用户名: 密码: 验证码:
浅水湖泊沉积物中氮的迁移转化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对天津市青年湖、七里海为期一年(2010年2月~12月)的野外观测,监测其表层沉积物中总氮、可交换态氮、固定态铵、溶解态有机氮以及可水解态氨基酸、氨基糖态氮等各形态氮的含量以及氧化还原电位、微生物活性、温度等环境参数,并结合实验室模拟实验,研究了若干生境因子对表层沉积物氮营养盐的静态释放、有机氮的降解以及藻类生长和代谢产毒的影响,同时探讨了藻毒素的降解机理。
     青年湖和七里海表层沉积物中总氮赋存含量偏高,溶解态有机氮是沉积物中氮的主要形态;氨基酸态氮是有机氮的主要形态;铵态氮是采样点沉积物内源释放的主要形式。温度升高有利于沉积物中氮的释放,但是过高的温度又会抑制铵态氮的释放;溶解氧升高不利于沉积物中氮的释放;弱酸性环境有利于沉积物中有机质的降解,碱性环境有利沉积物中铵态氮从水体溶出;水动力条件对氮营养盐短期释放强度有重要影响,而对长期释放强度影响不显著。
     根据氨基酸的选择性降解和主成份分析法引入降解指数DI’,三个采样点均呈现夏、秋季节DI’指数较低而春、冬季节较高的季节变化特征。DI’指数与环境参数温度、沉积物含氧状况和微生物活性负相关。沉积物中有机氮的厌氧降解速率大于好氧降解速率,氨基酸态氮是沉积物中有机氮降解的主要形态,氨基糖不易降解。氮源、碳源的加入能显著提高有机氮的降解速率而对氨基糖的降解速率无明显影响;曝气有利于沉积物中氨基糖的降解而不利于有机氮的降解;加入醋酸普兰林肽和亮氨酸后对氨基酸态氮的降解速率有一定的促进作用。
     铜绿微囊藻培养实验表明营养盐浓度的升高有利于藻类的生长及代谢产藻毒素,但过高的营养盐浓度对藻类生长的促进作用不明显且不利于沉积物中总氮的去除;温度升高有利有藻类代谢产毒;溶解氧含量对藻类的生长无明显影响,而适宜的水体扰动条件有利于藻类的生长。
     藻毒素类物质降解反应模型为一级动力学模型,紫外光助降解/Fenton联用体系、超声降解/Fenton联用体系均能加速藻毒素的降解。在芬顿体系中,适中含量的初始H2O2浓度、初始MCs浓度和初始Fe2+浓度能够快速降解藻毒素;芬顿体系在pH值为3~4的范围内能获得较高的降解速率,而体系中加入CO32-、NO3-等阴离子会降低反应速率,同时UV照辐光强的提升亦可提高其降解效率。
Nearly one year field observations (From February to December in 2010) in Qingnian Lake and Wetland Qilihai had been carried out. Total nitrogen (TN), exchangeable nitrogen (EN), fixed ammonium (F-NH4+-N), dissolved organic nitrogen (DON), total hydrolyzable amino acids (THAA-N) and hexosamine (HA-N) were detected. It also monitored environmental parameters such as redox potential, microbial activities and temperature. With laboratory simulation experiments, static release of nitrogen species and organic nitrogen degradation in surface sediment as well as the algae growth and their metabolites toxins oxidative degradation have been studied.
     The average concentrations of TN in Qingnian Lake and Wetland Qilihai revealed a high nitrogen pollution levels. DON, accounting for 97% of TN, was the main form of nitrogen in surface sediment. Meanwhile, THAA-N occupies the largest proportion (38%) of DON. EN accounts for a lower proportion of TN and NH4+-N is the major components (95%) of EN. According to the Fick's First Law, it revealed that NH4+-N is the main form of endogenous nitrogen releasing. In the experiment for the strength of nitrogen release in surface sediment, T, pH, DO and hydrodynamics are considered as environmental parameters. It showed that the rising temperature benefit the nitrogen release in sediments, but an excessively high temperature will inhibit the ammonium release. Meanwhile, increased dissolved oxygen content is not conducive to nitrogen release and a weak acid condition can promote the organic matter degradation in sediment. However, sediment in an alkaline environment is favorable to the NH4+-N solution toward the water from sediment. For hydrodynamic conditions, it proved that the process of short-term nitrogen release would be impacted by it but the long-term was not.
     According to amino acids degradation and principal component analysis (PCA), an index of DI’was introduced to reflect the freshness of sediments. The DI’index revealed that organic matter in sediment is complete degraded in summer and autumn while more fresh in winter and spring. Meanwhile, DI’has negatively correlations with environmental parameters such as T, Eh and microbial activities. It confirmed that a reducing environment may lead to a high level of organic matter degradation. Based on nitrogen mineralization experiments in surface sediments, anaerobic degradation rate is faster than that in aerobic conditions. THAA-N was the mainly form in DON decomposition while hexosamine was less biodegradable. Added N and C source can significant promote the process of DON degradation. However, it does not fit for the hexosamine biodegradation. The aeration was conducive to HA-N degradation and detrimental for DON degradation in sediments. According to the bioavailability of pramlintide acetate, it has a similar promotion with leucine in THAA-N biodegradation.
