectra at a roughened silver electrode.[J]Electrochim.Acta;1978,23(10):1103-1105.
    [183]Hexter,R.M.and Albrecht,M.G.Metal surface Raman spectroscopy:Theory.[J]Spectrochimica Acta A;1979,35:233-251.
    [184]Chang R.K.;Furtak,D.E.Surface Enhanced Raman Scattering.[M]NewYork,Plenum Press,1982.
    [185]Furtak,T.E.in:Advances in laser spectroscopy.[M]Edited by Gemet and J.R.Lombardi;Wiley;New York;1983.
    [186]Lipptisch,M.E.Ground-state charge transfer as a mechanism for surface-enhanced Raman scattering.[J]Phys.Rev.B.;1984,29(6):3101-3110.
    [187]Otto A.in:Light scattering in Solids;[M]Vol.4;edited by Cardona,M.and Guntherort,G.;Berlin,Springer,289,1984.
    [188]Moskovits,M.Surface-enhanced spectroscopy.[J]Rev.Mod.Phys.;1985,57:783-826.
    [189]Pettinger,B.Light scattering by adsorbates at Ag particles:Quantum-mechanical approach for energy transfer induced interracial optical processes involving surface plasmons;multipoles;and electron-hole pairs.[J]J.Chem.Phys;1986,85:7442-7451.
    [190]Roy,D.;Furtak,T.E.Vibrational characteristics of silver clusters in surface-enhanced Raman scattering.[J]Phys.Rev.B.;1986,34:5111-5117.
    [191]Zeman,E.J.;Schatz,G.C.An accurate electromagnetic theory study of surface enhancement factors for silver;gold;copper;lithium;sodium;aluminum;gallium;indium;zinc;and cadmium.[J]J.Phys.Chem.;1987,91:634-643.
    [192]Chang,R.K.Surface Enhanced Raman Scattering at Electrodes:a Status Report.[J]Ber.Bunsenges.Phys.Chem.;1987,91:296-305.
    [193]Pemberton,J.E.;Guy,A.L.;Sobocinski,R.L.;Tuschel,D.D.;Cross,N.A.Surface Enhanced Raman Scattering in Electrochemical Systems:the Complex Roles of Surface Roughness.[J]Appl. Surf.Sci.;1988,32:33-56.
    [194]Birke,R.L.;Lombardi,J.R.in Spectroelectorchemistry:Theory and Practice;[M]Edited by R.G.Gaile;Plenum,p263,1988.
    [195]Otto,A.;Bomemann,T;Erturk,U;Mrozek,I.;Petennkofer,C.Model of electronically enhanced Raman scattering from adsorbates on cold-deposited silver.[J]Surf.Sci;1989,210:363-386.
    [196]Hendra,P.J.;Jones,C.;Warnes,G.Fourier Transform Raman Spectroscopy.[M]Ellis Horwood;Chichester;1991.
    [197]Birke,R.L.;Lu,T.H.and Lombardi,J.R.in Techniques for Characterization of Electrodes and Electrochemical processes;[M]Edited by R.Varma and J.R.Selman;chapt.5,212,1991.
    [198]Otto,A.;Mrozek,I.;Grabhom,H.and Akemann,W.Surface-enhanced Raman scattering[J]J.Phys.Condens.Matter;1992;4;1143-1212.
    [199]Arunkumar,K.A.and Bradley,E.B.Theory of surface enhanced Raman scattering.[J]J.Chem.Phys.;1983,78:2883-2888.
    [200]Liao,P.F.;Wokaun,A.Lightning rod effect in surface enhanced Raman scattering.[J]J.Chem.Phys.;1982,76:751-752.
    [201]Adrian,F.J.Charge transfer effects in surface-enhanced Raman scattering.[J]J.Chem.Phys.;1982,77:5302-5314.
    [202]Moskovits,M.Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals.[J]J.Chem.Phys.;1978,69:4159-4161.
    [203]King.F.W.;Van Duyne,R.P.;Schatz,G.C.Theory of Raman scattering by molecules adsorbed on electrode surfaces.[J]J.Chem.Phys.;1978,69:4472-4481.
    [204]Schatz,G.C.;Van Duyne,R.P.Electromagnetic mechanism of surface-enhanced spectroscopy.[M]Handbook of vibrational spectroscopy.Edt.By Chalmers J M and Griffiths P R.;John Wiley &Son Ltd;Chichester;,2002.
    [205]Hallmark,V.M.;Campion,A.A modification of tbe image dipole selection rules for surface Raman scattering.[J]J.Chem.Phys.;1986,84:2942-2944.
    [206]Tsang.J.C.;Kirtley,J.R.;Bradley,J.A.Surface-enhanced raman spectroscopy and surface plasmon.[J]Phys.Rev.Lett.;1979,43:772-775.
    [207]Nie,S.M.;Emory,S.R.Probing single molecules and single nanoparticles by surface-enhanced raman scattering.[J]Science;1997,275:1102-1106.
    [208]Sasic,S.;Itoh,T.;Ozaki,Y.Classification of single-molecule surface-enhanced resonance Raman spectra of Rhodamine 6G from isolated Ag colloidal particles by principal component analysis.[J]Vibrational spectroscopy;2006,40:184-191.
    [209](a)Bruckbauer,A.;Otto,A.[J]J.Raman Spectrosc.;1998,29:665.
    (b) Pettinger,B.;Wenning.U.;Kolb,D.M.Raman and reflectance spectroscopy of pyriding adsorbed on single crystalline silver electrodes.[J]Ber.Bunsenges.Phys.Chem.;1978,82:1331-1335.
    [210](a)Pettinger,B.;Picardi,G.;Schuxter,R.;Ertl,G.Surface-enhanced and STM-tip-enhanced raman spectroscopy at metal surfaces.[J]Single Mol.;2002,5-6:285-294.
    (b) Ren,B.;Picardi,G.;Pettinger,B.;et al.Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces;[J]Angwandte chemie-international edition;2005,44:139-142.
    (c)Pettinger,B.;Ren,B.;Picardi,G.;et al.Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy.[J]Phys.Rev.Lett.;2004,92(9):Art.No.096101.
    (d) Stoclde,R;Suh,Y.D.;Deckert,V.;Zenobi,R.Nanoscale chemical ananlysis by tip-enhanced Raman spectroscopy.[J]Chem.Phys.Lett.;2000,318:131-136.
    (e) Otto,A.Theory of first layer and single molecule surface enhanced raman scattering(SERS).[J]Phys.Star.Sol.;2001,188:1455-1470.
    (f) Otto,A.What observed in single molecule SERS;and why?[J]J.Raman.Spectrosc.,2002,33:593-598.
    (g)Detaining.A.L.;Festy,F.;Richards,D.Plasmon resonances on metal tips:Understanding tip-enhanced Raman scattering[J]J.Chem.Phys.;2005,122:Art.No.184716.
    [211](a)Webster,S.;Smith,D.A.;Batchelder,D.N.Raman microscopy using a scanning near-field optical probe.[J]Vibrational spectroscopy.1998,18:51-59.
    (b) Webster,S.;Smith,D.A.;Batchelder,D.N.Raman microscopy using a scanning near-field optical probe.[J]Vibrational spectroscopy;1998,18:51-59.
    (c) Deckert,V.;Zeisel,D.;Zenobi,R.;et al.Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution.[J]Analytical Chemistru.1998,70:2646-2650.
    [212]Futamata,M.;Bruckbauer,A.ATR-SNOM-Raman spectroscopy.[J]Chem.Phys.Lett.;2001,341:425-430.
    [213]田中群,任斌,吴德印,毛秉伟,徐云峰.激光拉曼光谱研究电化学界面的新进展.[J]厦 门大学学报,2001,40:434-447.
    [214]林仲华,叶思宇,黄明东,沈培康编著.电化学中的光学方法[M]厦门,科学出版社,1990.
    [215]Pettinger,B.in Adsorption of Molecules at metal electrodes;[M]Edited by J.Lipkowski and R.N.Ross;VCH;New York;(1991);chap.6 and references therein.
    [216]Thiel,P.;Madey,T.E.The interaction of water with solid surfaces:fundamental aspects.[J]Surface Science Reports;1987,7:211-385.
    [217]Fleschmann,M.;Hendra,P.J.;Hill,I.R.Pemble,M.E.Enhanced raman spectra from species formed by the coadsorption of halide ions and water molecules on silver electrodes.[J]J.Electroannal.Chem.;1981,117:243-255.
    [218]Pettinger,B;Philpott,M.R.;Gordon,Ⅱ.J.G.Contribution of specifically adsorbed ions;water;and impurities to the surface enhanced Raman spectroscopy(SERS) of Ag electrodes.[J]J.Chem.Phys.;1981,74:934-940.
    [219]Fleischmann,M.;Hill,I.The observation of solvated metal ions in the double layer region at silver electrodes using surface enhanced raman scattering.[J]J.Electroannal.Chem.;1983,146:367-376.
    [220]Fleischmann,M.;Grares,P.;Hill,I.R.;et al;Raman spectroscopic and X-ray diffraction studies of electrode-solution interfaces.[J]J.Electroannal.Chem.;1983,150:33-42.
    [221]Chen,T.T.;Smith,K.E.;Owen,J.F.;Chang,R.K.The metal cation effect on the sers of interfacial D_2O and H_2O.[J]Chem.Phys,Lett.;1984,108:32-38.
    [222]Chen,T.T.;Chang,R.K.Surface enhanced Raman scattering of interfacial DOD,HOD,and OD_2.[J]Surf.Sci.;1985,158:325-332.
    [223]Fleischmann,M.;Hill,I.R.in:Surface Enhanced Raman Scattering.[M]Edited by R.K.Chang and T.E.Furtak;Plenum Press;New York;1982;p.275.
    [224]Chen,T.T;Owen,J.F.;Chang,R.K.;Laube,B.L.Surface-enhanced Raman scattering of water adsorbed on silver electrodes.[J]Chem.Phys.Lett.;1982,89:356-361.
    [225]Owen,J.F.;Chen,T.T.;Chang,R.K.;Laube,B.L.SERS of H_2O;pyridine and halides adsorbed on Ag electrodes during electrochemical cycling.[J]Surf.Sci.;1983,150:389-398.
    [226]Owen,J.F.;Chen,T.T.;Chang,R.K.;Laube,B.L.Irreversible loss of adatoms on Ag electrodes during potential cycling determined from surface enhanced raman intensities.[J]Surf.Sci.;1983,131:195-220.
    [227](a) Kung,H.P.;Chen,T.T.Anion effect on surface-enhanced raman scattering of water molecules on silver electrodes.[J]Chem.Phys.Lett.;1986,130:311-315.(b) Chang,Y.C.;Chen,T.T.Influence of Organic Solvents on the Intensity of Surface-Enhanced Raman Scattering of Water Molecules.[J]Chinese Journal of Physics;1996,34:1352-1362.
    [228]Kwon,M.Y.;Kim,J.J.;Surface-enhanced Raman scattering of water in ethanol:Electrolytic concentration dependence.[J]Chem.Phys.Lett.;1990,169:337-341.
    [229]Macomber,S.H.;Furtak,T.E.;Devine,T.M.Enhanced Raman characterization of adsorbed water at the electrochemical double layer on silver.[J]Surf.Sci.;1982,122:556-568.
    [230]Pettinger,B.;Moerl,L.Surface-enhanced raman scattering from H_2O and D_2O at silver electrodes:Influence of temperature.[J]J.Electronal.Chem.;1983,150:415-424.
    [231]Owen,J.F.;Chang,R.K.SERS of H_2O adsorbed on a Ag electrode:The role of high salt concentration.[J]Chem.Phys.Lett.;1983,104:510-515.
    [232](a) Kwon,M.Y.;Lee,B.W.;Kim,J.J.The ethanol effect on the surface-enhanced raman scattering of water molecules.[J]Chem.Phys.Lett.;1989,162:238-242.
    (b) Lee,B.W.;Kwon,M.Y.;Kim,J.J.Surface Enhanced Raman Scattering of Water Molecules in Water-Ethanol Mixed Solution.[J]Chinese Journal of Physics;1990,28:1-8.
    [233](a)Irish,D.E.;Hill,I.R.;et al.Investigations of electrode surfaces in acetonitrile solutions using surface-enhanced Raman spectroscopy.[J]J.Solution Chem.;1985,14:221-243.
    (b) Irish,D.E.;Solberg,L.;Shoesmith,D.W.Surface enhanced Raman spectroscopy and electrochemistry at the copper/iodide;water interface.[J]Surf.Sci.;1985,158:238-253.
    [234]Tian,Z.Q.;Lian,Y.Z.;Lin,T.Q.;SERS studies on interfacial water in concentrated NaCIO_4solutions.[J]J.Electroanal.Chem.;1989,265:277-282.
    [235]Tian,Z.Q.;Lin,T.Q.;Lian,Y.Z.;[J]Science in China;Series B(中国科学;B辑);1990,33:1025.
    [236]Tian,Z.Q.;Mao,B.W.[J]Chin.Chem.Lett.;1993,4(7):625.
    [237](a) Pemberton,J.E.;Joa,S.L.Water and electrolyte structure at Ag electrodes in nonaqueous butanol solutions using surface-enhanced Raman scattering.[J]J.Electroanal.Chem.;1994,378: 149.
    (b) Sben,A.J.;Pemberton,J.E.Investigation of trace interracial water at silver electrodes in a series of normal alcohols using surface enhanced raman scattering.[J]Phys.Chem.Chem.Phys.;1999;5677-5684.
    (c) Pemberton,J.E.;Shen,A.J.Electrochemical and surface enhanced raman scattering studies of bromide ion adsorption at silver electrodes in a series of normal alcohols.[J]Phys.Chem.Chem.Phys.;1999,5671-5676.
    [238]Macomber,S.H.;Furtak,T.E.;Devine,T.M.Enhanced Raman characterization of adsorbed water at the electrochemical double layer on silver.[J]Surf.Sci.;1982,122:556-568.
    [239]Funtikov,A.M.;Sigalaev,S.K.;Kazarinov,V.E.surface enhanced raman scattering and local photoemission currents on the freshly prepared surface of a silver electrode.[J]J.Electroanal.Chem.;1987,228:197-218.
    [240]Iwasaki,hi.;Sasaki,Y.;Nishina,Y.Ag electrode reaction in NaOH solution studied by in-situ Raman spectroscopy.[J]Surf.Sci.;1988,198:524-540.
    [241]Tian,Z.Q.;Sigalaev,S.K.;Zou,S.Z.;Mao,B.W.;Funtikov,A.M.;Kazarinov,V.E.;The observation of SERS of water in a wide potential range from the Ag/NaClO_4 system.[J]Electrochim.Acta;1994,39:2195.
    [242]邹受忠.银电极水溶液界面水分子的结构研究.[D]厦门,厦门大学理学硕士论文;1994.
    [243]Itoh,T.;Sasaki,Y.;Maeda,T.;Horie,C.;In situ SERS study of water molecules on silver electrodes in alkali-hydroxide solutions.[J]Surf.Sci.;1997,389:212-222.
    [244]Niaura G.Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH~- ions at copper electrode.[J]Electrochim.Acta;2000,45:3507-3519.
    [245]陈艳霞.电极水溶液界面的表面增强拉曼光谱研究.[D]厦门,厦门大学理学博士论文,1998.
    [246]Tian,Z.Q.;Chen,Y.X.;Mao,B.M.;Li,C.Z.;Wang,J.;Liu,Z.E Extending surface-enhanced Raman spectroscopic studies on water at gold electrodes.[J]Chem.Phys.Lett.;1995,240:224-229.
    [247]Chen,Y.X.;Zou,S.Z.;Huang,K.Q.;Tian,Z.Q.SERS Studies of Electrode/Electrolyte Interfacial Water Part Ⅱ-Librations of Water Correlated to Hydrogen Evolution Reaction.[J]J.Raman Spectrosc.;1998,29:749-756.
    [248]Chen,Y.X.;Tian,Z.Q.Dependence of surface-enhanced Raman scattering of water on the hydrogen evolution reaction.[J]Chem.Phys.Lett.;1997,281:379-383.
    [249]Chen,Y.X.;Otto,A.Electric effects in SERS by liquid water.[J]J.Raman Spectrosc.;2005,36:736-747.
    [250](a) Arya,K.;Zeyher,R.Theory of surface-enhanced Raman scattering from molecules adsorbed at metal surfaces.[J]Phys.Rev.B.1981,24:1852-1865.
    (b) Otto,A.Surface-enhanced Raman scattering:"classical" and "chemical" origins.In Light Scattering in Solid;Cardona;M.;Guntherodt;G.(Eds.) 1984,Vol.4,289.
    (c) Cline,M.P.;Barber,P.W.;Chang,R.K.[J]J.Opt.Soc.Am.B 1986,3:16.
    [1]Frens,G.Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J].Nature-Phys.Sci.,1973,241:20-22.
    [2]Henglein,A.Colloidal palladium nanoparticles:Reduction of Pd(Ⅱ) by H-2;Pd core Au shell Ag shell particles[J].J.Phys.Chem.B,2000,104:6683-6685.
    [3]胡家文.金属纳米粒子的合成、组装和表征[D].厦门,厦门大学博士后出站报告,2004.
    [4](a) Chialvo,A.C.;Triaca,W.E.;Arvia,A.J.Changes in the Electrochemical Response of Noble Metals Produced by Square-Wave Potential Perturbations.A New Technique for the Preparation of Reproducible Electrode Surfaces of Interest in Electrocatalysis[J].J.Electroanal.Chem.Interfacial Electrochem.1983,146:93.;
    (b) Visinitin,A.;Triaca,W.E.;Arvia,A.J.Electrochemical Procedure for the Development of Large Active Surface Area Platinum Electrodes With Preferred Crystallographic Orientations[J].J.Electroanal.Chem Interracial Electrochem.1987,221:239.
    (c) Galindo,M.C.;Perdriel,C.L.;Martins,M.E.;Arvia,A.J.Surface Changes of Gold Electrodes Produced by Periodic Potential Treatments in HF Solutions[J].Langmuir,1989,5:165-170.
    [5]王小聪.铂基电极上C_1有机分子电催化氧化行为及其拉曼光谱研究[D].南昌,江西师范大学硕士论文,2002年.
    [6]任斌.拓宽激光拉曼光谱技术在电化学界面研究中的应用[D]厦门,厦门大学博士学位论文,1998年.
    [7]Tian,Z.Q.;Ren,B.Raman spectroscopy of electrode surfaces[M].Encyclopedia of Electrochemistry.Ed.A.J.Bard,2003,Vol(3):572-659.
    [8]For example,Gao,P.;Gosztola,D.;Leung,L-W.H.;Weaver,M.J.Surface-enhanced Raman scattering at gold electrodes:dependence on electrochemical pretreatment conditions and comparisons with silver[J].J.Electroanal.Chem.Interfacial Electrochem.1987,233:211.
    [9]刘郑.具有SRES活性的纯钯电极的电化学制备和相关SERS研究[D]厦门,厦门大学学士学位论文.2004年.
    [1]Ferraro,J.R.;Nakamuto,K.;Brown.C.W.Introductory Raman Spectroscopy.[M]Academic press,2002,1-434.
    [2]Plazek,G.In Haodbuch der Radiologie.[M]Ed.By Marx E,Akademische Verlagsgesellschaft,Leipzig 1934,vol.6,Pt2.
    [3]Baranska,H.;Labudzinska,A.;Terpinski,J.Laser Raman Spectroscopy-Analytical Applications.[M]Ellis Horwood Ltd.,1987.
    [4]Long,D.A.The Raman effect.[M]John Wiley & Sons,Ltd.2002.
    [5]Long,D.A.,Raman Spectroscopy.[M]McGraw-hill,New York,1977.
    [6]Lasema,J.J.ed.Modem Techniques in Raman Spectroscopy.[M]John Wiley & Sons,1996.
    [7]朱自莹,顾仁敖,陆天虹编,拉曼光谱在化学中的应用.[M]东北大学出版社,1998.
    [8]Pettinger,B.;Ren,B.;Picardi,G.,Schuster,R.;Ertl,G.Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy.[J]Phys.Rev.Lett.2004,92.
    [9]姚建林.新型纳米级粗糙基底的表面增强拉曼光谱研究.[D]厦门,厦门大学博士学位论文,2001.
    [10](a)任斌,李筱琴,谢泳,等.共焦显微拉曼光谱在界面研究中的应用.[J]光学与光谱学分析,2000,20,648-651.(b)Tian,Z.Q.;Li,W.H.;Ren,B.;Mao,B.W.;et al.Simultaneous STM and Raman measurements on electrochemical interfaces.[J]J.Electroanal.Chem.1996,401:247-251.
    [11]Turrell,G.;Corset,J.Raman Microscopy.[M]San Diego:Academic Press,1996.
    [12]任斌,田中群.固体催化剂的研究方法.[M]石油化工,2002,31:6,488-499.
    [13]Schrotter,H.W.;Klockner.H.W.In:Raman spectroscopy of gases and liquids.[M]Vol.11, Weber A.,ed.Springer-Verlag Berlin,1979,p.123.
    [14]程光煦编,拉曼,布里渊散射—原理及应用.[M]科学出版社,2001.
    [15]Van Duyne.R.P.;in Chemical and Biochemical Applications of Lasers.[M]Moore C B.Ed.Academic Press,New York,1979,vol.4,p.101.
    [16]Pettinger,B.Surface enhanced Raman spectroscopy.In:Lipkowski J and Ross P N Eds:Adsorption of molecules at metal electrodes.[M]New York:VCH,1992,285-345.
    [17]任斌,拓宽激光拉曼光谱技术在电化学界面研究中的应用.[D]厦门,厦门大学博士学位论文,1998,P52.
    [18]陈艳霞,电极水溶液界面的表面增强拉曼光谱研究.[D]厦门,厦门大学博士学位论文,1998.
    [19]Tian,Z.Q.;Ren,B.;Chen,Y.X.;Zou,S.Z.;Mao,B.W.Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy.[M]J.Chem.Soc.,Faraday Trans.1996,92:20,3829-3837.
    [20]Zou,S.Z.,Chen,Y.X.,Mao,B.W.,Ren,B.;Tian,Z.Q.SERS studies on electrode/electrolyte interfacial water I.Ion effects in the negative potential region.[J]J.Electroanal.Chem.1997,424:19-24
    [21]Tian,Z.Q.and Ren,B.Adsorption and reaction at electrochemical interfaces as probed by Surface-enhanced Raman Spectroscopy.[J]Annu.Rev.Phys.Chem.2004,55:197-229.
    [22]邹受忠,银电极水溶液界面水分子的结构研究.[D]厦门,厦门大学硕士学位论文,1994.
    [1]陈艳霞,电极水溶液界面的表面增强拉曼光谱研究[D]厦门;厦门大学博士学位论文,1998.
    [2]邹受忠,银电极水溶液界面水分子的结构研究.[D]厦门;厦门大学硕士学位论文,1994.
    [3]Gui;J.;Devine;T.M.;[J]J.Electrochem.Soc.;1991;183:376.
    [4]Rubim;J.C.;Kannen G.;Schumacher D.;Dunnwald J.;Otto A.;Raman spectra of silver coated graphite and glassy carbon electrodes.[J]Appl.Surf.Sci.;1989;37;233-243.
    [5]Schlegel,A;Wachter,P.;Optical properties;phonons and electronic structure of iron pyrite (FeS_2).[J]Phys.C.Solid State Commun.;1976,9:3363-3369.
    [6]Feng,Q.;Cotton,T.M.A surface-enhanced resonance Raman study of the photoreduction of methylviologen on a p-indium phosphide semiconductor electrode.[J]J.Phys.Chem;1986,90:983-987.
    [7]Thanos,J.C.G.In situ Raman and other studies of electrochemically oxidized iron and iron-9% chromium alloy.[J]Electrochim.Acta;1986,31:811-820.
    [8]Siperko,L.M.[J]Appl.Spectrosc.1989,43:226.
    [9]Eickmans,J.;Otto,A.;and Goldmann A.On the Annealing of "SERS Active" Silver Films:UPS and TDS of Adsorbed Xenon.[J]Surf.Sci.;1986,171:415-441.
    [10]Moskovits,M.The dependence of the metal—molecule vibrational frequency on the mass of the adsorhate and its relevance to the role of adatoms in surface-enhanced raman scattering.[J]Chem.Phys.Lett.;1983,98:498.
    [11]Knight,D.S.;Weimer,R.;Pilione,L.;White,W.B.Surface-enhanced Raman spectroscopy of chemical vapor deposited diamond films.[J]Appl.Phys.Lett.;56(1990) 1320.
    [12]Taylor,C.E.;Pemberton,J.E.;Goodman,G.G.;Schoenfisch,M.H.[J]Appl.Spectrosc.;1999,53:1212.
    [13]Hengoli,G.;Musiani,M.M.;Fleischmann,M.;Mao,B.W.;Tian,Z.Q.Enhanced Raman scattering from iron electrodes.[J]Electrochim.Acta;,1987,32:1239-1245.
    [14]Aramaki,K.;Uehara,J.;[J]J.Electrochem.SOc.;1990,137:185.
    [15]Uehara,J.;Nishihara,H.;Aramaki,K.;[J]J.Electrochem.Soc.;1990,137:2677.
    [16]Fleischmann,M.;Tian,Z.Q.;Li,L.J.The effects of the underpotential and overpotential deposition of lead and thallium on silver on the Raman spectra of adsorbates.[J]J.Electroanal.Chem.;1987,217:385-395.
    [17]Fleischmann,M.;Tian,Z.Q.Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates.[J]J.Electroanal.Chem.;1987,217:397-410.
    [18]Gao,Y.;Lopez-Rios,T.Surface-enhanced Raman scattering of silicon evaporated on Ag island films.[J]Solid.State Commun.1986,60:55-57.
    [19]Walls,D.J.;Bohn,P.W.Enhanced Raman spectroscopy at dielectric surfaces.[J]J.Phys.Chem;1989,93:2976-2982.
    [20]Rand,D.A.J.;Woods,R.Electrosorption characteristics of thin layers of noble metals electrodeposited on different noble metal substrates.[J]J.Electroanal Chem.1973,44:83-89.
    [21]Furuya,N.;Motoo,S.The electrochemical behavior of ad-atoms and their effect on hydrogen evolution Part Ⅲ.Platinum ad-atoms on gold;and gold ad-atoms on platinum.[J]J.Electroanal.Chem.1978,88:151-160.
    [22]Leung,L-W.H.;Weaver,M.J.Extending Surface-Enhanced Raman Spectroscopy to Transition-Metal Surfaces:Carbon Monoxide Adsorption and Electrooxidation on Platinum-and Palladium-Coated Gold Electrodes.[J]J.Am.Chem.SOc.;1987,109:5113-5119.
    [23]Leung,L-W.H.;Weaver,M.J.Adsorption and electrooxidation of carbon monoxide on rhodiumand ruthenium-coated gold electrodes as probed by surface-enhanced raman spectroscopy.[J]Langmuir;1988,4:1076-1083.
    [24]Feilchenfeld,H.;Gao,X.;Weaver,M.J.Surface-enhanced Raman spectroscopy of pyridine adsorbed on rhodium modified silver electrodes.[J]Chem.Phys.Lett.;1989,161:321-326.
    [25]Zou,S.Z.;Weaver,M.J.Surface-Enhanced Raman Scattering on Uniform Transition-Metal Films:Toward a Versatile Adsorbate Vibrational Strategy for Solid-Nonvacuum Interfaces?[J]Anal.Chem.1998,70:2387-2395.
    [26]Zou,S.Z.;Williams,C.T.;Chen,E.K-Y.,Weaver,M.J.Probing Molecular Vibrations at Catalytically Significant Interfaces:A New Ubiquity of Surface-Enhanced Raman Scattering.[J]J.Am.Chem.Soc.1998,120:3811-3812.
    [27]Weaver,M.J.;Zou,S.Z.;Chan,H.Y.H.The New Interfacial Ubiquity of Surface-Enhanced Raman Spectroscopy.[J]Anal.Chem.;2000,72:38A-47A.
    [28]Mrozek,M F;Xie,Y.;Weaver,M.J.Surface-Enhanced Raman Scattering on Uniform Platinum-Group Overlayers:Preparation by Redox Replacement of UnderpotentiaI-Deposited Metals on Gold.[J]Anal.Chem.2001,73:5953-5960.
    [29]Park,S.;Yang,P.X.;Corredor,P.;Weaver,M.J.Transition Metal-Coated Nanoparticle Films:Vibrational Characterization with Surface-Enhanced Raman Scattering.[J]J.Am.Chem.SOc.2002,124:2428-2429.
    [30]Wairafen,G.E.Raman spectral studies of the effects of perchlorate ion on water structure.[J]J.Chem.Phys.1970,52:4176-4198.
    [31]Omta,A.W.;Kropman,M.F.;Woutersen,S.;Bakker,H.J.Negligible effect of ions on the hydrogen-bond structure in liquid water.[J]Science;2003,347-349.
    [32]Pettinger,B.;Philpott,M.R.;Gordon,J.G.Further observations of the surface enhanced Raman spectrum of water on silver and copper electrodes.[J]Surf.Sci.;1981,105:469-474.
    [33]Pettinger,B.;Wetzel,H.[J]Bet.Bunsenges Phys.Chem.;85,473:1981.
    [34]Fleischmann,M.;Hendra,P.J.;Hill,I.R.;Pemble,M.E.Enhanced raman spectra from species formed by the coadsorption of halide ions and water molecules on silver electrodes.[J]Electroanal.Chem.;1981,117:243-255.
    [35]Pettinger,B.;Philpott,M.R.;Gordon,II.J.G.Contribution of specifically adsorbed ions;water;and impurities to the surface enhanced Raman spectroscopy(SERS) of Ag electrodes.[J]J.Chem.Phys.;1981,74:934-940.
    [36]Chen,T.T.;Owen,J.F.;Chang,R.K.;Laube,B.L.Surface-enhanced Raman scattering of water adsorbed on silver electrodes.[J]Chem.Phys.Lett.;1982,89:356-361.
    [37]Macomber,S.H.;Furtak,T.E.;Devine,T.M.Enhanced Raman characterization of adsorbed water at the electrochemical double layer on silver.[J]Surf.Sci.;1982,122:556-568.
    [38]Pockrand,J.Binding and decomposition of organic dye molecules on ZnO crystals.[J]Surf Sci.;1982,122:569-587.
    [39]Blatchford,C.G.;Kerker,M.;Wang,D.S.Surface-enhanced Raman spectroscopy of water:Iniplications of the electromagnetic model.[J]Chem.Phys.Lett.;1983,100:230-235.
    [40]Fleischmann,M.Graves,P.;Hill,I.;Oliver,A.;Robinson,J.;Raman spectroscopic and X-ray diffraction studies of electrode-solution interfaces.[J]J.Electroanal.Chem.;1983,150:33-42.
    [41]Pettinger,B.and Moerl,L.;Surface-enhanced raman scattering from H_2O and D_2O at silver electrodes:Influence of temperature.[J]J.Electroanal.Chem.;1983,150:415-424.
    [42]Fleischmann,M.;Hill,I.R.The observation of solvated metal ions in the double layer region at silver electrodes using surface enhanced raman scattering.[J]J.Electroanal.Chem.;1983,146:367-376.
    [43]Owen,J.F.;Chert,T.T.;Chang,R.K.and Laube,B.L.SERS of H_2O;pyridine and halides adsorbed on Ag electrodes during electrochemical cycling.[J]Surf.Sci.;1983,150:389-398.
    [44]Chen,T.T.;Owen,J.F.and Chang,R.K.in:Dynamics on Surface;edited by B.Pullman et al.;Reidel.New York;1984,p.365.
    [45]Owen,J.F.and Chang,R.K.SERS of H_2O adsorbed on a Ag electrode:The role of high salt concentration.[J]Chem.Phys.Lett.;1984,104:510-515.
    [46]Chen,T.T.;Smith,K.E.;Owen,J.F.and Chang,R.K.The metal cation effect on the sers of inteffacial D_2O and H_2O.[J]Chem.Phys.Lett.;1984,108:32-38.
    [47]Chen,T.T.;Smith,K.E.;Owen,J.F.and Chang,R.K.The metal cation effect on the sers of interracial D_2O and H_2O.[J]Chem.Phys.Lett.;1984,108:32-38.
    [48]Chen T.T.and Chang R.K.;Surface enhanced Raman scattering of interracial DOD;HOD;and OD_2.[J]Surf.Sci.;1985,158:325-332.
    [49]Kung,H.P.and Chen,T.T.Anion effect on surface-enhanced raman scattering of water molecules on silver electrodes.[J]Chem.Phys.Lett.;1986;130;311-315.
    [50]Dorain,P.B.The observation with surface-enhanced Raman scattering of the sequential electrochemical formation of adsorbed oxide;hydroxide;and water on a silver electrode.[J]J.Phys.Chem.;1986,90:5808-5812.
    [51]Dorain P,B.;Molecular precursors to the formation of hydrogen and the reduction of oxygen at a silver cathode:a surface-enhanced Raman scattering experiment.[J]J.Phys.Chem;1986;90;5812-5816.
    [52]Doraln,P.B.Surface-enhanced Raman scattering from hydroxide adsorbed on a silver electrode in dilute magnesium(2+) electrolytes.[J]J.Phys.Chem.;1988,92:2546-2549.
    [53]Tian,Z.Q.;Lian,Y.Z.;Lip.,T.Q.SERS studies on interfacial water in concentrated NaClO_4solutions.[J]J.Electroanal.Chem.;1989,265:277-282.
    [54]Gui,J.and Devine,T.M.Influence of hydroxide on the sets of water and chloride.[J]Surf.Sci.;1989,224:525-542.
    [55]Irish,D.E.;Hill,L.R.;Arcambault,P.and Atkinson,G.F.;[J]J.Solution Chem.1986,14:221.
    [56]Hill,I.R.;Irish,D.E.and Atkinson,G.F.Investigations of silver electrode surfaces in propylene carbonate/alkali halide electrolytes by surface-enhanced Raman scattering.[J]Langmuir;1986,2:752-757.
    [57]Lee,B.W.;Kwon,M.Y.and Kim,J.J.;[J]Chin.J.Phys.;1990,28:1.
    [58]Pemberton,J.E.and Joa,S.L.Water and electrolyte structure at Ag electrodes in nonaqueous butanol solutions using surface-enhanced Raman scattering.[J]J.Electroanal.Chem.;1989,378:149-158.
    [59]Zou,S.Z.;Chen,Y.X.;Mao,B.W.;Ren,B.;Tian,Z.Q.SERS studies on electrode/electrolyte interracial water I.Ion effects in the negative potential region.[J]J.Electroanal.Chem.;1997,424:19-24.
    [60]任斌,拓宽激光拉曼光谱技术在电化学界面研究中的应用.[D]厦门大学博士学位论文,1998,Chapter 5.
    [61]Conway,B.;Bockris,J.O'M.;Yeager,E.;Khan,S.U.M.and White,R.E.Comprehensive Treatise of Electrochemistry;Vol 7;Kinetics and Mecha nisms of Electrochemistry;Plenum Press;New York;1993.
    [62]Parsons,R.and Ritzonlis,G.Adsorption on stepped surfsces of platinum and gold single-crystals.[J]J.Electroanal.Chem.;1991,318:1-24.
    [63]L.I.安特罗波夫著,吴仲达,朱耀斌,吴万伟译,理论电化学.[M]高等教育出版社,1982.
    [64]Ren,B.;Xu,X.;Li,X.Q.;Cai,W.B.and Tian,Z.Q.Extending surface Raman spectroscopic studies to transition metals for practical applications II.Hydrogen adsorption at platinum electrodes.[J]Surf.Sci.1991,427-428:157-161.
    [65]Chen,Y.;Zhang,Y.H.;Zhao,L.J.ATR-FTIR spectroscopic studies on aqueous LiClO_4;NaClO_4;and Mg(ClO_4)_2 solutions.[J]Phys.Chem.Chem.Phys.2004,6:537-542.
    [66]Eisenberg,D.;Kauzmann,W.The Structure and Properties of Water;Clarendon Press;Oxford;England;1969.
    [67]Walrafen,G.E.;Raman Spectral Studies of the Effects of Perchlorate Ion on Water Structure.[J]J.Chem.Phys.;1970,52:4176-4198.
    [68]Walrafen,G.E.Raman Spectral Studies of the Effects of Solutes and Pressure on Water Structure.[J]J.Chem.Phys.;1971,55:768-792.
    [69]Carey,D.M.and Korenowski,G.M.Measurement of the Raman spectrum of liquid water.[J]J.Chem.Phys.;1998,108:2669-2675.
    [70]Walrafen,G.E.New spectroscopic method for aqueous solutions:Raman j-functiondispersion for NaClO_4 in water.[J]J.Chem.Phys.;2005,122:094510-1-11.
    [71]Kanno,H.and Hiraishi,J.;Existence of "nearly free" hydrogen bonds in glassy aqueous calcium perchlorate solutions.[J]Chem.Phys.Lett.;1981,83:452-454.
    [72]Zhang,Y.H.and Chan,C.K.Observations of Water Monomers in Supersaturated NaClO_4; LiClO_4;and Mg(ClO_4)_2 Droplets Using Raman Spectroscopy.[J]J.Phys.Chem.A;2003,107:5956.
    [73]Chen,Y.X.and Tian,Z.Q.Dependence of surface enhanced Raman scattering of water on the hydrogen evolution reaction.[J]Chem.Phys.Lett.1997,281:379-383.
    [74]查全性.电极过程动力学导论[M]科学出版社,2002.
    [75]Nickols,A.J.and Bewick,A.Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the 111 and 110 planes.[J]J.Electroanal.Chem.1980,107:205-209.
    [76]Nanbu,N.;Kitamura,F.;Ohsaka,T.;Tokuda,K.Adsorption of atomic hydrogen on a polycrystalline Pt electrode surface studied by FT-IRAS:the influence of adsorbed carbon monoxide on the spectral feature.[J]J.Electroanal.Chem.2000,485:128-134.
    [77]Xu,X.;Wu,D.Y.;Ren,B.;Xian,H.and Tian,Z.Q.On-top adsorption of hydrogen at platinum electrodes:a quantum-chemical study.[J]Chem.Phys.Lett.1999,311:193-201.
