用户名: 密码: 验证码:
汉源瀑布沟水电站消落区氮释放模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据1982汉源土壤普查资料和瀑布沟水电站消落区水位涨落形式,采集园地、旱地和水田利用方式下紫色土和冲积土耕作层(0-20cm)共18个样点,对三种不同土地利用方式下两种土壤类型进行土壤氮的等温吸附解吸研究,并在此基础上通过两次淹水期不同时间段对上覆水三氮(TN、氨氮、硝氮)的动态监测,研究吸附不同含量氮素的上壤淹水后向水体释放氮的特性及环境影响因素。研究结果分述如下。
     瀑电库区消落区不同土壤类型具有等温吸附和解吸特性。消落区821-841m高程带内园地、旱地、水田利用方式下的紫色上和冲积土对氮具有等温吸附特性,6种供试土壤的等温吸附曲线均能很好的拟合langmiur方程,且相关性较高,在0.9729-0.9971之间;淹水一落干后的6种供试土壤的吸附能力大于未淹水一落干上壤的吸附能力,循环淹水一落干后的供试上壤吸附能力与淹水一落干上壤的吸附能力差异不大。吸附一定浓度氨氮后消落带园地、旱地、水田利用方式下的紫色土和冲积上同时具有解吸氨氮的能力,未淹水一落干的供试土壤解吸能力强于淹水一落干土壤和循环淹水一落干上壤。土壤吸附的氨氮含量越高,其解吸能力越强,在浓度梯度为480mg/L-640mg/L范围内,各供试土壤的单次解吸率已达到65.51%-78.96%。吸附氨氮的含量越低,解吸能力越弱,在浓度梯度为20mg/L-160mg/L范围内单次解吸率仅为26.90%-56.95%,随着解吸次数的增多,上壤解吸量越少。
     从添加不同肥料水平和淹水一落干一淹水两个方面研究了瀑电库区消落区不同上壤类型向水体释放氮素的能力。在一次淹水过程中,未添加肥料水平的园地紫色土释放能力强于冲积土,上覆水TN以NH4+一N为主,当添加肥料水平后,冲积土的释放能力明显强于紫色土,上覆水TN以N03--N为主;未添加肥料水平和添加肥料水平的旱地冲积土释放能力强于紫色土,上覆水TN以N03--N为主;未添加肥料水平的水田冲积上释放能力强于紫色土,添加肥料水平后,淹水初期,水田紫色上释放能力较强,淹水后期(21d后),水田冲积上的释放能力略强于紫色土,上覆水TN含量以NH4+一N为主。二次淹水过程中,未添加肥料水平的园地紫色上的释放能力强于冲积土;添加低肥料水平的园地紫色土释放强度仍高于冲积土,而添加高肥料水平时,冲积上的释放能力较大,上覆水TN浓度以NH4+-N为主;旱地紫色上的释放能力较冲积土高,上覆水TN浓度主要以NH4+-N为主;水田冲积土的释放强度逐渐体现,不仅高于水田紫色土,同时高于园地两种土壤类型和旱地两种上壤类型,上覆水TN浓度主要以NO3--N为主。
     水体扰动对氮的释放具有明显作用。在一二次淹水过程中,水体扰动对氮的释放具有相似规律:在淹水初期,扰动水体,土壤氮的释放明显高于静止状态,随着时间的延长,扰动水体对氮的释放影响较弱,相对于静止组来说,基本处于平衡状态,甚至出现扰动体系上覆水TN含量低于静止体系的现象。淹水条件后测定上壤鲜样的NH4+-N和NO3--N表明,土壤中NH4+-N和NO3--N的含量会发生显著的改变,各供试土壤中NO3--N在还原条件下会还原成NH4+-N,同时以不同氮形态损失。
According to the General Detailed Soil Survey date on Han Yuan in 1982 and the fluctuation of water in water fluctuation zone at Pu Bu Gou Hydroelectric power station, this experiment collected 18 spots of soil samples from plough layer(0-20cm) of purple soil and alluvial soil of garden land,dry land and paddy field.The isothermal adsorption and desorption of the soil nitrogen of two soil types under three different land utilization was studied.Based on this, dynamic monitoring on TN, ammonia nitrogen and nitrate nitrogen of the overlying water of two periods of flooding was conducted to study the characteristics and in environmental influencing factors of the N release to the water after absorbing different N contents. The results were as follows.
     The different types of soil in water fluctuation zone of Pu Bu Gou Hydroelectric power station had the characteristics of isothermal adsorption and desorption. In the garden land, dry land and paddy field, the purple soil and alluvial soil in 821-841 elevation of water fluctuation zone had the characteristic of isothermal adsorption of nitrogen. The isothermal adsorption curves of the 6 kinds of experiment soil were fit the Langmiur equation and had a high correlation between 0.9729-0.9971. The ability of isothermal adsorption after inundate-drain was higher than that before inundate-drain.There was no obvious difference between circulating inundate-drain and inundate-drain. After certain adsorption of ammonia nitrogen, both of the purple soil and alluvium soil under the three land utilization had the ability of desorption of ammonia nitrogen. The experimental soils which were never inundate-drain was stronger than the inundate-drain and circulating inundate-drain. The more ammonia nitrogen the soil adsorbed, the stronger the desorption would be. When the concentration was between 480mg/L-640mg/L, all of the experimental soils'single desorption rate reached 65.51%-78.96%. The lower the adsorption of ammonia nitrogen, the weaker the desorption ability would be. When the concentration was between 20mg/L-160mg/L, all of the experimental soils'single desorption rate were only 26.90%-56.95%, Along with the increase of desorption times, the soil desorption were less.
     This experiment studied the ability of nitrogen release into water among the different types of soils in water fluctuation zone of Pu Bu Gou Hydroelectric power station, and the research was based on three aspects:fertilization, inundate-drain-inundate and the water perturbation condition. In the process of one time flooding, the release ability of purple soil of garden land was stronger than alluvial soil;the main form of overlying water TN was NH4+-N. After increasing fertilizer level, the ability of release in alluvial soil was stronger than purple soil and the main form of overlying water TN was NO3-N. The release ability of alluvial soil of dry land which did not increase fertilizer level and increased fertilizer was stronger than purple soil, and the main form of overlying water IN was NO3-N. The release ability of alluvial soil in paddy field which never increased fertilizer level was stronger than purple soil, but after increasing fertilizer level, at the beginning of inundation, the release ability of purple soil of paddy field was strong, and at the end of inundation(21d), the release ability in alluvial soil of paddy field was stronger than purple soil; the main form of the overlying water TN was NH4+-N. The release ability of purple soil in garden land which never increased fertilizer level was stronger than alluvial soil. The release ability of purple soil in garden land which increased low fertilizer level was also stronger than alluvial soil. But when increase high fertilizer level, the release ability of alluvial soil was bigger;the main overlying water TN was NH4+-N. The release ability of purple soil was stronger than alluvial soil in day land, and the main overlying water TN was NH4+-N. Gradually, the release ability of alluvial soil in paddy field demonstrated, not only higher than purple soil in paddy field, but also higher than both of the soils in garden plot and dry land, the main overlying water IN was NO3--N.
     The water perturbation had effective effect on nitrogen release. At first and second inundate process, there was a similar regular pattern in nitrogen release of the water perturbation. At the beginning of inundation, obviously,the release of soil nitrogen was higher than static condition when perturbing water. With the time extension, perturbing of the water had little effect on nitrogen release. Relative to the static group, based on the balance condition, A phenomenon that the perturbation system of overlying water TN was lower than static system appeared. The NH4+-N and N03-N of the soil after inundation condition showed the content of NH4+-N and NO3-N in soil significantly changed, and the NO3-N in all of the experimental soil would turn into NH4+-N at the reducing condition and losing at the different form of nitrogen in the same time.
引文
[1]金相灿,屠清瑛.湖泊富营养化调查规范[M]北京:中国环境科学出版社,1990:228
    [2]黄玉瑶.内陆水域污染生态学原理与应用[M].北京:科学出版社,2001:35
    [3]LAU S S S, CHU L M. The significance of sediment contamination in a coastal wetland, HongKong, China[J]. Water Research,2000,34:379-386
    [4]LAU S S S. The significance of temporal variability in sediment quality of contamination assessment in a coastal wetland[J]. Water Research,2000,34:387-394
    [5]PAUER J J, AUER M T. Nitrification in the water column and sediment of a Hypereutrop HicLake and adjoining river system[J]. Water Research,2000,34:1247-1254
    [6]Watss C. Seasonal pHospHorus release from exposed, re-inundated littoral sediments of two Austracain reservoirs [J]. Hydrobiologia,2000,431:27-39
    [7]Sundby B, Gobeil C, Silberberg N, etal. The pHospHorus cycle in costal marine sediments[J]. Limnol Oceanogr,1992,37:1129-1145
    [8]Sharpley A H. Tunney, pHospHorus research strategies to meet agriculture and enviromental challenges of the 21st centry[J]. J Environ Qual,2000,29:176-181
    [9]谢慧兰,张学勇.黄壁庄水库消落区土地资源的合理利用[J].资源开发与保护,1997,7(2)
    [10]陈吕齐,叶元士等.三峡水库重庆库区消落带渔业利用初步研究[J].国土与自然资源研究,2000,1:51-53
    [11]范小华,谢德体.水、十环境变化下消落区生态环境问题研究[J].农业资源与环境科学,2006,22(10):374-379
    [12]戴方喜.对三峡水库消落区生态系统与其生态修复的思考[J].中国水十保持,2006(12):6
    [13]何再超,郑钦玉,马杰等.三峡库区消落区可持续发展途径探讨[J].西南农业大学学报(社会科学版),2003,1(4):5-7
    [14]谢德体,范小华,魏朝富.三峡水库消落区对库区水土环境的影响研究[J].西南大学学报,2007,29(1):39-40
    [15]涂修亮,陈建,吴文华.三峡库区退化生态系统植被恢复与重建研究[J].湖北农业科学,2000,13:29-31
    [16]牛志明,解明曙.三峡库区水库消落区水土资源开发利用的前期思考[J].资源环境,1998,20(6)61-62
    [17]黄昌勇.土壤学[M].北京:中国农业出版社,1999
    [18]钟成华.三峡库区水体富营养化研究[J].中国环境科学,2005,3(31):4144
    [19]王超.氮类污染物在土壤迁移转化规律试验研究[J].水科学进展,1997,8(2):176一182
    [20]KronvangB, Graesboll P, Larsen S E, etal. Diffuse nutrient losses in Denmark. Water Siense & Technology,1996,33:81
    [21]叶常明等.多介质环境污染研究[M]北京:科学出版社,1997
    [22]Dangelo E M, ReddyK R. Ammonium oxidation and Nitrate Reduction in Sediment of a HypereutorpHic Lake[J]. Soil Science Society American Jounral,1993,57:1156-1163.
    [23]Kemp W M, P sampou, M Mayer. Ammonium Recycling versus Denitrification in Chesapeake Bay sediments [J]. Limnology and oceanograpHy,1990,35(7):1545-1563.
    [24]De Pinto J V, Lick W, Paul J F. Transport and Transformation of Contaminants Near the sediment-water Interface. New York:Lewis publishers,1994:310
    [25]王娟,王圣瑞,金相灿.沉水植物黑藻对沉积物氨氮吸附/释放特征的影响[J].生态环境,2007,16(2):336-341
    [26]Ingemar Ahlgen ect湖泊中有关与微生物有关的氮素的消涨,AMBIO,23(6),1994
    [27]徐红灯,王京刚,席北斗等.降雨径流时农田沟渠水体中氮、磷迁移转化规律研究[J].环境污染与防治,2007,29(1):18-21
    [28]吴丰昌,万国江,黄荣贵.湖泊沉积物一水界面营养盐元素的生物地球化学作用和环境效应I.界面氮循环及其环境效应[J].矿物学报,1996,16(4):403-409
    [29]窦培谦,王晓燕,王丽华.非点源污染中氮磷迁移转化机理研究进展[J].首都师范大学学报,2006,27(2):93-96
    [30]Vladmir Novotny. Intergrating diffuse pollution control and water body restroration into watershed managemen[J]. Journal of thr Amrican Water Resource Assocaition,1999,35(4): 717-722
    [31]李俊然,陈利项等.土地利用结构对非点源污染的影响[J].中国环境学,2000,20(6):506-510
    [32]Christensen B T. Carbon and nitrogen in paticle size fractions isolated from Danish arable solis by ultrasonic dispersion and gravity-sedimentation[J]. Acta Agriculture Scandinavica,1985, 35:175-187
    [33]王晓燕,王一峋.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究,2003,16(1),30-33
    [34]Van Luijn F, Boers PCM, Lijklema L, Sweerts J-P RA. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutropHic lake. Wat Res,1999,33(1):33-42
    [35]Vanderborght J. P & Gilles Billen. Vertical distribution of nitrate concentration in interstitial water of marine sediments:Stoichiometry and Kinetics, Limnol. Oceanogr,43(4-6):1356-1412
    [36]吴群河,曾学云,黄钥.河流底泥中DO和有机质对三氮释放的影响[J].环境科学研究,2005,18(5):34-39
    [37]周启星,朱荫湄.西湖底泥不同厌氧条件下有机质及Co2与CH4释放规律模拟研究[J].环境科学学报,1999,19(1):11-15
    [38]范成新,张路,杨龙元.湖泊沉积物氮磷内源负荷模拟[J].海洋与湖沼,2002(7):370-377
    [39]刘亚丽,张智,段秀举.湖泊底泥释氮预测模型及释氮控制研究[M].农业环境科学学报,2006,25(6):1603-1606
    [40]付春平,钟成华,邓春光.PH与三峡库区底泥氮磷释放关系的试验[J].重庆大学学报,2004,27(10):125-127
    [41]Nedwell D B, Jic kellsT D, TrinmerM, etal. Nutrientsin in estuaries. Advancesin in Ecological Research,1999,29:43-51
    [42]Seitzinger S P, Kroeze C. Globle distribution of nitrous oxide Production and N inputs infreshwater and coastal marine ecosystems [J]. Globle Biogeochemical cycles,1998,12:93-113
    [43]Span D. Variation of nutrient stocks in the superficial sediments of The Lake Genevafrom 1978 to1988[J]. Hydrobiologia,1990,20(7):161-166
    [44]BaudoR, Giesy J P, mantau H. Sediments:chemistry and toxicity of inplace pollutants[M]. Michigan:Lewis Publishers,1990.130-144
    [45]陈永红,陈军,王娟等.淮河底泥内源氮释放的模拟实验研究[J].土壤学报,2005,42(2):344-347
    [46]Frankowski L, Bolalek J, Szostek A. Nitrogen in Bottom sediments of Pomeranian Bay (Southern Baltic-Poland) [J]. Estuarine Coastal and ShelfSicence,2002,54(6):1036-1049
    [47]Kristensen P M, Sondergaard M, Jeppesen E.Resuspension in a shallow lake[J]. Hydrobiologia, 1992,228:101-109.