     In aeruginosa simulation experiments, an elevated nutrient of nitrogen can significant promotes the algae growth and the toxins releasing. However, excessively nutrients are not obvious for algae reproduction and inappropriate for TN removing. A rising temperature is conducive to the degradation of MCs which 20℃is optimal for algae absorption. Appropriate hydraulic conditions always fit for the algae prosperity and nitrogen elimination. Meanwhile, dissolved oxygen had no effect on algae growth. It confirmed that more oxygen and stronger hydro-disturbance can inhibit the production and release of MCs.
     The microcystin degradation is confirmed as a first order kinetic reaction. These processes can be greatly accelerated by UV/Fenton and Ultrasonic/Fenton system. Meanwhile, an appropriate initial concentration of the H2O2 and Fe2+ as well as MCs in reaction solution would cause a more efficient MCs degradation. These degradation processes also can be promoted by an excited UV or suitable pH (3~4) conditions. However, added anions such as CO32- and NO3- are not conducive to MCs oxidation.
引文
[1]金相灿.湖泊和湿地水环境生态修复技术与管理指南[M].北京:科学出版社, 2007, 32-38.
    [2]陈建军,黄民生,卢少勇,等.北京六湖水体和表层沉积物中氮污染特征与评价[J].华东师范大学学报(自然科学版), 2011, 1: 12-20.
    [3] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70(2): 153-226.
    [4] James E, Bracken M, Cleland E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J]. Ecology Letters, 2007, 10(12): 1135-1142.
    [5] James R T, Gardner W S, McCarthy M J, et al. Nitrogen dynamics in Lake Okeechobee: forms, functions, and changes [J]. Hydrobiologia, 2011, 669(1): 199-212.
    [6]钟继承,刘国锋,范成新,等.湖泊底泥疏浚环境效应:Ⅳ.对沉积物微生物活性与群落功能多样性的影响及其意义[J].湖泊科学, 2010, 22(1): 250-257.
    [7] Kevern R N, King L D, Ring R. Lake classification systems [M]. Philadelphia: W.B. Saunders Co., 1983, 767-769.
    [8] Swenson S, Wahr J. Monitoring the water balance of Lake Victoria, East Africa, from space [J]. Journal of Hydrology, 2009, 370(1-4): 163-176.
    [9] Bianchi T S, Engelhaupt E, Westman P. Cyanobacterial blooms in the Baltic Sea: natural or human-induced [J]. Limnology and Oceanography, 2000, 45(3): 716-726.
    [10] Chen Y W, Qin B Q, Teubner K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China [J]. Journal of Plankton Research, 2002, 25(4): 445-453.
    [11] Arhonditsis B G, Qian S S, Stow A C, et al. Eutrophication risk assessment using Bayesian calibration of process-based models: application to a mesotrophic lake [J]. Ecological Modelling, 2007, 208(2-4): 215-229.
    [12]安娜,高乃云,刘长娥.中国湿地的退化原因、评价及保护[J].生态学杂志, 2008, 27(5): 821-828.
    [13]卢大远,刘培刚,范天俞,等.汉江下游突发“水华”的调查研究[J].环境科学研究, 2000, 13(2): 28-31.
    [14]李小琴,袁君,杨飞,等.太湖南泉水域产毒微囊藻环境丰度和微囊藻毒素-LR产毒能力[J].东南大学学报(英文版), 2010, 26(1): 96-99.
    [15]麻军.延庆西湖富营养化成因分析[J].北京水务, 2005, 6: 8-9.
    [16]秦伯强,许海,董百丽.富营养化湖泊治理的理论与实践[M].北京:高等教育出版社, 2011, 17-23.
    [17] Shi Z G. Relationship of Soil Erosion and Pollution in the Chaohu Lake Basin [J]. 12th ISCO Conference, Beijing, 2002, 273-277.
    [18]吴德玲,钱彪,何琳晖.滇池富营养化成因分析[J].环境科学研究,1992, 5(5): 26-28.
    [19]成小英,李世杰.长江中下游典型湖泊富营养化演变过程及其特征分析[J].科学通报, 2006, 51(7): 848-855.
    [20] Sundby B, Gobeil C, Silberberg N. The phosphorus cycle in coastal marine sediments [J]. Limnology and Oceanography. 1992, 37(6): 1129-1145.
    [21] Rydin E. Potentially mobile phosphorus in Lake Erken sediment [J]. Water Research, 2000, 34(7): 2037-2042.
