用户名: 密码: 验证码:
基于SWAN和ECOMSED模式的三维近岸泥沙输运数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海岸带是大陆和海洋的交汇处,海洋与陆地最接近的区域。在这一区域各种环境因素众多,水动力系统复杂。由于海岸、河口区域水深较浅,浪、流是主要的动力因素。波浪和潮流共同作用对海岸带地区的泥沙运动有十分重要影响。本文采用三维水动力泥沙模型ECOMSED和SWAN波浪模型分析胶州湾海域浪流共同作用下的泥沙输运情况。
     本文以在胶州湾海域的综合性观测资料为基础,分析胶州湾海域内泥沙和水文的分布特征;考虑潮流作用、波浪作用、泥沙底质分布特征,采用SWAN波浪模式和ECOMSED水动力模式联合计算并验证该模式在胶州湾泥沙输运模拟中的适用性。数值模拟潮流作用、潮流和波浪共同作用下的胶州湾海域悬沙运动,并对其机制进行分析,并对两者的结果做了对比。
     本文的工作主要有,查找有关胶州湾的历史资料和文献,阅读相关的水动力和波浪数值模拟文章,对泥沙数值模拟的研究进展和现状进行总结;对胶州湾海域内的波浪进行模拟,采用三重嵌套方式进行计算,计算出与实际情况较为接近的波浪场,得出胶州湾海域的有效波高和周期等波要素的发展变化过程;采用ECOMSED模式模拟胶州湾的水动力场,开边界设在湾口附近,将附近验潮站的六个主要分潮(S2,M2,N2,K1,P1,O1)的调和常数作为动力驱动,通过与实际观测数据的对比分析,模拟出与实际情况较为接近的潮汐潮流场,证明了ECOMSED模型在胶州湾海域的适用性;联合SWAN波浪模型计算出的波浪要素及ECOMSED模型模拟出的水动力场,对胶州湾海域的悬浮泥沙进行模拟,得到浪流共同作用下的胶州湾悬浮泥沙分布及随水流运动规律,分析浪对泥沙的影响。
     计算结果显示,ECOMSED水动力模型能够较好地模拟胶州湾海域的潮汐潮流场,潮汐类型表现出典型的半日潮性质。SWAN波浪模型模拟结果与实测资料吻合程度较高,模型能够成功模拟胶州湾海域中的波浪场。计算结果发现胶州湾内的波浪普遍较小,多年波浪测量数据发现胶州湾长期没有大浪,这与数值模拟结果一致。
     流速是影响悬沙浓度的重要因素,仅考虑潮流作用下,悬沙等浓度值等值线基本平行于等深线,随水深增加悬沙浓度逐渐减小,流速是影响悬沙浓度的主要因素。胶州湾海域整体悬沙浓度较低,大部分海域内在10mg/L至50mg/L范围内,大于50mg/L的悬沙浓度范围主要分布在近岸海域,与5m等深线以浅的范围重合,每方海水中大约有几十克物质。
     考虑波浪和潮流因素共同影响作用,同仅考虑纯天文潮流影响类似,悬沙浓度值等值线基本平行于等深线,随水深的增大悬沙浓度逐渐减小,胶州湾海域整体悬沙浓度较低,根据数值模拟结果显示,大部分海域内的悬沙浓度在10mg/L至100mg/L范围内,大于100mg/L的悬沙浓度范围主要分布在近岸海域,与5m等深线以浅的范围重合,在近岸海域,波浪对泥沙运动的影响较为显著,波浪作用可以到达海底。同时考虑波浪和潮流作用对泥沙运动的影响,胶州湾海域内的悬沙浓度值在近岸海域增加较为明显,水深较大地区浓度值总体较低,即每方海水中大约有几十到一百多克物质。
     在纯潮流作用下,底应力较小,不足以使底床沉积的泥沙起动进入水体,当加入波浪作用时,波浪通过不断对近底水体扰动、搅拌产生较大的湍流,增加了床面剪切应力,拖曳力的增加也会影响近岸区域的流场,从而影响对近岸海域的悬沙含量、改变海岸海底地貌。浪流共同作用下,在近岸海域水体中的悬沙浓度增加,比纯潮流作用下的泥沙浓度提高2%~68%,平均提高14%。
Coastal region is the intersection of land and sea. In this region there are a number of environmental factors, and the hydrodynamic system is complex. In the coastal, estuarine areas,the wave and tide are the main dynamic factor with the change of water depth. Wave and tidal interaction is very necessary on the study of sediment transport. This paper analyzes the wave and tide interactional sediment transport mechanisms using ECOMSED 3-dimensional hydrodynamic and sediment model and SWAN wave model in Jiaozhou Bay.
     In this paper, it analyzes the distribution of sediment concentration and hydrological characteristics based on a lot of observations in Jiaozhou Bay. The sediment transport applicability of SWAN and ECOMSED coupled model was validated by considering tidal influence, wave influence and sediment distribution. The sediment transport under tidal current, ocean waves was simulated and the influence to transport by them was studied respectively.
     The main work in the paper is described as follows. It summarized the progress in numerical simulation of sediment, ocean waves and sediment transport under tidal current and waves. Ocean waves simulation in Jiaozhou Bay was constructed by SWAN model by adopting triple-nested manner. It got the wave parameters and their evolution such as significant wave height and mean periods. The harmonic constants S2, M2, N2, K1, P1, O1 were calculated by the tide gauge stations nearby, which were given as the boundary conditions of ECOMSED model. It showed a good performance of ECOMSED from the comparisons with observations of tidal current and water level. In order to understand the role of the waves in the sediment transport, the simulated wave elements were added to the ECOMSED sediment module, which give a comprehensive simulation of sediment evolution.
     The results show that ECOMSED hydrodynamic model give a good simulation of water level and tidal current in Jiaozhou Bay, where the tidal type is typical semidiurnal nature. The significant wave height derived from Jason-1 is similar to the simulated results by SWAN. It shows that Jiaozhou Bay is always in smooth sea states, which is correspond to the observations.
     Current speed plays an important role in the suspended sediment concentration evolution. Only considering the action of current, the contour lines of suspended sediment concentration are parallel to contour lines of water depth. The concentration decreases gradually when the water depth becomes deeper and most of the suspended sediment concentration is 10mg/~50mg/L in the deep water. The suspended sediment concentration is greater below 5m isobaths nearshore. Overall, the suspended sediment under the action of tidal current is low, which is about dozens of grams per cubic meter.
     Some characteristics under joint influence of wave and tidal current are similar to that under tidal current. The sediment concentration contours are parallel to depth contours and the suspended sediment concentration decreases accompany with the deeper of water depth. The current plays an important role in the sediment transport. The simulated results shows that most of the suspended sediment concentration is 10mg/L~100mg/L. The suspended sediment concentration is greater below 5m isobaths nearshore. Overall, the suspended sediment concentration is higher than under the action of tidal current, which is about dozens to 100 grams per cubic meter.
     In the case of wind waves, the suspended sediment concentration distribution near-shore will change significantly. It becomes greater than simply under the tidal current. That means that ocean waves are an important factor in coastal sediment transport. The joint influence by wave and current will have a rise about 2%~68% in the suspended sediment concentration. The average value is abou 14%.
引文
[1]冯士筰.风暴潮导论(海洋与湖沼理论丛书) .北京:科学出版社,1982.
    [2]曹祖德,王桂芬.波浪掀沙、潮流输沙的数值模拟.海洋学报,1993,15(1):107~118.
    [3]曹祖德.水动力泥沙数值模拟,天津:天津大学出版社,1994.
    [4]李孟国.伶仃洋三维潮流盐度泥沙数学模型.交通部天津水运工程科学研究所,1995.
    [5]窦国仁,董凤舞,窦希萍.河口海岸泥沙数学模型.中国科学(A辑), 1995, 25(9):994~1007.
    [6]李陆平,孔祥德,廖启煜.风暴浪对埕岛油田海域海底冲刷得影响.海岸工程, 1996,15(2):1~8.
    [7]辛文杰.潮流、波浪综合作用下河口二维悬沙数学模型.海洋工程,1997,15 (1):30~47.
    [8]鲍献文,闫菊等. ECOM模式在胶州湾潮流计算中的应用.海洋科学, 1999, 5:57~60.
    [9]马福喜,李文新.河口水流、波浪、潮流、泥沙、河床变形二维数学模型.水利学报,1999, (5), 39~43.
    [10]江毓武,吴培木等.厦门港潮汐、风暴潮耦合模型.海洋学报,2000,22(3):1~6.
    [11]白玉川,顾元棪,蒋昌波.潮流波浪联合输沙及海床冲淤演变的理论体系与其数学模拟.海洋与湖沼, 2000,31(2):186~196.
    [12]边淑华,胡泽建等.近130年胶州湾自然形态和冲淤演变探讨.黄渤海海洋,2001,19(3),46~53.
    [13]曹祖德,李蓓,孔令双.波、流共存时的水体挟沙力.水道港口,2001,22(4),151~155.
    [14]丁平兴,孔亚珍,朱首贤,朱建荣.波-流共同作用下的三维悬沙输运数学模型.自然科学进展, 2001,11(2), 147-152.
    [15]李孟国.海岸河口水动力数值模拟研究及对泥沙运动研究的应用.博士学位论文.青岛:青岛海洋大学,2002.
    [16]侯一筠,陈沫沫,尹宝树.波浪、潮流和风暴潮耦合模式及悬沙输移规律的研究.海洋科学集刊, 2003, 45(45):1-9.
    [17]丁平兴,胡克林,孔亚珍,胡德宝.风暴对长江河口北槽冲淤影响的数值模拟—以“杰拉华”台风为例.泥沙研究, 2003,(6):18~24.
    [18]罗肇森.波、流共同作用下的近底泥沙输移及航道骤淤预报.泥沙研究, 2004,(6):1~9.
    [19]陆永军,左利钦,王红川,李浩麟.波浪与潮流共同作用下二维泥沙数学模型.泥沙研究,2005,(6):1~12.
    [20]夏华永,詹华平等.潮流、风暴潮耦合模型推算珠江口海域极值流速.海洋工程, 2005,23(2):32~41.
    [21]林俊.风暴作用下的近岸悬浮泥沙数值模拟.硕士学位论文.青岛:中国海洋大学, 2007.
    [22]郑运霞.浪流共同作用下的三维悬沙数值模拟.硕士学位论文.青岛:中国海洋大学,2007.
    [23]韩树宗,郑运霞,高志刚. 9711号台风对青岛近海悬沙浓度影响的数值模拟.中国海洋大学学报,2008, 38(6) : 868~ 874.
    [24]赵瑾,2007:环胶州湾河流对胶州湾水沙输送的数值模拟.硕士学位论文.
    [25]郑运霞,2008:浪流共同作用下的三维悬沙数值模拟.硕士学位论文.
    [26] Li Mengguo, Cai Dongming, et al. Three-dimensional flow-salinity-sediment simulations of the Pearl River Estuary. Proc.of XXIX IAHR Congress,Theme E, Beijing,2001,265~273.
    [27] Blumberg A.F. A primer for Ecomsed. Technical Report of Hydroqual,Inc.,Mahwah N.J. 2002.
    [28] Pierson W.J. and L. Moskowitz, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J. Geophys. Res., 1964, 69(24): 5181~5190.
    [29] Chen, C. H. Liu, R. C. Beardsley, 2003. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and OceanicTechnology, 20, 159~186.
    [30] James C. Mcwiilliams, Juan M. Restrepo and Emily M. Lane, 2004. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics, 511 , pp 135~178.
    [31] Lane, E.M., J.M. Restrepo, and J.C. McWilliams, 2007. Wave–Current Interaction: A Comparison of Radiation-Stress and Vortex-Force Representations. J. Phys. Oceanogr., 37, 1122~1141.
    [32] McWilliams, J.C., Restrepo, J.M., Lane, E.M., 2004. An asymptotic theory for the interaction of waves and currents in coastal waters. Journal of Fluid Mechanics551, 135~178.
    [33] Moon, I.-J., Oh, I.S., 2003. A study of the effect of waves and tides on storm surge using a coupled ocean wave–circulation model. J. Korean Meteorol. Soc. 39 (5), 563~574.
    [34] Sheng, Y.P., Villaret, C., 1989. Modeling the effect of suspended sediment stratification on bottom exchange processes. Journal of Geophysical Research 94 (C10), 429~444.
    [35] Soulsby, R.L., Damgaard, J.S., 2005. Bedload sediment transport in coastal waters. Coastal Engineering 52 (8), 673–689.
    [36] Tolman, H.L., 1989. The numerical model WAVEWATCH: a third generation model for the hind casting of wind waves on tides in shelf seas. Communications on Hydraulic and Geotechnical Engineering, Delft University of Technology, ISSN 0169-6548, Rep. No. 89-2.
    [37] Wang, H., 2002. 3-Dimensional Numerical Simulation on the Suspended Sediment Transport from the Huanghe to the Sea. Ph.D. Thesis, Ocean university of China, pp. 12-14, in Chinese.
    [38] Burban, P.Y., Xu, Y., McNeil, J., and Lick, W., 1990:Settling Speeds of Flocs in Fresh and Sea Waters.J. Geophys. Res., 95(C10),18213-18220.
    [39] Glenn, S.M. and Grant, W.D., 1987:A Suspended Sediment Stratification Correction for Combined Waves and Current Flows. J. Geophys. Res., 92(C8), 8244-8264.
    [40] Hawley, N., 1991:Preliminary Observations of Sediment Erosion from a Bottom Resting Flume.J. GreatLakes Res., 17(3), 361-367.
    [41] Madala, R.V., and S.A. Piacsek, 1977:A Semi-Implicit Numerical Model for Baroclinic Oceans. J. Comput. Phys., 23, 167-178.
    [42] Partheniades, E., 1992:Estuarine Sediment Dynamics and Shoaling Processes. in Handbook of Coastal and Ocean Engineering, Vol. 3, J. Herbick, ed., pp. 985-1071.
