用户名: 密码: 验证码:
光诱导活性C-H、C-C键的定向转化和无机催化材料表面结构重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于催化反应一般发生在催化剂的表面,因此,催化材料的表面性质直接决定了其活性、选择性、稳定性等催化性能。纳米催化材料近几十年来发展迅猛,在诸多研究领域已经崭露头角,尤其在C-H和C-C键活化方面有着特殊的应用。本文的研究思路将按下述几个方向进行。
     首先,在第二章中,我们利用纳米介孔Ti02材料在可见光激发下,将含活性C-H键的苯甲醇分子高效定向转化为苯甲醛。Ti02本身只能被紫外光激发才能发生光化学反应,但是经研究我们发现苯甲醇的分子轨道可以和Ti02晶体中的O2p轨道发生杂化,在禁带中引入施主能级,从而缩减了Ti02的禁带宽度。可见光激发可以诱导施主能级的电子向Ti02导带发生跃迁,产生空穴-电子对。空穴可以直接氧化吸附在Ti02表面的苯甲醇,生成苯甲醛。由于苯甲醛分子和Ti02作用不稳定,易于脱离表面变成自由分子,从而使得Ti02禁带间的施主能级消失。也就是说,Ti02在可见光照射下将会停止产生空穴。这样的空穴生成可控的反应体系,我们将之定义为自调节光氧化系统。
     在第三章,我们发现通过在无氧条件下,可见光驱动的苯甲醇定向氧化脱氢反应可以重构介孔Ti02的表面,人为制造出大量的表面氧空位以及在晶格氧上接枝氢原子,这样的改性使得Ti02表面层的禁带宽度减小,成为可见光催化剂。这类表面重构Ti02催化材料由于在接近导带位置处产生了新的受主能级,因此在可见光下表现出了一定的光氧化和还原能力。
     在第四章,通过紫外光诱导的光化学反应法,我们发现乙腈分子中的C-C键可以被活性氧物种打断,生成CN自由基。这些活泼的CN自由基可以直接加成反应体系中的Au和其它过渡金属原子,生成AuCN等氰化物。这是一种新型绿色的自由基氰化法,有望取代传统的山埃氰化冶金法。我们利用这类氰化物进行水杨醛和苯乙炔环化制备异黄烷酮的有机催化,在较低的反应温度下,即表现出了相对优异的催化活性。
     在第五章,我们利用改进的光诱导氰化法,采用H202作为活性氧物种引发剂进攻乙腈分子,生成大量CN自由基,来制备氰化金属以及对Pt表面进行CN基修饰。这个改进后的方法相对更为绿色而且经济,只需短时间光照即可生成所需金属氰化物以及对Pt表面进行改性。经过CN改性过的Pt/C催化剂在电催化氧还原反应中表现出了抗甲醇中毒效应和一定的稳定性。
     在第六章,我们利用FeCl3-CH3CN简单的络合物,即可在室温条件下高效转化乙醛制乙酸,这个催化过程符合酶催化反应动力学,而且只需调控FeCl3的浓度就能对反应速率进行控制。同时,根据DFT理论计算和实验结果,我们推测反应过程中产生了高活性的铁氧物种。这类铁氧物种在室温下可以将苯甲醇分子定向转化为苯甲醛。
Catalytic reactions usually occur on catalysts surface. Therefore, the catalytic activity, selectivity, and stability of certain catalysts largely depend on their surface properties. Nanocatalysts are special catalysts that have been explored for decades, and they have unique activity for C-H and C-C bond activation and utilization. The present thesis will include the following aspects.
     First, we found that mesoporous TiO2is an efficient photocatalyst for benzyl alcohol selective oxidation into benzaldehyde under visible light irradiation. Usually TiO2can only be activated by UV light, however, due to the hybridization of the molecular orbital of benzyl alcohol with O2p orbital of TiO2, some donor levels can be introduced in the forbidden band, resulting in the narrowing of the band gap. Consequently, electron-hole pairs will be formed on these donor levels with visible light irradiation. The holes are able to oxidize absorbed benzyl alcohols into benzaldehydes, while benzaldehydes have limited interaction with TiO2and they are apt to desorb from TiO2surface. Therefore, the donor levels are disappeared, leading to the pristine band gap intact. The resulting controllable hole generation is thus termed as self-adjustable photo-oxidation system.
     Second, under anaerobic conditions, we found that the surface of TiO2experienced reconstruction during benzyl alcohol oxidation under visible light. Plenty of oxygen vacancies are formed, and hydrogen atoms are grafted onto the surface oxygen atoms, both of which lead to the narrowing of the band gap of TiO2, making itself visible light responsive. The resulting surface reconstructed TiO2has some acceptor levels just below the conduction band, thus it can be served as promising visible light photocatalyst for oxidation and reduction purposes.
     Third, it is found that reactive oxygen species resulted from the UV induced photochemical reaction can be used to break the C-C bond of acetonitrile, generating CN radicals.These radicals are able to react with Au or other transitional metals to form metal cyanides. This method has been demonstrated to be green, versatile and convenient, which potentially can replace the conventional cyaniding strategy. The AuCN oligomers derived from this photocyanation method showed promising catalytic activity during annulation of salicylaldehyde with phenylacetylene to afford isoflavanones.
     Fourth, by employing the similar photocyanation strategy, we used H2O2as a new reactive oxygen species generator to pattern Pt/C electrode with CN groups. The resulting CN patterned Pt/C catalysts hold a much enhanced methanol tolerate ability during oxygen reduction reactions.
     Last, we found that FeCl3-CH3CN complex can be used to efficient oxidation of acetaldehyde into acetic acid at room temperature, which proceeds rather rapidly and follows the enzymatic-like Michaelis-Menten kinetics, ased on the catalytic results, spectro-scopic evidences and successive DFT calculations, a reactant-initiated, putative mononuclear non-heme iron-oxygen complex,[FeCl(MeCN)4(O)]2+, is proposed as the active oxidizing species to conduct the room temperature reaction with relatively high TOF values (~1.2s-1). Finally, the putative iron-oxygen complexes are employed to the selective oxidation of benzyl alcohol under ambient conditions.
引文
1. G. J. P. Britovsek, V. C. Gibson and D. F. Wass, Angew. Chem. Int. Ed.,1999,38,428-447.
    2. J. Dupont, R. F. de Souza and P. A. Z. Suarez, Chem. Rev.,2002,102,3667-3691.
    3. V.C. Gibson and S. K. Spitzmesser, Chem. Rev.,2003,103,283-315.
    4. W. A. Herrmann, Angew. Chem. Int. Ed.,2002,41,1290-1309.
    5. V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew. Chem. Int. Ed.,2002, 41,2596-2598.
    6. R. Sheldon, Chemical Communications,2001,2399-2407.
    7. C. A. Tolman, Chem. Rev.,1977,77,313-348.
    8. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed.,2000,39,3772-3789.
    9. D. Astruc, F. Lu and J. R. Aranzaes, Angew. Chem. Int. Ed.,2005,44,7852-7872.
    10. A. T. Bell, Science,2003,299,1688-1691.
    11. A. Corma, H. Garcia and F. Xamena, Chem. Rev.,2010,110,4606-4655.
    12. A. S. K. Hashmi and G. J. Hutchings, Angew. Chem. Int. Ed.,2006,45,7896-7936.
    13. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    14. L. Q. Ma, C. Abney and W. B. Lin, Chem. Soc. Rev.,2009,38,1248-1256.
    15. M. T. Pope and A. Muller, Angew. Chem. Int. Ed.,1991,30,34-48.
    16. P. Serp, M. Corias and P. Kalck, Applied Catalysis a-General,2003,253,337-358.
    17. C. M. Starks, J. Am. Chem. Soc.,1971,93,195-&.
    18. C. D. Wu, A. Hu, L. Zhang and W. B. Lin, J. Am. Chem. Soc.,2005,127,8940-8941.
    19. O. M. Yaghi, G. M. Li and H. L. Li, Nature,1995,378,703-706.
    20. J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem. Int. Ed.,1999,38,56-77.
    21. H. X. Deng, A. Hentati, J. A. Tainer, Z. Iqbal, A. Cayabyab, W. Y. Hung, E. D. Getzoff, P. Hu, B. Herzfeldt, R. P. Roos, C. Warner, G. Deng, E. Soriano, C. Smyth, H. E. Parge, A. Ahmed, A. D. Roses, R. A. Hallewell, M. A. Pericakvance and T. Siddique, Science,1993,261,1047-1051.
    22. A. M. Klibanov, Nature,2001,409,241-246.
    23. D. R. Knighton, J. H. Zheng, L. F. Teneyck, V. A. Ashford, N. H. Xuong, S. S. Taylor and J. M. Sowadski, Science,1991,253,407-414.
    24. P. Kollman, Chem. Rev.,1993,93,2395-2417.
    25. M. Muramatsu, K. Kinoshita, S. Fagarasan, S. Yamada, Y. Shinkai and T. Honjo, Cell,2000, 102,553-563.
    26. C. M. Pickart, Annual Review of Biochemistry,2001,70,503-533.
    27. D. Picot, P. J. Loll and R. M. Garavito, Nature,1994,367,243-249.
    28. W. L. Smith, D. L. DeWitt and R. M. Garavito, Annual Review of Biochemistry,2000,69, 145-182.
    29. J. Stubbe and W. A. van der Donk, Chem. Rev.,1998,98,705-762.
    30. P. L. Gai, R. Roper and M. G. White, Current Opinion in Solid State & Materials Science, 2002,6,401-406.
    31. S. E. Garcia-Garrido, J. Francos, V. Cadierno, J. M. Basset and V. Polshettiwar, Chemsuschem,2011,4,104-111.
    32. G. Glaspell, H. M. A. Hassan, A. Elzatahry, V. Abdalsayed and M. S. El-Shall, Topics in Catalysis,2008,47,22-31.
    33. G. Glaspell, H. M. A. Hassan, A. Elzatahry, L. Fuoco, N. R. E. Radwan and M. S. El-Shall, J. Phys. Chem. B,2006,110,21387-21393.
    34. J. L. Gole and M. G. White, J. Cataly.,2001,204,249-252.
    35. C. Harding, V. Habibpour, S. Kunz, A. N. S. Farnbacher, U. Heiz, B. Yoon and U. Landman, J. Am. Chem. Soc.,2009,131,538-548.
    36. S. B. Kalidindi and B. R. Jagirdar, Chemsuschem,2012,5,65-75.
    37. U. Landman, B. Yoon, C. Zhang, U. Heiz and M. Arenz, Topics in Catalysis,2007,44, 145-158.
    38. Y. Li, Q.Y. Liu and W. J. Shen, Dalton Transactions,2011,40,5811-5826.
    39. B. J. McIntyre, M. Salmeron and G. A. Somorjai, Science,1994,265,1415-1418.
    40. M. B. Mohamed, K. M. AbouZeid, V. Abdelsayed, A. A. Aljarash and M. S. El-Shall, Acs Nano,2010,4,2766-2772.
    41. R. Narayanan and M. A. El-Sayed, J.Am. Chem. Soc.,2004,126,7194-7195.
    42. R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B,2004,108,5726-5733.
    43. R. Narayanan and M. A. El-Sayed, Langmuir,2005,21,2027-2033.
    44. R. Narayanan, C. Tabor and M. A. El-Sayed, Topics in Catalysis,2008,48,60-74.
    45. S. Polarz, F. Neues, M. W. E. van den Berg, W. Grunert and L. Khodeir, J. Am. Chem. Soc., 2005,127,12028-12034.
    46. K. V. S. Ranganath, J. Kloesges, A. H. Schafer and F. Glorius, Angew. Chem. Int. Ed.,2010, 49,7786-7789.
    47. R. Schlogl and S. B. Abd Hamid, Angew. Chem. Int. Ed.,2004,43,1628-1637.
    48. G. A. Somorjai, H. Frei and J. Y. Park, J. Am. Chem. Soc.,2009,131,16589-16605.
    49. W. L. Xu, J. S. Kong, Y. T. E. Yeh and P. Chen, Nat. Mater.,2008,7,992-996.
    50. K. Philippot and P. Serp, in Nanomaterials in Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA,2013,pp.1-54.
    51. K. M. Bratlie, H. Lee, K. Komvopoulos, P. D. Yang and G. A. Somorjai, Nano Letters,2007, 7,3097-3101.
    52. P. L. J. Gunter, J. W. Niemantsverdriet, F. H. Ribeiro and G. A. Somorjai, Catalysis Reviews-Science and Engineering,1997,39,77-168.
    53. H. Lee, S. E. Habas, S. Kweskin, D. Butcher, G. A. Somorjai and P. D. Yang, Angew. Chem. Int. Ed.,2006,45,7824-7828.
    54. R. Prins, V. H. J. Debeer and G. A. Somorjai, Catalysis Reviews-Science and Engineering, 1989,31,1-41.
    55. H. Song, F. Kim, S. Connor, G. A. Somorjai and P. D. Yang, J. Phys. Chem. B,2005,109, 188-193.
    56. F. Tao, M. E. Grass, Y. W. Zhang, D. R. Butcher, J. R. Renzas, Z. Liu, J. Y. Chung, B. S. Mun, M. Salmeron and G. A. Somorjai, Science,2008,322,932-934.
    57. M. A. Vanhove, R. J. Koestner, P. C. Stair, J. P. Biberian, L. L. Kesmodel, I. Bartos and G. A. Somorjai, Surface Science,1981,103,189-217.
    58. V.I. Savchenko, Kinetics and Catalysis,1990,31,624-636.
    59. G.A. Somorjai, Annual Review of Physical Chemistry,1994,45,721-751.
    60. K. Tanaka, Surface Science,1996,357,721-728.
    61. D. K. Bohme and H. Schwarz, Angew. Chem. Int. Ed.,2005,44,2336-2354.
    62. C. Coperet, M. Chabanas, R. P. Saint-Arroman and J. M. Basset, Angew. Chem. Int. Ed.,2003, 42,156-181.
    63. D. Fiedler, D. H. Leung, R. G. Bergman and K. N. Raymond, Accounts of Chemical Research, 2005,38,349-358.
    64. A. Furstner, Chem. Soc. Rev.,2009,38,3208-3221.
    65. B. H. Li, S. L. Tian, Z. Fang and Z. H. Shi, Angew. Chem. Int. Ed.,2008,47,1115-1118.
    66. B. J. Li, S. D. Yang and Z. J. Shi, Synlett,2008,949-957.
    67. Y. J. Park, J. W. Park and C. H. Jun, Accounts of Chemical Research,2008,41,222-234.
    68. V. Ritleng, C. Sirlin and M. Pfeffer, Chem. Rev.,2002,102,1731-1769.
    69. B. Rybtchinski and D. Milstein, Angew. Chem. Int. Ed.,1999,38,870-883.
    70. T. Satoh and M. Miura, Chem-Eur. J.,2010,16,11212-11222.
    71. D. Schroder and H. Schwarz, Angew. Chem. Int. Ed.,1995,34,1973-1995.
    72. D. M. Adams, L. Brus, C. E. D. Chidsey, S. Creager, C. Creutz, C. R. Kagan, P. V. Kamat, M. Lieberman, S. Lindsay, R. A. Marcus, R. M. Metzger, M. E. Michel-Beyerle, J. R. Miller, M. D. Newton, D. R. Rolison, O. Sankey, K. S. Schanze, J. Yardley and X. Y. Zhu, J. Phys. Chem. B, 2003,107,6668-6697.
    73. H. Y. Chen and J. F. Hartwig, Angew. Chem. Int. Ed.,1999,38,3391-3393.
    74. C. M. Chiang, T. H. Wentzlaff and B. E. Bent, J. Phys. Chem.,1992,96,1836-1848.
    75. A. G. Condie, J. C. Gonzalez-Gomez and C. R. J. Stephenson, J. Am. Chem. Soc.,2010,132, 1464-1465.
    76. U. Diebold, Surface Science Reports,2003,48,53-229.
    77. J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc.,2009,131, 8756-8757.
    78. S. P. Newman and W.Jones, New Journal of Chemistry,1998,22,105-115.
    79. D. A. Nicewicz and D. W. C. MacMillan, Science,2008,322,77-80.
    80. J. Pan, G.Liu, G. M. Lu and H. M. Cheng, Angew. Chem. Int. Ed.,2011,50,2133-2137.
    81. R. G. Salomon, Tetrahedron,1983,39,485-575.
    82. J. W. Tang, Z. G. Zou and J. H. Ye, Angew. Chem. Int. Ed.,2004,43,4463-4466.
    83. S. D. Tilley, M. Cornuz, K. Sivula and M. Gratzel, Angew. Chem. Int. Ed.,2010,49, 6405-6408.
    84. Y. Wang, X. C. Wang and M. Antonietti, Angew. Chem. Int. Ed.,2012,51,68-89.
    85. S. Wendt, P. T. Sprunger, E. Lira, G. K. H. Madsen, Z. S. Li, J. O. Hansen, J. Matthiesen, A. Blekinge-Rasmussen, E. Laegsgaard, B. Hammer and F. Besenbacher, Science,2008,320, 1755-1759.
    86. K. Zeitler, Angew. Chem. Int. Ed.,2009,48,9785-9789.
    87. J. S. Zhang, X. F. Chen, K. Takanabe, K. Maeda, K. Domen, J. D. Epping, X. Z. Fu, M. Antonietti and X. C. Wang, Angew. Chem. Int. Ed.,2010,49,441-444.
    88. A. J. Bard, Journal of Photochemistry,1979,10,59-75.
    89.O. Carp, C. L. Huisman and A. Reller, Progress in Solid State Chemistry,2004,32,33-177.
    90. M. A. Fox and M. T. Dulay, Chem. Rev.,1993,93,341-357.
    91. U. I. Gaya and A. H. Abdullah, Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2008,9,1-12.
    92. J. M. Herrmann, Catalysis Today,1999,53,115-129.
    93. P. V. Kamat, J. Phys. Chem. C,2007,111,2834-2860.
    94. A. L. Linsebigler, G. Q. Lu and J. T. Yates, Chem. Rev.,1995,95,735-758.
    95. M. I. Litter, Applied Catalysis B-Environmental,1999,23,89-114.
    96. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum and W. A. Jacoby, Applied and Environmental Microbiology,1999,65,4094-4098.
    97. A. Mills, R. H. Davies and D. Worsley, Chem. Soc. Rev.,1993,22,417-425.
    98. A. Mills and S. LeHunte, Journal of Photochemistry and Photobiology a-Chemistry,1997, 108,1-35.
    99. M. Ni, M. K. H. Leung, D. Y. C. Leung and K. Sumathy, Renewable & Sustainable Energy Reviews,2007,11,401-425.
    100. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui and M. Matsumura, Applied Catalysis a-General,2004,265,115-121.
    101. T. Ohno, T. Mitsui and M. Matsumura, Chem. Lett.,2003,32,364-365.
    102. B. Ohtani, Y. Ogawa and S. Nishimoto,J. Phys. Chem. B,1997,101,3746-3752.
    103. S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed.,2003,42,4908-4911.
    104.C. Santato, M. Odziemkowski, M. Ulmann and J. Augustynski, J. Am. Chem. Soc.,2001,123, 10639-10649.
    105. V. Subramanian, E. E. Wolf and P. V. Kamat, J. Am. Chem. Soc.,2004,126,4943-4950.
    106. T. Watanabe and K. Honda, J. Phys. Chem.,1982,86,2617-2619.
    107. G. Williams, B. Seger and P. V. Kamat, Acs Nano,2008,2,1487-1491.
    108. X. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science,2011,331,746-750.
    109. R. I. Bickley, T. Gonzalezcarreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, Journal of Solid State Chemistry,1991,92,178-190.
    110.J. K. Burdett, T. Hughbanks, G J. Miller, J. W. Richardson and J. V. Smith, J. Am. Chem. Soc., 1987,109,3639-3646.
    111. G. Z. Chen, D. J. Fray and T. W. Farthing, Nature,2000,407,361-364.
    112. X. Chen and S. S. Mao, Chem. Rev.,2007,107,2891-2959.
    113. F. A. Grant, Reviews of Modern Physics,1959,31,646-674.
    114. P. Hoyer, Langmuir,1996,12,1411-1413.
    115. A. Kay and M. Gratzel, Solar Energy Materials and Solar Cells,1996,44,99-117.
    116. C. Kormann, D. W. Bahnemann and M. R. Hoffmann, J. Phys. Chem.,1988,92,5196-5201.
    117. M. R. Larsen, T. E. Thingholm, O. N. Jensen, P. Roepstorff and T. J. D. Jorgensen, Molecular & Cellular Proteomics,2005,4,873-886.
    118. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara and H. Koinuma, Science,2001,291,854-856.
    119. R. W. Matthews, J. Cataly.,1988,111,264-272.
    120. B. A. Movchan and Demchish.Av, Physics of Metals and Metallography-Ussr,1969,28, 83-&.
    121. Y. Tachibana, J. E. Moser, M. Gratzel, D. R. Klug and J. R. Durrant, J. Phys. Chem.,1996, 100,20056-20062.
    122. L. Liu, P. Y. Yu, X. Chen, S. S. Mao and D. Z. Shen, Physical Review Letters,2013,111, 065505.
    123. H. Ariga, T. Taniike, H. Morikawa, M. Tada, B. K. Min, K. Watanabe, Y. Matsumoto, S. Ikeda, K. Saiki and Y. Iwasawa, J. Am. Chem. Soc.,2009,131,14670-14671.
    124. L. Pan, J.-J. Zou, X. Zhang and L. Wang, J. Am. Chem. Soc.,2011,133,10000-10002.
    125. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt and P. Feng, J. Am. Chem. Soc.,2010,132, 11856-11857.
    126. H. Tada, Q. Jin, H. Nishijima, H. Yamamoto, M. Fujishima, S.-i. Okuoka, T. Hattori, Y. Sumida and H. Kobayashi, Angew. Chem. Int. Ed.,2011,50,3501-3505.
    127. W. Zhao, W. H. Ma, C. C. Chen, J. C. Zhao and Z. G. Shuai, J. Am. Chem. Soc.,2004,126, 4782-4783.
    128. T. R. Gordon, M. Cargnello, T. Paik, F. Mangolini, R. T. Weber, P. Fornasiero and C. B. Murray, J. Am. Chem. Soc.,2012,134,6751-6761.
    129.K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe,J. Am. Chem. Soc.,2008,130,1676-1680.
    130. H. Tada, T. Mitsui, T. Kiyonaga, T. Akita and K. Tanaka, Nat. Mater.,2006,5,782-786.
    131. L. Liu, S. Ouyang and J. Ye, Angew. Chem.,2013,125,6821-6825.
    132. K. Manthiram and A. P. Alivisatos, J. Am. Chem. Soc.,2012,134,3995-3998.
    133.Q. Mi, Y. Ping, Y. Li, B. Cao, B. S. Brunschwig, P. G. Khalifah, G. A. Galli, H. B. Gray and N. S. Lewis, J.Am. Chem. Soc.,2012,134,18318-18324.
    134. M. Filice, M. Marciello, M. D. Morales and J. M. Palomo, Chemical Communications,2013, 49,6876-6878.
    135. R. Narayanan and M. A. El-Sayed, J. Phys. Chem. B,2005,109,12663-12676.
    136. H. Ozay, N. Aktas, Y. Baran, V. T. John and N. Sahiner, Abstracts of Papers of the American Chemical Society,2009,238.
    137. N. Sahiner, Progress in Polymer Science,2013,38,1329-1356.
    138. J. D. Scholten, B. C. Leal and J. Dupont, Acs Catalysis,2012,2,184-200.
    139. S. Senkan, M. Kahn, S. Duan, A. Ly and C. Leidhom, Catalysis Today,2006,117,291-296.
    140. F. Seven, B. