用户名: 密码: 验证码:
着陆水下自航行器外形设计与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下自航行器是一种无人无缆水下自主航行器,可以进行多种海洋参数的测量,其在海洋环境监测领域和海洋资源开发领域的应用前景愈加广阔。但由于携带的能源有限,水下自航行器难以完成长期的海洋测量任务。由于具有水下着陆坐底功能,可着陆水下自航行器可以执行长时间、大航程的水下测量任务,获得长时序海洋监测数据。为了实现着陆坐底功能,航行器外形结构采用主体与多个附体相组合方式。与传统的流线形细长体水下自航行器相比,其外形与附体结构更为复杂。为了实现其功能要求,本文以降低阻力、并保持操纵性为目的,在参考现有水下自航行器的设计方案基础上,对航行器的外形进行了设计与优化。
     本文的主要研究成果如下:
     1.对可着陆水下自航行器外形与布局进行了设计。采用了细长体主舱+两个压载水舱的总体布局形式,主舱和压载水舱由挂接支架连接,并采用十字形全动舵布局,推进器布置于航行器尾部。
     2.应用计算流体力学(CFD)的方法,对航行器主体线形进行了优化。分别研究了不同雷诺数、头尾线形、尾部长度、长径比对阻力的影响,得到结论如下:AUV的航行速度一般比较低,在其速度范围内阻力系数随速度变化很显著,所以仿真时需要特别强调其动力相似的条件;为了减小阻力,航行体头尾线形曲率变化应尽量小;尾部长度的变化也会对阻力产生影响,尾部长度越长,阻力越小;在满足航行体容积一定的条件下,在一定范围内,长径比越大,阻力越小。基于以上研究结论,本文对航行体主体进行了减小阻力的优化设计。
     3.在整体布局优化中,采用了NACA流线线形设计了舵、桅杆和压载水舱挂接支架的截面,以减小阻力。同时,尽量减小四个舵的舵截面厚度。对于桅杆和挂接支架的线形,在考虑其功能的基础上,进行了优化。在航行器整体布局中,使挂接支架和GPS天线桅杆保持一定后掠角来降低阻力,并对CTD传感器的安装位置进行了优化分析。
     CFD仿真结果证明,优化后的水下自航行器的阻力减小了37%,达到了优化目的。
AUV (Autonomous Underwater Vehicle) with the capability of landing on the seafloor is one kind of unmanned and untethered underwater vehicle which can fulfill oceanographic environment survey,and it has become an intense area of oceanic research because of their emerging applications in oceanographic survey. However, long-term marine environment measuring is impractical for available AUVs because the energy storage is limited. It is useful to develop the variable buoyancy AUV with the capacity of landing on the seafloor and bottom-sitting for an extended measuring period. Because of more attached bodies, the new AUV developed in the thesis is more complicated than conventional AUVs in shape and construction. In this thesis, a low cost modular AUV with the capacity of landing is developed and optimized to reduce drag and get effective maneuverability.
     The main contributions of the thesis are summarized as follows:
     1. The hull form and structure of the AUV with the capacity of landing are designed in this thesis, there are one main cabin and two ballasts for achieving main functions, and four rudders are used as control plane, and a thruster is laid at the aft part of the AUV. The main cabin and two ballasts are connected by four support frames.
     2. Applying Computational Fluid Dynamics (CFD) method, the hull form of the main cabin is optimized. One kind of typical hull form is chosen to study the drag characteristic of the AUV with low speed and the results are summarized as follows:The drag coefficient of the AUV is varied with its speed greatly,so it is very important to emphasize the dynamic similarity; The change of the curvature along streamline shape of the head and tail should be kept small to reduce drag; the longer the tail is,the less drag is; When the volume is kept constant, the bigger slenderness ratio is, the less drag is. Based on these conclusions,the cabin is optimized to reduce drag.
     3. In this thesis,thickness of the rudders are changed smaller than conventional design, and configuration of support frame are modified simple. As to the shape of support frame and GPS backstay are designed to keep a swept–back angle to reduce drag. The installed position of CTD sensor is also optimized.
     The result of CFD simulating indicates that the purpose of reducing drag has been achieved and the drag of the optimized AUV is decreased by 37 percent.
引文
[1]蒋新松,封锡盛,王棣棠,水下机器人,沈阳:辽宁科学技术出版社,2000,1~3,225~226
    [2]朱光文,提升国家海洋技术总体实力推进我国海洋强国建设,海洋技术,2002,21(1):4~6
    [3]封锡盛,从有缆遥控水下机器人到自治水下机器人,中国工程科学,2000,2(12):29~33
    [4]朱继懋,潜水器设计,上海:上海交通大学出版社,1992
    [5]陈建平,发展我国载人深潜器的几点思考,机器人技术与应用,2001,2:33~36
    [6]李锡群,王志华,无人水下航行器(UUV)技术综述,船电技术,2003,6:12~15
    [7]朱克强,带缆遥控潜水器系统分析简介,中外船舶科技,2001,4:1~2
    [8] Kaharl V. A.,Water baby:the story of Alvin,Oxford University Press,1990
    [9]程斐,陈建平,张良,日本海洋科学技术中心技术发展现状,海洋工程,2002,20(1):98~102
    [10]卫民,方卓舟,俄深海高技术研究动向,全球科技经济瞭望,2000,(5):26~27
    [11]The submersible capable of exploring 97% of the world's ocean floors,online available at: http://www.ifremer.fr/fleet/systemes_sm/engins/nautile.htm
    [12] Aoki T.,Murashima T.,Tsukioka S.,et al,Development of deep sea free swiming ROV "UROV7K",OCEANS'99,1999,1307~1311
    [13]International Submarine Engineering Ltd , online available at: http://www.ise.bc.ca/
    [14]桑恩方,庞永杰,卞红雨,水下机器人技术,机器人技术与应用,2003,(3):8~13
    [15]李锡群,王志华,无人水下航行器(UUV)技术综述,船电技术,2003,(6):12~15
    [16]Nguyen B.,Hopkin D.,Modeling autonomous underwater vehicle (AUV) operations in mine hunting,Oceans 2005-Europe,Brest,France2005,533~538
    [17]Smith S. M.,Dunn S. E.,The Ocean Voyager II: an AUV designed for coastaloceanography,Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology,1994,7:139~147
    [18]Damus R.,Manley J.,Desset S.,et al,Design of an inspection class autonomous underwater vehicle,Oceans '02 MTS/IEEE,2002,1:180~185
    [19]Von A. C.,Allen B.,Austin T.,et al,Remote environmental measuring units, utonomous underwater vehicle technology,Proceedings of the 1994 Symposium on AUV,1994,3:13~19
    [20]Allen B.,Stokey R.,Austin T.,REMUS: a small, low cost AUV; system description, field trials and performance results,OCEANS '97 MTS/IEEE Conference Proceedings,1997,2:994~1000
    [21]Purcell M.,Von A. C.,Allen B.,New capabilities of the REMUS autonomous underwater vehicle,OCEANS 2000 MTS/IEEE Conference and Exhibition,2000,1:147~151
    [22]Stokey R.,Purcell M.,Forrester N.,et al,A docking system for REMUS:an autonomous underwater vehicle,OCEANS '97. MTS/IEEE Conference Proceedings,1997,2:1132~1136
    [23]Crimmins D.,Deacutis C.,Hinchey E.,et al,Use of a long endurance solar powered autonomous underwater vehicle (SAUV II) to measure dissolved oxygen concentrations in Greenwich Bay,Oceans 2005 - Europe,Rhode Island, U.S.A2005,2:896~901
    [24]Kondo H.,Maki T.,Ura T.,et al,Observation of breakwaters and their rock mound by AUV "Tri-Dog1" at Kamaishi bay,Oceans 2005 - Europe,2005,1:585~590
    [25]Thorleifson J. M.,Davies T. C.,Black M. R.,et al,The Theseus autonomous underwater vehicle: a Canadian success story,MTS/IEEE Conference Proceedings of OCEANS,1997,2:1001~1006
    [26]Butler B.,Den H. V.,Theseus: a cable-laying AUV, Engineering in Harmony with Ocean,Proceedings of OCEANS,1993,1:1210~1213
    [27]国外自主式水下航行体( AUV )研发现状比较,http://www.zjship.com.cn/news/NewsDetail.asp?NewsID=146
    [28]Collar P. G.,Mcphail S. D.,Autosub: an autonomous unmanned submersible for ocean data collection,Electronics & Communication Engineering Journal,1995,7(5):105~114
    [29]桑恩方,庞永杰,卞红雨,水下机器人技术,机器人技术与应用,2003,(3):8~13
    [30]Ian James Poter,A Systematic Experimental and Analytical In vestigation of the Autonomous Underwater Vehicle Design Process with particular regard to Po wer System Integration,PhD dissertation,C ALGARY, ALBERTA,1997
    [31] Aage,C.; Wagner Smit,L.,Hydrodynamic maneuverability data of a flatfish Type AUV,OCEANS 94.Oceans Engineering for Today's Technology and Tomorrow's Preservation.Proceedings,1994,vol.3 ,425-430
    [32]温秉权,小型浅水域水下自航行器系统设计与实验研究,博士学位论文,天津大学,2005
    [33]Timothy Prestero,Verification of a Six-Degree of Freedom Simulation Modelfor the REMUS Autonomous Underwater Vehicle. Master dissertation, MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODSHOLE O CEANOGRAPHIC INSTITUTION,2001
    [34]张宏伟,可着陆水下自航行器系统设计与动力学行为研究,博士学位论文,天津大学,2006
    [35]何漫丽,水下自航行器水动力学特性数值计算与试验研究,博士学位论文,天津大学,2006
    [36]徐宣志等,鱼雷力学,北京:国防工业出版社,1992
    [37]王福军,计算流体动力学分析—CFD软件原理与应用,北京:清华大学出版社,2004
    [38]朱珉虎等,江苏船舶,1994,33~35
    [39]封锡盛,刘永宽,自治水下机器人研究开发的现状和趋势,高技术通讯,1999,13(9):55~59
    [40]Wang D.,Kang S.,Guan Y.,et al,A launch and recovery system for an autonomous underwater vehicle "Explorer",Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology,1992,1:279~281

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700