用户名: 密码: 验证码:
大型深水贫营养型水库的超微浮游植物群落
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超微型浮游植物是指细胞直径在0.2-3μm之间的浮游植物,包括原绿球藻、超微蓝藻和真核超微藻类,通常在贫营养水体中是初级生产力的重要贡献者。为了解南亚热带地区深水水库中超微浮游植物的群落结构及其影响因素,在广东省贫-中营养型的流溪河水库设置了5个采样点和4个深度分层,于2011年6月至2012年4月每月一次调查水库的超微浮游植物群落结构,并分别在流溪河水库进行了3次围隔(体积约为85m~3)实验,考察浮游动物以及鱼类牧食、营养盐加富和水体物理扰动对超微浮游植物群落的影响。
     第一个实验以了解溞属的盔形溞(Daphnia galeata)对超微浮游植物的影响为目的,设置空白对照组和3个添加不同密度盔形溞的处理组。第二个实验以了解营养盐加富和鱼类对超微浮游植物的影响为目的,设置对照组和4个处理组,添加氮、磷和不同密度组合的鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)、罗非鱼(Tilapia nilotica)。第三个实验以了解水体物理扰动的营养盐加富对超微浮游植物的影响为目的,在围隔底部添加磷盐,设置不同频率的扰动处理。
     流溪河水库超微浮游植物年平均丰度为1.44×105cells/mL,占浮游植物总丰度99.39%,生物量平均为0.23μg/L,占总生物量0.023%。流溪河水库的超微浮游植物主要由超微蓝藻和超微真核藻类两大类组成,其中超微蓝藻共占超微浮游植物总丰度95%。超微蓝藻在春季和秋季有峰值,超微真核藻类春季丰度最高。河流区与湖泊区丰度之间存在差异,超微真核藻类表现与小-微型浮游植物(>3μm)一致,全年河流区丰度高于湖泊区,超微蓝藻春季刚开始降雨后湖泊区显著高于河流区,其他季节河流区较高。从超微浮游植物在大坝的垂直分布来看,多数情况下其丰度均在10m深处最高,只有春季透明度较低和温跃层较高时,超微浮游植物在5m处最高。这说明超微浮游植物对光和温度敏感性较高。
     在添加盔形溞的围隔实验中,超微蓝藻和超微真核藻类变化趋势一致,而与小-微型浮游植物变化不一致,小-微型浮游植物在第1周下降而超微浮游植物第1周上升,说明在食物丰富时浮游动物选择性牧食较大的浮游植物,超微浮游植物可获得更多资源因而生物量增长。第2周各个粒径的浮游植物生物量均下降,可能是食物有限时浮游动物降低对食物的选择,同时营养盐限制了浮游植物生物量增长。第3周超微浮游植物持续下降,小-微型浮游植物停止下降,而浮游动物大幅度增长,可能是由于浮游动物开始大量繁殖,动物幼体更多牧食超微浮游植物所导致的。
     在添加营养盐和3种鱼类的实验中,无论是否加鱼类,营养盐的添加使各个粒径的浮游植物均在第1周增长,超微蓝藻增长速度较快并且持续增长至第2周,其他浮游植物第2周开始下降,这是由于第2周磷的下降和浮游动物的牧食导致的。对照组超微蓝藻生物量有小幅度增长,超微真核小幅度下降,小-微型浮游植物大幅度下降,同样说明了超微蓝藻在资源限制和浮游动物的牧食中的竞争优势。鱼类的添加使水体营养盐水平提高,同时各个粒径的浮游植物丰度生物量均更高,鲢、鳙及罗非鱼混养对超微蓝藻有最明显的促进作用,单养鲢在实验末期显著促进超微真核藻类和小-微型浮游植物的生长。鱼类通过下行效应和排泄物加速营养盐循环等途径影响超微浮游植物,其中加速营养盐循环对超微浮游植物的促进作用最为明显。
     在水体物理扰动实验中,各个粒径的浮游植物均在第1周生物量上升,超微蓝藻增长率显著高于其他浮游植物和不添加营养盐组,表现营养盐对其的促进作用和其对营养盐的快速利用。第2周各个粒径的浮游植物均下降,超微蓝藻随着种群密度增长到顶峰,其丰度和比重均开始下降至实验结束。超微真核藻类和小-微型浮游植物表现相似,均实验后期增长,表明超微真核藻类对营养盐加富反应较缓慢,但对其适应性更强。不同频率的扰动不能使营养盐浓度差异显著,但扰动促进营养盐均匀分布和循环,因此促进超微浮游植物的生长。
     综合野外观测和围隔实验,在流溪河水库中,影响超微浮游植物群落生物量的主要因子是营养盐,磷是超微浮游植物生长的限制因子,磷的加富促进超微浮游植物的生长,超微蓝藻对磷加富的响应最为敏感。在浮游动物食物丰富时,超微浮游植物受成体浮游动物的牧食压力较小。鱼类对超微浮游植物群落有正面影响,主要是通过其排泄物加速营养盐循环,提高营养盐的浓度而促进超微浮游植物生长。物理扰动主要通过底泥营养盐再悬浮和释放影响超微浮游植物的群落生物量。
The picophytoplankton is the fraction of phytoplankton composed by cells between0.2-3μm,including Prochloroccus, picocyanobacteria and picoeukaryotes. It is especially important inoligotrophic water bodies. The effect of nutrients, zooplankton, fish prey and turbulence on thepicophytoplankton community in oligotrophic reservoirs was investigated by annual surveys andenclosure experiments of the picophytoplankton in Liuxihe Reservoir, a large and deepoligo-mesotrophic reservoir in southern China. The field samples were taken every month forseasonal variation, the observations ranging from June2011to April2012. And three enclosureexperiments were performed separately.