    [78]Conway,B.E.and Jerkvewicz,G.Kinetic analysis of hydrogen evolution at Ni-Mo alloy electrodes.[J]Electrochim.Acta.2000,45:4151-4158.
    [79]Martins,M.E.;Zinola,C.F.;Andreasen,G.;Salvarezza,A.C.and Arvia,A.J.The possible existence of subsurface H-atom adsorbates and H_2 electrochemical evolution reaction intermediates on platinum in acid solutions.[J]J.Electroanal.Chem.1998,445:135-154.
    [80]Szpak,S.;Mosier-Boss,P.A.;Scharber,S.R.and Smith,J.J.Cyclic voltammetry of Pd+D codepodition.[J]J.Elctroanal.Chem.1995,380:1-6.
    [81]蔡丽蓉,孙世刚,夏盛清,陈芳,郑明森,陈声培,卢国强.纳米钯膜电极的制备、结构表征和特殊反应性能.[J]物理化学学报,1999,15:1023-1029.
    [82]Kessler,T.;Visintin,A.;Bolzan,A.E.;Andreasen,G.;Salvarezza,R.C.;Triaca,W.E.;Arvia,A.J.Electrochemical and Scanning Force Microscopy Characterization of Fractal Palladium Surfaces Resulting from the Electroreduction of Palladium Oxide Layers.[J]Langmuir 1996,12:6587-6596..
    [83]Zou,S.Z.and Weaver,M.J.Potential-dependent metal-adsorbate stretching frequencies for carbon monoxide on transition-metal electrodes:Chemical bonding versus electrostatic field effects.[J]J.Phys.Chem.1996,100:4237-4242.
    [84]Zou,S.Z.and Weaver,M.J.Surface-enhanced raman scattering on uniform transition-metal films:towards a versatile adsorbate vibrational strategy for solid-nonvaccuum interfaces?[J]Anal.Chem.1998,70:2387-2395.
    [85]Ortega,A.;Hoffman,F.;Bradshwa,A.M.The Adsorption of CO on Pd(100) Studied by IR Reflection Absorption Spectroscopy.[J]Surf.Sci.1982,119:79-94.
    [86]Conway,B.E.and Jerkiewicz.Nature of electrosorbed H and its relation to metal dependence of catalysis in cathodic H_2 evolution.[J]Solid State Ionics.2002,150:93-103.
    [87]Hammer,B.and Norskov,J.K.Why gold is the noblest of all the metals.[J]Nature.1995,376:238-239.
    [88]Christmann,K.Some general aspects of hydrogen chemisorption on metal surfaces.[J]Progress in surface science;1995,48:15-26.
    [89]Ellis,T.H.and Morin,M.;The Vibrational Modes of Hydrogen Adsorbed on Pd(110).[J]Surf.Sci.1989,216:L351-L356.
    [90]Greeley,J.and Mavrikakis,M.Surface and subsurface hydrogen:adsorption properties on transition metals and near-surface alloys.[J]J.Phys.Chem.B.2005,109:3460-3471.
    [91]Guidelli,R.and Schmickler,W.;Recent developments in models for the interfaces between a metal and an aqueous solution.[J]Electrochimica Acta.2000,45:2317-2338.
    [92]Guidelli,R.in:A.F.Silva(Ed.);Trends in Interfacial Electrochemistry;[M]Riedel;Dordrecht;1986;pp.387-452.
    [93]Kuhn,A.T.;Mortimer,C.J.;Bond,G.C.and Lindley,J.A critical analysis of correlations between the rate of the electrochemical hydrogen evolution reaction and physical properties of the elements.[J]J.Electroanal.Chem.1972,34:1-14.
    [94]Trasatti,S.Work function,electronegativity,and electrochemical behaviour of metals:Ⅲ.Electrolytic hydrogen evolution in acid solutions.[J]J.Electroanal.Chem.1972,39:163-184.
    [95]Brooman,E.W.and Kuhn,A.T.;Correlations between the rate of the hydrogen electrode reaction and the properties of alloys.[J]J.Electroanal.Chem.1974,49:325-353.
    [96]Greeley,J.and Mavrikakis,M.Surface and subsurface hydrogen:adsorption properties on transition metals and near-surface alloys.[J]J.Phys.Chem.B.2005,109:3460-3471.
    [97]Conway,B.E.and Jerkiewicz,G.;Nature of electrosorbed H and its relation to metal dependence of catalysis in cathodic H_2 evolution.[J]SolidState Ionics.2002,150:93-103.
    [98]Meng,S.;Wang,E.G.and Gao,S.W.Water adsorption on metal surfaces:a general picture from density functional theory studies.[J]Phys.Rev.B;2004,69:195404-1-13.
    [99](a)Peremans,A.and Tadjeddine,A.Vibrational spectroscopy of electrochemically deposition hydrogen on platinum.[J]Phys.Rev.Lett.1994,73:3010-3013.
    (b) Peremans,A and Tadjeddine,A.Vibrational spectroscopy of the electrochemical interface by visible-infrared sum-frequency generation.[J]Surf.Sci.1995,335:210-220.
    [100]Bewick,A.and Rusell,J.W.Structural investigation by infrared spectroscopy of adsorbed hydrogen on platinum.[J]J.Electroanal.Chem.;1982,132:329-344.
    [101]Ogasawara,H.and Ito,M.Hydrogen adsorption on Pt(100),Pt(110),Pt(111) and Pt(1111)electrode surfaces studied by in situ infrared reflection absorption spectroscopy.[J]Chem.Phys.Lett.;1994,221:213-218.
    [102]Schultz,Z.D.;Shaw,S.K.and Gewirth,A.A.;Potential dependent organization of water at the electrified metal-liquid interface.[J]J.Am.Chem.Soc.;2005,127:15916-15922.
    [103]Ataka,K.and Osawa,M.In situ infrared study water-sulfate coadsorption on Au(111) in sulfuric acid solution.[J]Langmuir;1998,14:951-959.
    [104]Tian,Z.Q.;Yang,Z.L.;Ren,B.;Li,J.F.;Zhang,Y.et al.surface-enhanced raman scattering from transition metals with special surface morphology and nanoparticle shape.[J]Faraday Discuss;2006,132:159-170.
    [105]Ataka,K.;Yotsuyanagi,T.and Osawa,M.Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy.[J]J.Phys.Chem.;1996,100:10664-10672.
    [106]Iwasita,T.and Xia,X.H.Adsoption of water at Pt(111) electrode in HClO_4 solutions.The potential of zero charge.[J]J.Elecctroanal.Chem.;1996,411:95-102.