    [22]范成新,张路,王建军,等.湖泊底泥疏浚对内源释放影响的过程与机理[J].科学通报, 2004, 49(15): 1523-1528.
    [23]王国祥,成小英,濮培民.湖泊藻型富营养化控制-技术、理论及应用[J].湖泊科学, 2002, 14(3): 273-284.
    [24]秦伯强.长江中下游浅水湖泊富营养化发生机制与控制途径初探[J].湖泊科学, 2002, 14(3): 193-202.
    [25]王晓明,王波,李小明.大明湖主要营养元素内外源负荷的分析与评价[J].济南大学学报(自然科学版), 2010, 24(3): 262-267.
    [26]姜建国,沈韫芬.截污工程完成后武汉东湖自然净化速率探讨[J].长江流域资源与环境, 2000, 10(5): 460-465.
    [27]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护, 2002, 21(2): 179-182.
    [28]朱敏,王国祥,王建,等.南京玄武湖清淤前后底泥主要污染指标的变化[J].南京师范大学学报(工程技术版), 2004, 4(2): 66-69.
    [29]徐洪斌,吕锡武,俞燕,等.玄武湖底泥营养物释放的模拟试验研究[J].环境化学, 2004, 23(2): 152-156.
    [30]吴芝瑛,虞左明,盛海燕,等.杭州西湖底泥疏浚工程的生态效应[J].湖泊科学, 2008, 20(3): 277-284.
    [31]洪祖喜,何晶晶,邵立明.水体受污染底泥原地处理技术[J].环境保护, 2002, 10: 15-17.
    [32]王一华,傅荣恕.中国生物修复的应用及进展[J].山东师范大学学报, 2003, 18(2): 79-83.
    [33] Drizo A, Frost C A, Grace J. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems [J]. Water Research, 1999, 33(7): 3595-3602.
    [34]朱广伟,秦伯强,高光,等.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报, 2004, 24(3): 381-388.
    [35]史红星,刘会娟,曲久辉,等.无机矿质颗粒悬浮物对富营养化水体氨氮的吸附物性[J].环境科学, 2005, 26(5): 72-78.
    [36]俞志明,马锡年.粘土矿物对海水中主要营养盐的吸附研究[J].海洋与湖泊, 1995, 26(2): 208-214.
    [37] Lukatelich R J, Mccomb A J. Nutrient levels and the development of diatom and blue-green algal blooms in a shallow Australian estuary [J]. Journal of Plankton Research, 1986, 8(4): 597-618.
    [38] Balcil S, Dincel Y. Ammoium ion absorption with sepiolite: use of transient uptake method [J]. Chemical Engineering and Processing, 2002, 41(1): 79-85.
    [39]胡秀荣,吕光烈,陈林深,等.天然蒙脱石的结构与带电性[J].物理化学学报, 2003, 19(12): 1171-1175.
    [40] Meng C H, Zhao B. Vertical distribution of species of nitrogen and phosphorus in the sediments of Donghu Lake [J]. Huan Jing Ke Xue, 2008, 29(7): 1831-1837.
    [41] Wang H M, Mao G Z, Zhang S, et al. An etrophication model for lake based on Maximum Flux Principle for Waihai of Dianchi Lake [J]. International Conference on Environmental Biotechnology and Materials Engineering, Harbin, 2011, 183-185: 805-809.
    [42] Jiang X, Jin X C, YaoY, et al. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China [J]. Water Research, 2008, 42(8-9): 2251-2259.
    [43] Seitzinger S P, Sanders R W. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication [J]. Marine Ecology Progress Series, 1997, 159: 1-12.
    [44]朱广伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学, 2001, 13(3): 272-278.
    [45] Berman T, Bronk D A. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems [J]. Aquatic Microbial Ecology, 2003, 31(3): 279-305.
    [46]陈文新.土壤与环境微生物学[M].北京:北京农业大学出版社, 1990, 75-78.
    [47]林素梅,王圣瑞,金灿相,等.湖泊表层沉积物可溶性有机氮含量及分布特性[J].湖泊科学, 2009, 21(5): 623-630.
    [48] Albuquerque A L S, Mazeto A A. C: N: P ratios and stable carbon istope composition as indicators of organic matter sources in a riverine wetland system (Moji-guacu River, Sao Paulo-Brazil) [J]. Wetlands, 1997, 17(1): 1-9.
    [49] Dungworth G, Thijssen M, Zuurveldm J, et al. Distribution of amino acids, amino sugar, purines and pyrimidines in a Lake Ontario sediment [J]. Chemical Geology, 1977, 19(1-4): 295-308.
    [50] Wakecham S G, Lee C, Farrington J W, et al. Biochemistry of particulate organic matter in the oceans: results from sediment trap ecperiments [J]. Deep Sea Research (Part A), 1984, 31(5A): 509-528.
    [51]王丽玲,胡建芳,唐建辉.中国近表层沉积物中氨基酸组成特征及生物地球化学意义[J].海洋学报, 2009, 31(6): 161-169.
    [52]梁小兵,陈建芳,于晓果,等.湖泊沉积物中蛋白质和氨基酸的动态变化[J].矿物学报, 2001, 21(1): 59-63.
    [53]李文霞,冯海艳,杨忠芳,等.水体富营养化与水体沉积物释放营养盐[J].地质通报, 2006, 25(5): 602-608.
    [54]易文利,王圣瑞,杨苏文,等.长江中下游浅水湖泊沉积物腐殖质组分赋存特征[J].湖泊科学, 2011, 23(1): 21-28.
    [55]张宇,乌恩,李重祥,等.长江中下游湖泊沉积物酶活性及其与富营养化的关系[J].应用与环境生物学报, 2011, 17(2): 196-201.
    [56]钟继承,刘国锋,范成新,等.湖泊底泥疏浚环境效应:Ⅱ.内源氮释放控制作用[J].湖泊科学, 2009, 21(3): 335-344.
    [57]王芳,逄勇,韩涛,等.太湖内源释放及营养盐输运研究[J].环境污染与防治, 2009, 31(1): 21-25.
    [58] Beklioglu J R, Crisman T L, Moss B. Rapid recovery of a shallow hypertrophic lake following sewage effluent dirversion: lack of chemical resllience [J]. Hydroblologia, 1999, 412: 5-15.
    [59] Breukelaar A W, Lammens E H H R, Breteler K, et al. Klein Effects of benthivorous bream (Abramis brama) and crap (Cyprtus carpto) on sediment resuspension and concentration of nutrients and chlorophyll-α[J]. Freshwater Biology, 1994, 32(1): 113-121.
    [60] Christensen K K, Andersen F, Jensen H S. Comparison of iron, mangement and phosphorus retention in freshwater littoral sediment with growth of littorel uniflor and benthic microalge [J]. Biogeochemistry, 1997, 38(2): 149-171.
    [61] Li X, Zhao L, Ma K, et al. Distribution and diffusive flux of endogenous nitrogen in an urban Chinese eutrophic lake [J]. Fresenius Environmental Bulletin, 2011, 20(9): 2214-2220.
    [62] Reddy K R, Fisher M M, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake[J]. Journal of Enviromnental Quality, 2004, 25(1): 363-371.
    [63] Sndergaard M, Kristensen P, Jeppesen E. Phosphorus release from resuspended sediment in the shallow and wind-exposed LakeArmso, Denmark [J]. Hydrobiologia, 2002, 228(5): 91-99.
    [64]朱广伟,陈英旭,田光明,等.水体沉积物的污染控制技术研究进展[J].农业环境保护, 2002, 21(4): 378-380.
    [65]韩伟明.杭州西湖底泥释磷及其对富营养化的影响[J].环境科学, 1992, 13(3): 25-30.
    [66] Michael D K. In situ determination of dissolved iron production in recent marine sediments [J]. Water Research, 2002, 64(3): 282-291.
    [67]范成新,张路,杨龙元,等.湖泊沉积物氮磷内源负荷研究[J].海洋与湖沼, 2002, 33(4): 370-377.
    [68]张路,范成新,王建军,等.太湖水土界面氮磷交换通量的时空差异[J].环境科学, 2006, 27(8): 1537-1543.
    [69] De Lange G J. Distribution of exchangeable, fixed, organic and total nitrogen in interbedded turbiditic/pelagic sediments of the Madeira Abyssal Plain, eastern North Atlantic [J]. Marine Geology, 1992, 109(1-2): 95-114.
    [70] Boudreau B P. Diagenetic models and their implementation [M]. New York: Springer Verlag, 1997.
    [71] Bissett W P, Walsh J J, Dieterle D A. Carbon cycling in the upper waters of the Sargasso Sea:Ⅰ. Numerical simulation of differential carbon and nitrogen fluxes [J]. Deep-Sea Research, 1999, 46(2): 205-269.
    [72] Byran M S, Laurence C, Rueprt P, et al. Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake [J]. Water Reaearch, 2008, 42(4-5): 977-986.
    [73] Macfarlance G T, Herbert R A. Dissimilatory nitrate reduction and nitrification estuarine sediments [J]. Journal of General Microbiology, 1984, 130(9): 2301-2308.
    [74] Hansen J I, Heriksen K, Blackburn T H. Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments [J]. Microbial Ecology. 1981, 7(4): 297-304.
    [75] Caffery J M, Kemp W M. Influence of the submersed plant, Potamogeton perfoiliatus, on nitrogen cyclying in estuarine sediments [J]. Limnology and Oceanography, 1992, 37(7): 1483-1495.
    [76]刘培芳,陈振楼,刘杰,等.环境因子对长江口潮滩沉积物中NH4+的释放影响[J].环境科学研究, 2002, 15(5): 28-32.
    [77]叶琳琳,潘成荣,张之源,等.瓦埠湖沉积物氮的赋存特征以及环境因子对NH4+-N释放的影响[J].农业环境科学学报, 2006, 25(5): 1333-1336.
    [78] Jorgensen K S. Annual pattern of denitrification and nitrate ammonification in estuarine sediment [J]. Applied and Environmental Microbiology. 1985, 55(7): 1841-1847.
    [79] Tuominen L, Heinanen A, Kuparinen J, et a1. Spatial and temporal variability of denitrification in the sediments of the northern Baltic Proper [J]. Marine Ecology Progress Series, 1998, 172: 13-24.
    [80]郭建宁,卢少勇,金相灿,等.低溶解氧状态下河网区不同类型沉积物的氮释放汇率[J].环境科学学报, 2010, 30(3): 614-620.
    [81]徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报, 2004, 24(12): 2907-2914.
    [82]付春平,钟成华,邓春光. pH与三峡库区底泥氮磷释放关系的试验[J].重庆大学学报, 2004, 27(10): 125-127.
    [83]刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中NH4+释放的影响研究[J].上海环境科学, 2002, 21(5): 271-274.
    [84]陈国永,杨振波,马昱,等.实验条件下氮、磷对微囊藻毒素产生的影响[J].卫生研究, 2008, 37(2): 147-150.
    [85]潘晓洁,常锋毅,沈银武,等.滇池水体中微囊藻毒素含量变化与环境因子的相关性研究[J].湖泊科学, 2006, 18(6): 572-578.
    [86] Chen X G, Yang X, Yang L L, et al. An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments [J]. Water Research, 2010, 44(6): 1884-1892.
    [87]徐立红,陈加平.活体及离体条件下微囊藻毒素对鱼蛋白磷酸酶的抑制作用[J].中国环境科学, 1998, 18(5): 391-393.
    [88]王昊,徐立红.微囊藻毒素研究的当前进展和未来方向[J].水生生物学报, 2011, 35(3): 504-515.
    [89]刘成,高乃云,董秉直,等.氯对粉未活性炭吸附微囊藻毒素能力的影响[J].环境科学, 2007, 28(5): 997-1000.
    [90] Kim M K, Cho J Y, Lim H S, et al. Effect of the CYP2D6 genotype on the pharamaeokinetics of tropisetron in healthy Korea Subieets [J]. European Journal of Glinical Pharmacology, 2003, 59(2): 111-116.
    [91]张可佳,高乃云,殷娣娣,等.臭氧氧化降解微囊藻毒-LR的动力学研究[J].同济大学学报(自然科学版), 2009, 37(7): 919-924.
    [92]缪恒锋,陶文沂,张信华,等.铜绿微囊藻臭氧化以及藻毒素去除研究[J].安徽农业科学, 2008, 36(5): 1730-1746.
    [93]马宁,雷庆铎,陈志冉.高锰酸钾氧化池塘藻毒素的研究[J].水生态学杂志, 2008, 1(2): 28-30.
    [94] Tsuji Kiyomi, Watanuki Tomohiko, Kondo Fumio, et al. Stability of microcystins from cyanobacteria:Ⅳ. Effect of chlorination on decomposition [J]. Toxicon, 1997, 35(7): 1033-1041.
    [95] Figuiredo D, Daniela, Azeiteiro U M, et a1. Microcystin-producing blooms-a serious global public health issue [J]. Ecotoxicology and Environmental Safety, 2004, 59(2): 151-163.
    [96]钟理,詹怀宇.高级氧化技术在废水处理中应用研究进展[J].上海环境科学, 2000, 19(12): 568-571.
    [97] Gajdek Piotr. Decomposition of microcystin-LR by fenton oxidation [J]. Toxicon, 2001, 39(10): 1575-1578.
    [98] Lin K D, Yuan D X, Chen M, et al. Kinetics and products of photo-fenton degradation of triazophos [J]. Journal of Agricultural and Food Chemistry, 2004, 52(25): 7614-7620.
    [99] Bandala E R, Martinez D, Martinez E, et al. Degradation of microcystin-LR toxin by fenton and Photo-fenton processes [J]. Toxicon, 2004, 43(7): 829-832.
    [100]李伟英,张明,陈玲,等.紫外线对微囊藻毒素-RR降解动力学拟合[J].同济大学学报(自然科学版), 2009, 37(7): 925-928.
    [101] Shephard G S, Skockenstrom S, Villiers D D, et al. Photocatalytic degradation of cyanobacterial microcystin toxin in water [J]. Toxicon, 1998, 36(12): 1895-1901.
    [102]陈娟,陈灏.镧负载改性TiO2太阳光催化降解微囊藻毒素的研究[J].环境工程学报, 2008, 2(7): 886-890.
    [103]苑宝玲,陈一萍,李艳波,等. Fenton催化氧化降解藻毒素MCLR的效能研究[J].环境科学学报, 2005, 25(7): 925-929.
    [104] Bachmann R W, Hoyer M V, JeCanfiled D E.The potential for wave disturbance in shallow Florida lakes [J]. Journal of Lake and Reservoir Manage, 2000, 16(4): 281-291.
    [105]杨会利,袁振杰,高伟明.七里海泻湖湿地演变过程及其生态环境效应分析[J].湿地科学, 2009, 7(2): 118-124.
    [106]龚子同,陈志诚.中国土壤系统分类参比[J].土壤, 1999, 2: 57-63.
    [107]邓大鹏,刘刚,李学德,等.湖泊富营养化综合评价的坡度加权评分法[J].环境科学学报, 2006, 26(8): 1386-1392.
    [108]彭士涛,赵益栋,张光玉,等.七里海湿地生物多样性现状及其保护对策[J].水道港口, 2009, 30(2): 135-138.
    [109]王祖伟,刘明舵,李兆江,等.七里海湿地环境生态系统退化与修复[J].水土保持研究, 2005, 12(5): 244-247.
    [110]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准[J].中国环境监测, 2002, 18(5): 47-49.
    [111]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002, 227-380.
    [112]黄祥飞,陈伟民,蔡启铭.湖泊生态调查观测与分析[M].北京:中国标准出版社, 2000, 127-200.
    [113]李卓,汪雁,孔瑾.土壤氧化还原电位测定方法的探讨与研究[J].环境科学与管理, 2008, 33(10): 172-175.
    [114]马星竹.长期施肥土壤的FDA水解酶活性[J].浙江大学学报(农业与生命科学版), 2010, 36 (4): 451-455.
    [115]金相灿.中国湖泊水库环境调查研究(1980-1985)[M].北京:中国环境科学出版社, 1990, 56-60.
    [116]黎文,白英臣,王立英,等.淡水湖泊水体中溶解有机氮测定方法的对比[J].湖泊科学, 2006, 18(1): 63-68.
    [117]王亮,王朝义,潘秀,等.酚二磺酸分光光度法测定叶菜类硝酸盐含量[J].温州农业科技, 2006, 3: 21-23.
    [118]国家环保部, GB-7479-87,《水质铵的测定-纳氏试剂比色法》,北京:中国标准出版社, 1987.
    [119]孙兰,胡毅志.游泳池水中尿素的测定-二乙酰一肟一硫氨脲分光光度法[J].环境与健康杂志, 1995, 12(4): 176-178.
    [120]侯松嵋,孙敬,何红波,等. AQC-柱前衍生反相高效液相色谱法测定土壤中氨基酸[J].分析化学研究报告, 2006, 34(10): 1395-1400.
    [121]刘延美,刘小虎.土壤酸水解氨基酸和氨基糖态氮测定方法的比较研究[J].吉林农业科学, 2010, 35(2): 19-23.
    [122] Cohen S A, Michaud D P. Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography [J]. Analytical Biochemistry, 1993, 211(2): 279-287.
    [123]国家环保部, GB3838-2002,《中华人民共和国地表水环境质量标准》,北京:中国标准出版社, 2002.
    [124]朱擎,解鑫,姚志鹏,等.全国地表水水质月报(2009年)[M].北京:中国环境监测总站, 2009.
    [125]封克,钱晓晴,汤炎,等.矿物固铵能力对铵离子在土壤中转化的影响:旱作条件下不同阳离子对矿物固铵与释铵的影响[J].江苏农学院学报, 1994, 4(5): 407-412.
    [126] Scherer H W, Zhang Y S. Studies on the mechanisms of fixation and release of ammonium in paddy soils after flooding: effect of iron oxides on ammonium fixation [J]. Journal of Plant Nutrition and Soil Science, 1999, 162(6): 593-597.
    [127]吴光红,朱兆洲,刘二保,等.天津城市排污河道沉积物中重金属含量及分布特征[J].环境科学, 2008, 29(4): 413-420.
    [128]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学, 2002, 14(4): 301-309.
    [129]孙庆业,马秀玲,阳贵德,等.巢湖周围池塘氮、磷和有机质研究[J].环境科学, 2010, 31(7): 1510-1515.
    [130] Susan M H. Early diagenesis of organic matter in marine sediments: progress and perplexity [J]. Marine Chemistry, 1992, 39(1-3): 119-149.
    [131] Haake B, Ittekkot V, Honjo S, et al. Amino acid, hexosamine and carbohydrate fluxes to the deep Subarctic Pacific (Station P) [J]. Deep Sea Research (Part I Oceanographic Research Papers), 1993, 40(3): 547-560.
    [132] Handa N, Tominaga H. A detailed analysis of carbonhydrate in marine particulate matter [J]. Marine Biology, 1969, 2(3): 228-235.
    [133] Babu K N, Ouseph P P, Padmalal D. Interstitial water-sediment geochemistry of N, P and Fe and its response to overlying waters of tropical estuaries: a case from the suthwest coast of India [J]. Environmental Geology, 2000, 39(6): 633-640.
    [134]杨文强.统计学-科学与工程应用[M].北京:清华大学出版社, 2007, 58-74.
    [135]王圣端,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J].环境科学学报, 2008, 28(1): 37-43.
    [136] Flindt M R, Pardal M A, Lilleboe A I, et al. Nutrient cyaling and plant dynamics in estuaries: A briefreview [J]. International Journal of Ecology, 1999, 20(4): 237-248.
    [137]宋金明,李鹏程.南沙群岛海域沉积物-海水界面间的营养质的扩散通量[J].海洋科学, 1996, 20(5): 43-50.
    [138] Noel R U, Christian D. Solute transfer across the sediment surface of a eutrophic lake: I. Pore water profiles from dislysis sampler [J]. Aquatic Sciences, 1997, 59(1): 1-8.
    [139]李文红,陈英旭,孙建平.不同溶解氧水平对控制底泥向上覆水体释放污染物的影响研究[J].农业环境科学学报, 2003, 22(2): 170-173.
    [140]陈后合,孔健健,王淑贤.深水型湖泊底泥NH4+-N释放的环境因子影响实验研究[J].环境科学与与管理, 2006, 31(7): 57-60.
    [141] Wetzel R G. Limnology, lake and river ecosytems (Third Edition) [M]. London: Academy Press, 2001, 245-260.
    [142]王晓蓉,华姚哲,徐菱,等.环境条件变化对太湖沉积物磷释放的影响[J].环境化学, 1996, 15(1): 15-19.
    [143] Mortimer C H. The exchange of dissolved substance between mud and water in lakes [J]. International of Ecology, 1941, 29(2): 280-329.
    [144] Berner R A. Early diagenesis: a theoretical approach [M]. Princeton: Princeton University Press, 1980.
    [145]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学, 2003, 21(1) : 48-54.
    [146]李辉,潘学军,石丽琼,等.湖泊内源氮磷污染分析方法及特征研究进展[J].环境化学, 2011, 30(1): 281-292.
    [147]于军亭,张帅,张志斌,等.环境因子对浅水湖泊沉积物中氮释放的影响[J].山东建筑大学学报, 2010, 25(1): 58-61.
    [148]姜爱霞.水环境氮污染的机理和防治对策[J].中国人口·资源与环境, 2000, 10(1): 75-76.
    [149]秦伯强,朱广伟,张路,等.大型浅水湖泊沉积物内源营养盐释放模式及其估算方法-以太湖为例[J].中国科学D辑地球科学, 2005(增刊Ⅱ): 33-44.
    [150]孙英,何江,吕昌伟,等.岱海表层沉积物中影响氨氮释放的模拟研究[J].农业环境科学学报, 2009, 28(7): 1464-1468.
    [151]吴群河,曾学云,黄钥.溶解氧对河流底泥中三氮释放的影响[J].环境污染与防治, 2005, 27(1): 88-97.
    [152]陈建芳,张海生,金海燕,等.北极陆架沉积碳埋藏及其在全球碳循环中的作用[J].极地研究, 2004, 16(3): 193-201.
    [153] Dauwe B, Middelburg J J. Amino acids and hexosamines asindicators of organic matter degradation state in North Sea sediments [J]. Limnology and Oceanography, 1998, 43(5): 782-798.
    [154] Cowie G L, Hedges J I. Sources and reactivities of amino acids in a coastal marine environment [J]. Limnology and Oceanography, 1992, 37(4): 703-724.
    [155] Barker H A. Amino acid degradation by anaerobic bacteria [J]. Annual Review of Biochemistry, 1981, 50: 23-40.
    [156]岳维忠,黄小平.珠江口柱状沉积物中氮的形态分布特征及来源探讨[J].环境科学, 2005, 26(2): 195-199.
    [157] Ogilvie B, Nedwell D B, et al. High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary (United Kingdom) [J]. Marine Ecology Progress Series, 1997, 150(1-3): 217-228.
    [158]张威,何红波,解宏图,等.东北黑土氨基糖的矿化动态及其对外源物质添加的响应[J].应用生态学报, 2010, 21(10): 2593-2598.
    [159] Engelking B, Flessa H, Joergensen R G.Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil [J]. Soil Biology and Biochemistry, 2007, 39(8): 2111-2118.
    [160] Zhang X, Amelung W, Yuan Y, et al. Amino sugar signature of particle size fractions in soils of the native prairie as affected by climate [J]. Soil Science, 1998, 163(3): 220-229.