     The first enclosure experiment was designed to check the predation pressure of Daphnia onpicophytoplankton. The experiment had one control without adding Daphnia galeata and threetreatments with adding low, middle and high density of Daphnia galeata, respectively. In thesecond experiment, nitrogen and phosphorus were added to detect the effect of increase ofnutrients on picophytoplankton communites, Hypophthalmichthys molitrix (silver carp),Aristichthys nobilis(bighead carp)and Tilapia nilotica(nile tilapia)were added solely or inmixture to detect their effects on picophytoplankton communites. The vertical mixing experimentwas carried out by adding phosphorous to the bottom of the enclosure and combined with differentvertical mixing.
     Both picocyanobacteria and picoeukaryotes were found in Liuxihe Reservoir. The annual averagepicophytoplankton cell number was1.44×105cells/mL,of which95%were cyanobacteria, whichcontributed to99.39%of the total phytoplankton abundance. Average biomass was0.23μg/L,contributed0.023%of total. The abundance of picocyanobacteria had peaks in both spring andautumn, when more species were found than in winter. Picocyanobacteria were more abundant inthe riverine zone and the transition zone than in the lacustrine zone except in spring, andpicoeukaryotes were more abundant in the riverine zone all year as well as that ofmicro-nanophyplankton(>3μm). The vertical distribution of picophytoplankton showed a peakabundance at10m depth in all the samples except in spring. The results indicate that thepicophytoplankton was sensitive to light and temperature in Liuxihe Reservoir.The results of the zooplankton adding experiment showed no significant difference between thetreatments. Daphnia galeata increased quickly in the first three weeks and reduced the differencebetween four treatments. The abundance and biomass of picophytoplankton increased whenmicro-nanophytoplankton decreased in the first week and then both markedly descreased. Theresult indicates that the picophytoplankton can assimilate nutrients more efficiently when they arelimited, and they can also avoid from grazing by Daphnia who prefers the larger phytoplankton.But when micro-nanophytoplankton were less abundant, Daphnia may prey on both pico-andmicro-nanophytoplankton.
     In the second experiment, all fractions of phytoplankton increased in nutrient enriched treatmentswith or without fish. The results showed that the abundance and biomass of picophytoplanktonwere related to phosphorous concentration, while other phytoplankton were influenced by bothphosphorous concentration and zooplankton biomass. The nutrients were higher in the fishtreaments, which coincided with the picophytoplankton abundance. The picocyanobacteria was highest in HAT all the time and picoeukaryotes abundance was highest in H in the end of theexperiment.
     After adding nutrients in the treatments in the third experiment, the abundance and the biomass ofall phytoplankton increased. The abundance of picocyanobacteria was much higher than that ofothers in the first week and then decreased towards the end. The picoeukaryotes andmicro-nanophytoplankton decreased in the second week then increased later. Picocyanobacteriawas sensitive to nutrients but could not adapt to the high nutrient concentration. In contrast,picoeukaryotes has relatively low assimilation rate but higher affinity to nutrients. Theconcentration of nutrient showed no significant difference between different vertical mixingfrequency, and all significantly higher than in H. The density of picophytoplankton was higher inthe mixing treatments and highest in HP, which shows that vertical mixing can increasepicophytoplankton abundance.
     In conclusion, nutrient enrichment especially for phosphorous can increase picophytoplanktonabundance and biomass. Picocyanobacteria response more quickly than picoeukaryotes andmicro-nanophytoplankton. Picophytoplankton is not selectively grazed by zooplankton whichprefers the larger phytoplankton. However, zooplankton may graze on both pico-andmicro-nanophytoplankton when micro-nanophytoplankton was less abundant. The mostsignificant impact by the omnivorous fish to picophytoplanton was not the change of predationpressure, but the increase of nutrient concentration. Vertical mixing can increasepicophytoplankton abundance. Among all the possible factors, it seems that the nutrients,especially phosphorous, make up the most influencial factor to picophytoplankton abundance andcommunity structure in Liuxihe Reservoir.
引文
陈晓玲,程丹,李慧明,胡韧,韩博平.南亚热带水库中盔形溞牧食对浮游植物群落影响的围隔实验[J].水生态学杂志,2012,33(3):61-67.
    程丹,李慧明,陈晓玲,韩博平.无鱼和贫营养条件下盔形溞对浮游动物群落的影响[J].水生态学杂志,2012,33(2):76-84.
    邓琛.营养盐加富和鱼类补充对浮游动物群落影响.暨南大学硕士论文,2011.
    蒋燮治,堵南山.中国动物志,节肢动物门甲壳纲淡水枝角类[M].北京:科学出版社,1979.
    林国恩.流溪河水库氮磷营养盐动态与收支分析.暨南大学硕士论文,2009.
    林秋奇.流溪河水库后生浮游动物多样性与群落结构的时空异质性.暨南大学博士论文,2007.
    林秋奇,韩博平.水库生态系统特征及其在水库水质管理中的应用[J].生态学报,2001,21(6):1034-1040.
    林秋奇,胡韧,韩博平.流溪河水库水动力学对营养盐和浮游植物分布的影响[J].生态学报,2003,23(11):2278-2284.
    林少君,贺立静,黄沛生等.浮游植物中叶绿素a提取方法的比较与分析[J].生态科学,2005,24(1):9-11.
    林彰文.热带典型水库沉积物磷与硅藻的空间分布.暨南大学博士论文,2007.
    刘建康.高级水生生物学[M].科学出版社,1999.
    刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔实验和湖泊实践[J].生态科学,2003,22(3):193-196.
    孙儒泳,李博,诸葛阳,尚玉昌.普通生态学[M].北京:高等教育出版社,1993.
    徐政.营养盐和三种杂食性鱼类对一座大型贫营养水库浮游植物群落影响研究.暨南大学硕士论文,2011.
    肖利娟,望甜,韩博平.流溪河水库的盔形溞和舌状叶镖水蚤对浮游植物的牧食影响研究[J].生态科学,2008,27(5):362-367.
    谢薇薇,王志伟,孔繁翔,史小丽.太湖光合自养真核超微藻遗传多样性初探[J].湖泊科学,2012,24(1):123-128.
    望甜.牧食与竞争——流溪河水库浮游动物群落的种间关系研究.暨南大学博士论文,2010.
    望甜,肖利娟,韩博平.大型枝角类蚤状溞对小型热带湖泊浮游植物群落影响的研究[J].生态科学,2007,26(2): l03-106.
    王明学.尼罗罗非鱼养殖[M].北京:科学技术文献出版社,1995.
    章宗涉,黄翔飞.淡水浮游生物研究方法[M].科学出版社,1991,344-346.
    赵孟绪.汤溪水库富营养化特征与蓝藻“水华”特征研究.暨南大学博士论文,2004.
    赵萍萍.秋季南亚热带地区浮游动物对深水层磷输送到表层的响应——大型围隔实验.暨南大学硕士论文,2012.
    赵帅营.营养盐加富和鲢对南亚热带贫——中营养型水库浮游生物群落的影响:大型围隔实验.暨南大学博士论文,2009.
    Marie, D., Simon, N. and Vaulot, D.. Phytoplankton cell counting by flow cytometry.In: Andersen, R. A.(ed). Algal Culturing Techniques[M]. Elsevier AcademicPress, Amsterdam, The Netherlands,2005,253-268.
    Arndt, H.. Rotifers as predators on components of the microbial web (bacteria,heterotrophic flagellates, ciliates)-a review[J]. Hydrobiologia,1993,255/256:231-246.
    Bai, X. G.., Wang, M., Liang, Y. T.. Distribution of microbial populations and theirrelationship with environmental variables in the North Yellow Sea, China[J],Journal of Ocean University of China,2012,11:75-85.
    Bell, T. and Kalff, J.. The contribution of picophytoplankton in marine and freshwatersystems of different trophic status and depth[J]. Limnology and Oceanography,2001,46:1243-1248.
    Bienfang, P. K., Szyper, J. P., Okamoto, M. Y. and Noda, E. K.. Temporal and spatialvariability of phyroplankton in a subtropical ecosystem[J]. Limnology andOceanography,1984,29:527-539.
    Brett, M. T.,Wiackowski, K., Lubnow, F. S., Mueller-Solger, A., Eller, J. J., Goldman,C. R.. Species-dependent effects of zooplankton on planktonic ecosystemprocesses in castle lake,California[J]. Limnology and Oceanography,1994,75:2234-2254.
    Broenmark, C. and Hansson, L. A.. The Biology of Lakes and Ponds[M]. OxfordUniversity Press,2005,596pp.
    Burger-Wiersma, T.. ProChlorothrix hollandica: a filamentous prokaryotic speciescontaining Chlorophylls a and b[J]. Algological Studies,1991,64:555-558.
    Burger-Wiersma, T., Veenhuis, M., Korhals, H. J. M., van der Wiel, C. C. and Mur, L.R.. A new prokaryote containing Chlorophylls a and b[J]. Nature,1986,320:262-264.
    Burns, C. W. and Schallenberg,M.. Impacts of nutrients and zooplankton on themicrobial food web of an ultra-oligotrophic lake[J]. Plankton Research,1998,8:1501-1525.
    Burns, C. W. and Stockner, J. G.. Picoplankton in6New-Zealand lakes—abundancein relation to season and trophic state[J]. Internationale Revue der GesamtenHydrobiologie,1991,76:523-536.
    Callieri, C.. Extinction coefficient of red, green and blue light and its influence onpicocyanobacterial types in lakes at different trophic levels[J]. Memoriedell'Istituto Italiano di Idrobiologia,1996,54:135-142.
    Callieri, C., Bertoni, R., Amicucci, E., Pinolini, M. L. and Jasser, I.. Growth rates offreshwater picocyanobacteria measured by FDC: problems and potentials for theestimation of picoplankton organic carbon synthesis[J]. Archiv fürHydrobiologie, Special issues Advances in Limnology,1996,48:93-103.
    Callieri, C., Corno, G., Caravati, E., Galafassi, S., Bottinelli, M., Bertoni, R..Photosynthetic characteristics and diversity of freshwater Synechococcus at twodepths during different mixing conditions in a deep oligotrophic lake[J].Limnology,2007a,66:81-89.
    Calleric, C., Karjalainen, S. M. and Passoni, S.. Grazing by ciliates and heterotrophicnanoflagellates on picocyanobacteria in Lago Maggiore, Italy[J]. PlanktonResearch,2002,24:785-796.
    Callieri, C., Modenuti, B., Queimalinos, C. and Balseiro, E.. Production and biomassof picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes:differences in light harvesting efficiency in deep layers[J]. Aquatic Ecology,2007b,41:511-523.
    Callieri, C. and Pinolini, M. L.. Picoplankton in Lake Maggiore, Italy[J].Internationale Revue der Gesamten Hydrobiologie,1995,80:491-501.
    Callieri, C. and Stockner, J. G.. Freshwater autotrophic picoplankton: a review[J].Limnology,2002,61:1-14.
    Campbell, L. and Iturriaga, R.. Identification of Synechococcus spp. in the SargassoSea by immunofluorescence and fluorescence excitation spectroscopyperformed on individual cells[J]. Limnology and Oceanography,1988,33:1196-1201.
    Campbell, L., Nolla, H. A. and Vaulot, D.. The importance of ProChlorococcus tocommunity structure in the central North Pacific Ocean[J]. Limnology andOceanography,1994,39(4):954-961.
    Carpenter, S. R. and Kitchell, J. F.(eds). The trophic cascade in lakes[M]. CambridgeUniversity Press,1993,399pp.
    Chen, B. Z., Wang, L., Song, S. Q., Huang, B. Q., Sun, J., Liu, H. B.. Comparisons ofpicophytoplankton abundance, size, and fluorescence between summer andwinter in northern South China Sea[J]. Continental Shelf Research,2011,31(14):1527-1540.
    Chisholm, S. W., Olson, R. J., Zettler, E. R., Goericke, R., Waterbury, J. B. andWelschmeyer, N. A.. A novel free-living proChlorophyte abundant in theoceanic euphotic zone[J]. Nature,1988,334:340-343.
    Collier, J. L.. Review:Flow cytometry and the single cell in phycology[J]. Phycology,2000,36:628-644.
    Corzo, A., Jiménez-Gómez, F., Gordillo, F. J. L. R., García-Ruíz, R. and Niell, F. X..Synechococcus and ProChlorococcus-like populations detected by flowcytometry in a eutrophic reservoir in summer[J]. Plankton Research,1999,21:1575-1581.
    Crosbie, N. D., Teubner, K. and Weisse, T.. Flow-cytometric mapping provides novelinsights into the seasonal and vertical distributions of freshwater autotrophicpicoplankton. Aquat. Microb[J]. Ecology.2003,33:53-66.
    Daley, R. J. and Hobbie, J. E.. Direct counts of aquatic bacteria by a modifiedepifluorescence technique[J]. Limnology and Oceanography,1975,20:875-882.
    DeMott, W. R.. Seasonal succession in a natural Daphina assemblage. EcologicalMonographs,1983,53:321-340.
    Dodson, S. I.. Introduction to Limnolgoy[M]. McGraw-Hill Higer Education, NewYork,2003,400pp.
    Fahnenstiel, G. L. and Carrick, H. J.. Phototrophic picoplankton in lakes Huron andMichigan: abundance, distribution, composition and contribution to biomass andproduction[J]. Canadian Journal of Fisheries and Aquatic Sciences,1992,49:379-388.
    Fahnenstiel, G. L., Carrick, H. J., Rogers, C. E. and Sicko-Goad, L.. Red fluorescingphototrophic picoplankton in the Laurentian Great Lakes: what are they andwhat are they doing?[J]. Internationale Revue der Gesamten Hydrobiologie,1991,76:603-616
    Garvey, J. E., Ostrand, K. G., Wahl, D. H.. Energetics, predation, and ration affectsize depent growth and mortality of fish[J]. Ecology,2004,85(10):2860-2871.
    Gieskes, W. W. C. and Kraay, G. W.. Unknown Chlorophyll a derivatives in theNorth Sea and tropical Atlantic Ocean revealed by HPLC analysis[J].Limnology and Oceanography,1983,28:757-766.
    Gilbert, J. J.. Competition Between Rotifers and Daphnia[J]. Ecology,1985,66(6):1943-1950.
    Collier, J. L.. Flow cytometry and the single cell in phycology[J]. Phycology,2000,36:628-644
    Johnson, P. W., Sieburth, J. McN.. Chroococcoi cyanobacteria in the sea: a ubiquitousand diverse phototrophic biomass[J]. Limnology and Oceanography.,1979,24:928-935.
    Johnson, P. W., Sieburth, J.. In situ morphology and occurrence of eucaryoticphototrophs of bacterial size in the picoplankton of estuarine and oceaicwaters[J]. Phycology,1982,18:113-118.
    Jürgens, K.. Impact of Daphnia on planktonic microbial food webs-a review[J].Marine Microbial Food Webs,1994,8:295-324.
    Kagami, M., Yoshida, T., Bahadur, T. G., Urabe, J.. Direct and indirect effects ofzooplankton on algal composition in in situ grazing experiments[J]. Oecologia,2002,133:356-363.
    Kerfoot, W. C. and Sih, A.(eds.). Predation: Direct and Indirect Impacts on AquaticCommunities[M]. University Press of New England, Hanover, NH,1989,394pp.
    Konstantinos,A., Garametsi,K.V., Nicolaidou, A.. Size-fractionated phytoplanktonChlorophyll in an Eastern Mediterranean coastal system (Maliakos Gulf,Greece)[J]. Helgoland Marine Research.,2002,56:125-133.
    Kreutzer, C. and Lampert, W.. Exploitative competition in differently sized Daphniaspecis: a mechanistic explanation[J]. Ecology,1999,7:2348-2357.
    Maeda, H., Kawai, A. and Tilzer, M. M.. The water bloom of cyanobacterialpicoplankton in Lake Biwa, Japan[J]. Hydrobiologia,1992,248:93-103.
    Malinsky-Rushansky, N., Berman, T. and Dubinsky, Z.. Seasonal dynamics ofpicophytoplankton in Lake Kinneret, Israel[J]. Freshwater Biology.,1995,34:241-254.
    McMurther, H. J. C. and Pick, F.. Fluorescence characteristics of a natural assemblageof freshwater picocyanobacteria[J]. Plankton Research,1994,16:911-925.
    McQueen, D. J., Post, J. R. and Mills, E. L.. Trophic relationships in freshwaterpelagic ecosystems[J]. Canadian Journal of Fisheries and Aquatic Sciences,1986,35:1571-1581.
    Moutin, T., Thingstad, T. E., Van Wambeke, F., Marie, M., Slawyk, G., Raimbault, P.,H. claustre, H.. Does competition for nanomolar phosphate supplu explain thepredominance of the cyanobacterium Synechococcus?[J]. Limnology andOceanography,2002,47:1562-1567.
    Nagata, T.. The microflagellate-picoplankton food linkage in the water column ofLake Biwa[J]. Limnology and Oceanography,1988,33:504-517.
    Olson, R. J., Frankel, S. L., Chisholm, S. W. and Shapiro, H. M.. An inexpensive flowcytometer for the analysis of fluorescence signals in phytoplankton:Chlorophylland DNA distributions[J]. Experimental Marine Biology and Ecology.,1983,68:129-44.
    Padisák, J., Kreinitz, L., Koschel, R. and Nedoma, J.. Deep-layer autotrophicpicoplankton maximum in the oligotrophic Lake SteChlin, Germany: origin,activity, development and erosion[J]. European Journal of Phycology,1997,32:403-416.
    Patricia, F., Moreira-Turcq, G. C. and Martin, J. M.. Contribution of flow cytometry toestimate picoplankton biomass in estuarine systems[J]. Hydrobiologia,2001,462:157-168.
    Petersen, R.. Carbon-14uptake by picoplankton and total phytoplankton in eight NewZealand lakes[J]. Internationale Revue der Gesamten Hydrobiologie,1991,76:631-641.
    Pernthaler, J., Simek, K., Sattler, B., Schwarzenbacher, A., Bobkova, J. and Psenner,R.. Short-term changes of protozoan control on autotrophic picoplankton in anoligomesotrophic lake[J]. Plankton Research,1996,18:443-462.
    Pick, F. R. and Bérubé, C.. Diel cycles in the frequency of dividing cells of freshwaterpicocyanobacteria[J]. Plankton Research,1992,14:1193-1198.
    Popma, T. J.. Digestibity of Selected Feedstuffs and Naturally Occurring Algae byTilapia. Ph. D. Dissertation, Department of Fisheries and Allied Aquacltures[M]. Aubum University, AL.,1982.
    Raven, J. A.. Physiological consequences of extremely small size for autotrophicorganisms in the sea. In: Platt, T. and Li, W. K. W.(eds), Photosyntheticpicoplankton[J]. Canadian Bulletin of Fisheries and Aquatic Sciences,1986,214:1-70.
    Raven, J. A.. The twelfth Tansley Lecture. Small is beautiful: thepicophytoplankton[J]. Functional Ecology,1998,12:503-513.
    Rhew,K., Baca,R.M., Ochs,C.A. and Threlkeld,S.T.. Interaction effects of fish,nutrients, mixing and sediment on autotrophic picoplankton and algalcomposition[J]. Freshwater Biology,1999,42:99-109.
    Richman, S. and Dodson, S.. The effect of food quality on feeding and respiration byDaphnia and Diaptomus[J]. Limnology and Oceanography,1983,28:948-956.
    Sánchez-Baracaldo, P., Handley, B.A. and Hayes, P. K.. Picocyanobacterialcommunity structure of freshwater lakes and the Baltic Sea revealed byphylogenetic analyses and clade-specific quantitative PCR[J]. Microbiology,2008,154:3347-3357.
    Sanders, R. W., Porter, K. G., Bennett, S. J. and DeBiase, A. E.. Seasonal patterns ofbacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwaterplanktonic community[J]. Limnology and Oceanography,1989,34:673-687.
    Scanlan, D.J. and Wilson, W.H.. Application of molecular techniques to addressingthe role of P as a key effector in marine ecosystems[J]. Hydrobiologia,1999,401:149-175.
    Schallenberg, M. and Burns, C.W.. Tests of autotrophic picoplankton as earlyindicators of nutrient enrichment in an ultraoligotrophic lake[J]. FreshwaterBiology,2001,46:27-37.
    Shapiro, J. and Wrigh, D. I.. Lake restoration by biomanipulation, Round Lake,Minnesota: the first two years [J]. Freshater Biology,1984,14:371-383.
    Sieburth, J. McN., Smetacek, V. and Lenz, J.. Pelagic ecosystem structure:Heterotrophic compartments of the plankton and their relations to plankton sizefractions[J]. Limnology and Oceanography,1986,23(6):1256-1263.imek, K., Macek, M., Pernthaler, J., Straskrabová, V. and Psenner, R.. Canfreshwater planktonic ciliates survive on a diet of picoplankton?[J]. PlanktonResearch,1996,18:597-613.
    Simon, N., Barlow, R. G., Marie, D., Partensky, F. and Vaulot, D.. Characterization ofoceanic photosynthetic picoeukaryotes by flow cytometry[J]. Phycology,1994,30:922-935.
    Smith, D.W.. The feeding selectivity of silver carp, Hypophthalmichthys molitrixVal[J]. Journal of Fish Biology.,1989,34:819-828.
    S ndergaard, M.. Phototrophic picoplankton in temperature lakes-seasonal abundanceand impotance along a trophic gradient[J]. Internationale Revue der GesamtenHydrobiologie.,1991,76:505-522.
    Steiner, C. F.. Context-dependent effects of Daphnia pulex on pond ecosystemfunction: observational and experiments evidence[J]. Oecologia,2002,131:549-55.
    Stockner, J. G.. Autotrophic picoplankton in fresh-water ecosystems—the view fromsummit[J]. Internationale Revue der Gesamten Hydrobiologie.,1991,76:483-492.
    Stockner, J. G.. Phototrophic picoplankton: an overview from marine and freshwaterecosystems[J]. Limnology and Oceanography,1988,33:765-775.
    Stockner, J. G. and Antia, N. J.. Algal picoplankton from marine and freshwater: amultidisciplinary perspective[J]. Canadian Journal of Fisheries and aquaticSciences,1986,43:2472-2503.
    Stockner, J. G., Callieri, C. and Cronberg, G.. Picoplankton and other non-bloomforming cyanobacteria in lakes. In: Whitton, B. and Potts, M.(eds), TheEcology of Cyanobacteria: Their Diversity in Time and Space[M]. KluwerAcademic Publishers,2000,195-238.
    Stockner, J. G. and Porter, K. G.. Microbial food webs in freshwater planktonicecosystems. In: Carpenter. S. R.(ed.), Complex interactions in lakecommunities[M]. Springer-Verlag,1988,69-83.
    Stockner, J. G. and Shortreed, K. S.. Autotrophic picoplankton: communitycomposition, abundance and distribution across a gradient of oligotrophicBritish Columbia and Yukon Territory lakes[J]. Internationale Revue derGesamten Hydrobiologie,1991,76:581-601.
    Stockner, J. G. and Shortreed, K. S.. Autotrophic picoplankton community dynamicsin a pre-alpine lake in British Columbia, Canada[J]. Hydrobiologia,1994,274:133-142.
    Stra kraba, M. and Tundisi, J. G.. Reservoir ecosystem functioning: theory andapplication. In: Tundisi, J. G. and Stra kraba, M.(ed.), Theoretical ReservoirEcology and its Applications[M]. Backhuys Publishers, Leiden, TheNetherlands,1999,565-583.
    Sweeney, B. M. and Borgese, M. B.. A circadian rhythm in cell division in aprokaryote, the cyanobacterium Synechococcus WH7803[J]. Phycology,1989,25:183-186.
    Szelag-Wasielewska, E.. Autotrophic picoplankton dynamics in a small shallowlake[J]. Hydrobioloia,408/409:301-306.
    Szelag-Wasielewska, E.. Dynamics of autotrophic picoplankton communities in theepilimnion of a eutrophic lake (Strzeszynskie Lake, Poland)[J]. Limnology,2004,40(2):113-120.
    Trask, B. J., van den Engh, G. J. and Elgerhuizen, J. H. B. W.. Analysis ofphytoplankton by flow cytometry[J]. Cytometry,1982,2:258-264.
    Tzaras, A., Pick, E. R., Mazumder, A. and Lean, D. R. S.. Effects of nutrients,planktivorous fish and water column depth on components of the microbial foodweb[J]. Aquatic Microbial Ecology,1999,19:67-80.
    Vaulot, D., LeBot, N., Marie, D. and Fukai, E.. Effect of phosphorus on theSynechococcus cell cycle in surface Mediterranean waters during summer[J].Applied and Environmental Microbiology,1996,62:2527-2533.
    Vaulot, D., Partensky, F., Neveux, J., Mantoura, R. F. C. and Llewellyn, C. A..Winter presence of proChlorophytes in surface waters of the northwesternMediterranean Sea[J]. Deep Sea Research,1990,39:727-742.
    Veldhuis, M. J. W. and Kraay, G. W.. Vertical distribution and pigment compositionof a picoplanktonic proChlorophyte in the subtropical N.Atlantic: a combinedstudy of HPLC-analysis of pigments and flow citometry[J]. Marine EcologyProgress Series,1990,68:121-127.
    Veldhuis, M. J. W. and Kraay, G. W.. Cell abundance and fluorescence ofpicoplankton in relation to growth irradiance and nitrogen availability in the RedSea[J]. Netherlands Journal of Sea Reserch,1993,31:135-145.
    V r s, L., Gulyas, P. and Nemeth, J.. Occurrence, dynamics and production ofpicoplankton in Hungarian shallow lakes[J]. Internationale Revue der GesamtenHydrobiologie,1991,76:617-629.
    Wehr, J. D.. Effects of experimental manipulation of ligth phosphorus supply oncompetition among picoplankton and nanoplankton in a oligotrophic lake[J].Canadian Journal of Fisheries and Aquatic Sciences,1993,50:936-945.
    Wehr, J. D.. Predominance of picoplankton and nanoplankton in eutrophic CalderLake[J]. Hydrobiologia.,1990,203:35-44.
    Weisse, T.. Dynamice of autotrophic picoplankton in Lake Constance[J]. Journal ofPlankton Research,1988,10:1179-1188.
    Weisse, T.. Dynamice of autotrophic picoplankton in marine and freshwaterecosystems[J]. Advances in Microbial Ecology,1993,13:327-370.
    Weisse, T.. The microbial food web and its sensitivity to eutrophication andcontaminant enrichment: a cross-system overview[J]. Internationale Revue derGesamten Hydrobiologie,1991,76:327-337.
    Weisse, T. and Schweizer,A.. Seasonal and interannual variation of autotrophicpicoplankton in a large prealpine lake (Lake Constance)[J]. Verhaltnisse derInternationale Vereinigung für Theoretische und Angewandte Limnologie,1991,24:821-825.
    Williams, P. J. L.. Incorporation of microheterotrophic processes into the classicalparadigm of the planktonic food web[J]. Kieler Meeresforschung Sonderheim,1981,5:1-28.
    Winder, M.. Photosynthetic picoplankton dynamics in Lake Tahoe: temporal andspatial niche partioning among prokaryotic and eukaryotic cells[J]. Journal ofPlankton Research,2009,31:1307-1320.
    Yentsch, C.M., Horan, P. K., Dortch, Q., Haugen, E. M., Legendre, L., Murphy, L. S.,Phinney, D., Pomponi, S. A., Spinrad, R. W., Wood, A. M., Yentsch, C. S. andZahurense, B. J.. Flow cytometry and sorting: a powerful technique withpotential applications in aquatic sciences[J]. Limnology and Oceanography,1983,28:1275-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700