    [107]El-Aziz,A.M.;Kihler,L.A.and Kolh,D.M.The potentials of zero charge of Pd(111) and thin Pd ovedayers on Au(111).[J]Electrochemistry Communication.2002,4:535-539.
    [108]Bockris,J.O'M.and Reddy,A.K.N.Modern electrochemistry an introduction to an interdisciplinary area.Vol.2;chapter 7.Plenum press;New York;1977.and refernces therein.
    [109]Calhorda,M.J.Weak hydrogen bonds:theoretical studies.[J]Chem.Commun.;2000,801-809.
    [110]Dyke,T.K.;Muenter,J.S.Electric dipole moments of low J states of riO and DO.[J]J.Chem. Phys.;1973,59:3125.
    [111]Rossmeisl,J.;Logadottir,A.;Noskov,J.K.Electrolysis of water on(oxidized) metal surfaces.[J]Chem.Phys.;2005,319:178-184.
    [112]Wasileski,S.A.;Koper,M.T.M.;Weaver,M.J.Field-dependent electrode-chemisorbate bonding:sensitivity of vibrational stark effect and binding energetics to nature of surface coordination.[J]J.Am.Chem.Soc.;2002,124:2796.
    [113]Hermansson,K.Electric field effects on the OH vibrational frequency and infrared absorption intensity for water.[J]J.Chem.Phys.1993,99:861-868.
    [114](a)Ogasawara,H.;Brena,B.;Nordlund,D.;et al.Structure and Bonding of Water on Pt(111).Phys.Rev.Lett.;2002;89;276102-1-4.
    (b)Toney,M.F.;Howard,J.N.;Richer,J.et al.;Voltage-dependent ordering of water molecules at an electrode-electrolyte interface.[J]Nature;1994,368:444-446.
    [115]Kaesz,H.D.and Saillant,R.B.Hydride complexes of the transition metals.[J]Chem;Rev.1972,72:231-281.
    [116]Munn,N.S.and Clary,D.C.Subsurface effects in the dissociation of H_2 on Pd(111).[J]Chem.Phys.Lett.;1997,266:437-442.
    [117]Okuyama,H.;Nakagawa,T.;Siga,W.;Takagi,N.;Nishijima,M.and Aruga,T.;Subsurface hydrogen at Pd(100) induced by gas-phase atomic H.[J]J.Phys.Chem.;1999,103:7876-7881.
    [118]Lambert,D.K.Vibrational stark effect of adsorbates at electrochemical interfaces.[J]Electrochem.Acta.;1996,41:623-630.
    [119]Wasmus,S.;KuVER,A.Methanol oxidation and direct methanol fuel cells:a selective review.J.Electroanal.Chem.1999,461,14-31.
    [120]Couto,A.;Rincon,A.;Perez,M.C.;Gutierrez,C.Adsorption and electrooxidation of carbon monoxide on polycrystalline platinum at pH 0.3-13.Electrochim.Acta.2001,46,1285-1296.
    [121]Backus,E.H.G.;Bonn,M.A quantitive comparison between reflection absorption infrared and sum-frequency generation spectroscopy.Chem.Phys.Lett.2005,412,152-157.
    [1]李瑛,王林山.燃料电池.[M]北京:冶金工业出版社,2000.
    [2]Kordesch,K.V.;Oliveira,J.C.T.Fuel Cells.[M]Ulmann's encycopidia of industrial chemistry.5~(th) edition,VCH,Weiheim,Germany,1996,A12:55.
    [3]Stambouli.B.;Traversa.E.Solid oxide fuel cells(SOFCs):a review of an environmentally clean and efficient source of energy.[J]Renewable and Sustainable Energy Reviews,2002,6,433-455.
    [4]衣宝廉编.燃料电池:高效、环境友好的发电方式.[M].北京:化学工业出版社,2000.
    [5]衣宝廉著.燃料电池:原理·技术·应用.[M]北京:化学工业出版社,2003.
    [6]黄镇江,刘凤君.燃料电池及其应用.[M]北京:电子工业出版社,2005.
    [7]Kent,C.E.A hydrogen-air fuel cell battery.[M]ASME,1964.
    [8]查全性.电极过程动力学.[M]科学出版社,2002.
    [9]吴辉煌.电化学.[M]北京,化学工业出版社,2004.
    [10]Kinoshita,K.Electrochemical oxygen technology,[M]New York,John Wiley,1992.
    [11]Wroblowa,H.S.;Pan,Y.C.and Razmnney,G.;Electroreduction of Oxygen-New Mechanistic Criterion.[J]J..Electroanal.Chem.,1976,69:195.
    [12]Zurilla,R.W.,Sen,R.K.and Yeager,E.Kinetics of oxygen reduction on gold in alkaline-solution.[J]J.Electrochem.Soc.,1978,125:1103.
    [13]Damjanovic,A.;Greenshaw,M.A.and Bockris,J.O'M.Mechanism of oxygen reduction at platinum in alkaline solutions with special refernce to H_2O_2.[J]J.Electrochem.Soc.,1967,114:1107.
    [14]Damjanovic,A.;Greenshaw,M.A.and Bockris,J.O'M..Role of hydrogen peroxide in oxygen reduction at platinum in H_2SO_4 solution.[J]J.Electrochem.Soc.1967,114:596.
    [15]Birkin,P.R.;Elliott,J.M.and Watson,Y.E.Electrochemical reduction of oxygan on mesoporous platinum microelectrodes.[J]Chem.Comm.2000,1693-1694.
    [16]Carrette,L.;Friedrich,K.A.and Stimming,U.Fuel Cells:principles,types,fuels,and applications.[J]Chem.Phys.Chem.2000,1:162-193.
    [17]O'Grady,W.E.;Heald,S.M.;Sayers,D.E.and Budnick,J.I.Electrochem.Soc.Extended Abstracts 1983,83-1:728.
    [18]Mathew,R.J.and Russell,A.E.XAS of carbon supported platinum fuel cell electrocatalyst:advances towards real time investigations.[J]Topics in catalysis.2000,10:231-239.
    [19]Shao,M.H.;Adzic,R.R.Spectroscopic identification of the reaction intermediates in oxygen reduction on gold in alkaline solutions.[J]J.Phys.Chem.B.2005,109:16563-16566.
    [20]Yeager,E.Electrocatalysts for O_2 reduction.[J]Electrochim.Acta.1984,29:1527.
    [21]林旭峰.铑电极的表面增强拉曼光谱:从可见光到紫外光.[D]厦门大学理学硕士学位论文.2003年6月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700