    [48]Herbrandson C, Steven P B, Swackhanler D L. Influence of suspended solids on acute toxicity of carbofuran to Dap Hniamagna:I.Interactive efects[J]. Aquatic Toxicology,2003,63:333-342
    [49]De Pinto J V, Lick W, Paul J F. Transport and Transformation of Contaminants Near thesediment-water Interface. New York:Lewis publishers,1994:310
    [50]Reddy K R, Fisher M & Lvaoff D. Resuspension and diffusive flux of nitrogen and-hospHorus in a hypereutropHic lake. Jounral of Environmental Quality,1996,25:363-371
    [51]Sondergaard M, Kristensen P & Jeppesen E. PHospHorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia,1992,228:91-99
    [52]Evans R D. Empirical evidence of the importance of sediment resuspension in lakes[J]. Hydrobiologia,199,284:5-12
    [53]Bloesch J. Mechanisms,measurement and importance of sediment resuspension in lakes[J]. Marine and Freshwater Reseach,1995,46(1):295-304
    [54]秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831
    [55]尤本胜,王同成,范成新等.风浪作用下太湖草型湖区水体N、P动态负荷模拟[J].中国环境科学,2008,28(1):33-38
    [56]Fan Chengxin, Zhang Liu, Qin Boqiang, etal. Estimation on dynamic release of PHospHorus from wind-inducede suspended pariticular matter in Lake Taihu[J]. Science in China Series D-Earth Science,2004,47(8):710-719
    [57]Luo Liancong, Qin Boqiang, Zhu Guangwei. Sediment distribution pattern mapped from the combination of objective analysis and geostatistics in the large shallow TaihuLake, China[J]. Journal of Environmental Sciences,2004,16(6):908-911
    [58]施国涵等.污水库底泥微生物对六六六降解的研究[J].生态学报,1984,4(4)
    [59]张恒军,吴群河.底泥的氮、磷释放及其微生物影响的研究[J].环境技术,2003,20(4):20-28
    [60]詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律[J].重庆大学学报(自然科学版),2006(8):34-39
    [61]杨继富.污水灌溉农业问题及对策[J].水资源保护,2000,(2):4-8
    [62]胡刚,王里奥,袁辉等.三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J].长江流域资源与环境,2008,17(5):780-783
    [63]Matthiesen H, Emeis K C, Jensen B T. Evidence for PHospHorus release from sediment in the Gotland Deep during oxic bottom water condition[J]. Meyniana,1998,50:175-190
    [64]骆东奇.紫色母岩现代表生作用及环境效应应用研究[M]:[博十论文].重庆:西南农业大学资源环境学院,2002,39
    [65]Wang W J. Dalai R C, Moody P W, Smith C J. Relationships of soil respiration to microbialbiomass, substrate availability and clay content. Soil Biology & Biochemistry,2003, 35:273-284
    [66]Mikha M M, Rice C W, Milliken G A. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology & Biochemistry,2005.37:339-347
    [67]刘艳丽,张斌,胡锋等.千湿交替对水稻土碳氮矿化的影响[J].土壤学报,2008,40(4):554-560
    [68]马蕊,林英.淡水水域富营养化及其治理[J].生物学通报,2003,38(11):112一115
    [69]Monzur Alam Imteaz, Takashi Asaeda, David A. Lockington, Modelling the effects of inflow parameters on lake water quality, Enviromental Modelling and Assessment[J]. Kluwer Academic Publishers,2003,8:63-70
    [70]王晟,徐祖信.从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学,2003,22(5):432-4335
    [71]Lerman. Migrational processes and chemical reactions in intersitial water[A]. In:Goldberg.et al(ed). The sea[C]. New York:Wilet-Interscience.1997,695-738
    [72]CANTER L W. Environmental impacts of agriculture production activies[M]. New York:Lowis Publishers,1986
    [73]Coote D R, Mac Donald E M and Dickinson W T etal. Agriculture and water quality in the Canadian Great Lakes Basin I. Representative agriculture watersheds[J].1982,11:473-481
    [74]Dongian J A S and Huber W C. Modeling of nonpoint source water quality in urban and non-urban areas [J]. Washington:USEPA,1991,3(39):91-96
    [75]石孝洪.三峡水库消落区土壤磷素释放与富营养化[J].土壤肥料,2004(1):40-43
    [76]OECD, EutropHication of waters monitoring, assessment and control, OECD publication, Pairs, 1982
    [77]鲁如坤,主编.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999
    [78]李崇云,刘世全,雷兆云等.汉源土壤[M].四川省汉源县土壤调查办,1985
    [79]熊毅,陈家坊等.土壤胶体第三册[M]北京:科学出版社,1990
    [80]Zhou Baotong. Gao Ming. Chaofu Study on kmetics of pHospHorus adsorption on the surface of organomineral collodal complex in purple paddy soil[J]. Journal Southwest China Normal University(Natural Science),2000,25(5):553-560
    [81]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社,1984
    [82]谢红梅,朱波等.紫色十NH4+, NO3-的吸附一解吸特性研究[J].土壤肥料,2006(2),19-21
    [83]雷婷.鄱阳湖南矶山湿地土壤对氮的吸附于释放特性初步研究[D].南京:南昌大学,2008
    [84]苏玲,章永松,林咸永.干湿交替过程中水稻土铁形态和磷吸附解吸的变化[J].2001,7(4)410-415
    [85]蒋小欣,阮晓红,赵振华等.城市重污染河道上覆水氮营养盐浓度及DO水平对底质氮释放的影响[J].环境科学,2007,28(1):87-91
    [86]饶立忠,刘珍海,段开甲.瀑布沟水电站的主要环境问题[J].四川环境,1993,12(2):6一10
    [87]王岩,杨振明,沈其荣.土壤不同粒径中C、N、P、K的分配及N的有效性研究[J].土壤学报,2000,37(1):90-94
    [88]于军亭,张帅等.环境因子对浅水湖泊沉积物中氮释放的影响[J].山东建筑大学学报,2010,25(1):58-61
    [89]贺冉冉,朱广伟等.天日湖溶解氧变化特征及内源氮释放的影响[J].生态与农村环境学报,2010,26(4):344-349
    [90]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究fJ].农业环境科学学报,2003,22(2):170-173
    [91]刘陪芳,陈振楼,刘杰等.环境因子对长江口潮滩沉积物NH4+的释放影响[J].环境科学研究,2002,15(5):28-32
    [92]张金洋,王定勇,石孝洪.三峡水库消落区淹水后土壤性质变化的模拟研究[J].水土保持学报,2004,18(6):120-124
    [93]Franzluebbers K, Weaver R W, Juo ASR, Franzluebbers A J. Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and in repeatedly dried and wetted soil. Soli Biology & Biochemistry,1994,26:1379-1387
    [94]Griffin D M. Water potential as a selective factor in the microbial ecology of soli Microbiology. America, Madison, WI:Soil Science Society,1981:141-151
    [95]Harris RF. Effect of water potential on microbial growth and activity Parr J F, Gardner W R, Elliott L F. Water Potential Relations in Soil Microbiology. America, Madison, WI:Soli Science Society,1981:23-95
    [96]Perrone J, Madramooto C A. Sediment yield prediction using agnps[J]. Soil and Water Conservation,1999,54(1):415-419
    [97]王春云,朱亚民.瀑布沟水电站移民安置去向探讨[J].四川水利发电,1992,12:57-59
    [98]徐元刚,孙锐锋,李剑等.水库消落区研究利用进展[J].人民长江,2008,39(3):102-103
    [99]涂建军,陈治谏,李德清等.三峡库区消落带土地整理利用一以重庆市开县为例[J].山地学报,2002,20(6):712-717
    [100]黄朝禧,赵绪福,韩奎桐.富水水库消落区土地开发试验及其效果[J].长江流域资源与环境,2005,14(4):435-439
    [101]谢慧兰.黄壁庄水库消落区土地资源的合理利用[J].资源开发与保护,1991,7(2):96-98
    [102]邱锡成.小浪底水库消落区士地利用研究[J].河海科技进展,1993,13(3):63-67

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700