    [43] Teisson,C.1991: Cohesive Suspended Sediment Transport: Feasibility and Limitations of Numerical Modeling. Journal of Hydraulic Research JHYRAF, 29(6), 755-769.
    [44] Van Leussen, W., 1994: Estuarine macroflocs and their role in fine-gained sediment transport. PhD Thesis, University of Utrecht, The Netherlands, 488pp.
    [45] Mehta, A.J., T.M. Parchure, J.G. Dixit, and R. Ariathurai, Resuspension Potential of Deposited Cohesive Sediment Beds, Estuarine Comparisons, V.S. Kennedy, Editor, Academic Press, New York, 1982a, pp. 591-609.
    [46] Erik A. Toorman, 2002: Modelling of turbulent flow with suspended cohesive sediment, In: Fine Sediment Dynamics in the Marine Environment, Ed: J.C.Winterwerp and C.Kranenburg,2002 Elsevier Science B.V., 155-186.
    [47] Young, I. R., 1999: Wind Generated Ocean Waves. Oxford University Press, 288 pp
    [48] Jeffreys, H., 1924: On the formation of waves by wind, Proc. Roy. Soc. A107, 189–206.
    [49] Jeffreys, H., 1925: On the formation of waves by wind. II, Proc. Roy. Soc. A110, 341–347.
    [50] Miles, J. W., 1957: On the generation of surface waves by shear flows. Journal of Fluid Mechanics 3, 185–204.
    [51] Barnett, T. P., J. C. Wilkerson, 1967: On the generation of ocean wind waves as inferred from airborne measurements of fetch-limited spectra, J. Mar. Res. 25, 292–328.
    [52] Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Mu¨ller, D. J. Olbers, K. Richter, W. Sell, H. Walden, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. Suppl., A8 (12), 95pp.
    [53] Mitsuyasu, H., 1968: A note on the nonlinear energy transfer in the spectrum of wind-generated waves. Rept. Res. Inst. Appl. Mech., Kyushu Univ. 16, 251-264.
    [54] Snyder, R. L., 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechancis Vol.102, 1-59
    [55] Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. 4,426-434.
    [56]文圣常,宇宙文,1984:海浪理论与计算原理.科学出版社, p127-130.
    [57]常德馥, 1991:胶州湾波浪状况分析.海岸工程,第10卷第4期, p13-20.
    [58] Longuet—Higgins,M. S., 1956: The statistical analysis of a random moving surface. Phil. Trans. Roy. Soc., A, 249(966), 321-387.
    [59] Komen, G. J., K. Hasselmann, S. Hasselmann, 1984: On the existence of a fully developed windsea spectrum, J. Phys. Oceanogr. 14, 1271–1285.
    [60] Hasselmann, S., K. Hasselmann, J. H. Allender, T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum, part 2: parameterizations of the nonlinear energy transfer for application in wave models, J. Phys. Oceanogr. 15, 1378–1391.
    [61] WAMDI Group 1988: "The WAM model-A third generation ocean wave prediction model," J Phys Oceanogo, V18, p1775-1810
    [62] Booij N., R. C. Ris, L. H. Holthuijsen, 1999: A third generation model for coastal regions. Part I: model description and validation, J. Geophys.Res., 104 (C4) 7649–7666.
    [63] Tolman, H. L., 1989: "The numerical model WAVEWATCH: A third generation model for the hindcasting of 38wind waves on tides in shelf seas. Communications on Hydraulic and Geotechnical, " Engineering Rep, 89-2, Delft University of Technology, 72 pp.
    [64] Tolman, HL 1991: "A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents" J Phys Oceanogr, Vol 21, p782-797.
    [65] Tolman, H. L., 1992: "Effects of numerics on the physics in a third-generation wind-wave model," J Phys Oceanogr, V 22, p1095-1111.
    [66] Tolman, H. L., Chalikov, D., 1996: Source terms in a third-generation wind wave model. Journal of Physical Oceanography 26, 2497–2518.
    [67] Tolman, H. L., 1999: "User manual and system documentation of WAVEWATCH-III version 1.18," NOAA/NWS/NCEP/MMAB Tech Note 166, 110 pp.
    [68] Tolman, HL 2002: "User manual and system documentation of WAVEWATCH-III version 2.22," NOAA/NWS/NCEP/MMAB Tech Note 222, 133 pp.
    [69] Tolman, H. L., 2009: User manual and system documentation of WAVEWATCH III version 3.14. NOAA / NWS / NCEP / MMAB Technical Note 276, 194 pp
    [70] Longuet—Higgins, M. S., STEWART, R. W., 1961: The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, Vol.10, 529-549.
    [71] Whitham, G. B., 1965: A general approach to linear and non-linear dispersive waves using a Lagrangian. Journal of Fluid Mechancis, 22,273-283

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700