    [161]郑利,谢平,林匡飞,等.武汉莲花湖微囊藻毒素含量变化特征及其影响因素的研究[J].农业环境科学学报, 2004, 23(6): 1053-1057.
    [162]施玮,朱惠刚.微囊藻毒素毒理学研究综述[J].上海环境科学, 2000, 19(2): 82-86.
    [163] Haider S, Naithani V, Viswanathan P N, et al. Cyanobacterial toxins: a growing environment concern [J]. Chemosphere, 2003, 52(1): 1-21.
    [164] Jacoby J M, Collier D C, Eugene B W, et al. Environmental factors associated with a toxic bloom of Microcystis aeruginosa [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000, 57(1): 231-240.
    [165] Orr P T, Jones G J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aerguginosa cultures [J]. Limnology and Oceanography, 1998, 43(7): 1604-1614.
    [166]郑杰,黄显怀,尚巍,等.不同氮磷比对藻类生长及水环境因子的影响[J].工业用水与废水, 2011, 42(1): 12-16.
    [167]乐毅全,王士芬.环境微生物学[M].北京:化学工业出版社, 2005, 94-111.
    [168] Wang J X, Xie P, Guo N C. Effects of nonylphenol on the growth and microcystin production of Microcystis strains [J]. Environmental Research, 2007, 103(1): 70-78.
    [169] Davis T W, Berry D L, Boyer G L, et al. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteria blooms [J]. Harmful Algae, 2009, 8(5): 715-725.
    [170]刘春光,金相灿,孙凌,等.不同氮源和曝气方式对淡水藻类生长的影响[J].环境科学, 2006, 27(1): 101-104.
    [171]邱保胜,刘其芳.两生红球藻培养基的改良[J].水生生物学报, 1999, 23(1): 391-394.
    [172]陈德辉,刘永定.微囊藻和栅藻共培养实验及其竞争参数的计算[J].生态学报, 1999, 19(6): 908-913.
    [173] Liu I, Lawton L A, Robertson P J. Mechanistic studies of the photocatalytic oxidation of microcystin-LR: an investigation of byproducts of the decomposition process [J]. Environmental Science and Technology, 2003, 37(14): 3214-3219.
    [174] Liu I, Lawton L A, Cornish B, et al. Mechanistic and toxicity studies of the photocatalytic oxidation of microcystin-LR [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148: 349-354.
    [175] Antoniou M, Shoemaker J, Cruz A D, et al. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR [J]. Environmental Science and Technology, 2008, 42(1-3): 8877-8883.
    [176] Song C, Gao H W. Transmembrane transport of microcystin to danio rerio zygotes: insights into the developmental toxicity of environmental contaminants [J]. Toxicological Sciences, 2011, 122(2): 395-405.
    [177] Miguel P, Cruz A D, O’Shea K, et al. Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst [J]. Water Research, 2011, 45(12): 3787-3796.
    [178]陈晓国,肖邦定,徐小清,等.不同波段紫外光对微囊藻毒素光降解的影响[J].中国环境科学, 2004, 24(1): 1-5.
    [179]鲁金凤,郭文娟,郭晓燕,等.高级氧化技术降解微囊藻毒素的研究进展[J].水处理技术, 2010, 36(4): 14-19.
    [180]黎雷,高乃云,殷娣娣,等.一种改进的高级氧化工艺降解微囊藻毒素动力学模型[J].环境科学, 2009, 30(4): 1050-1054.
    [181]乔瑞平,漆新华,孙承林,等. Fenton试剂氧化降解微囊藻毒素-LR[J].环境化学, 2007, 26(5): 614-617.
    [182]欧桦瑟,高乃云,隋铭皓,等.超声辐照降解MC-RR动力学的影响因素[J].中南大学学报(自然科学版), 2010, 41(2): 784-792.
    [183] Fang Y F, Huang Y F, Yang J, et al. Unique ability of BiOBR to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water [J]. Environmental Science and Technology, 2011, 45(4): 1593-1600.
    [184] Yuan X Z, Shi X H, Zhang D L, et al. Biogas production and microcystin biodegradation in anaerobic digestion of blue algae [J]. Energy and Environmental Science, 2011, 4(4): 1511-1515.
    [185] Hudder A, Song W H, O'Shea K E, et al. Toxicogenomic evaluation of microcystin-LR treated with ultrasonic irradiation [J]. Toxicology and Applied Pharmacology, 2007, 220(3): 357-364.
    [186] Zhang G M, Zhang P Y, Fan M B. Ultrasound-enhanced coagulation for microcystis aeruginosa removal [J]. Ultrasonics Sonochemistry, 2009, 16(3): 334-338.
    [187] Zhang G M, Zhang P Y, Wang B, et al. Ultrasonic frequency effects on the removal of Microcystis aeruginosa [J]. Ultrasonics Sonochemistry, 2006, 13(5): 446-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700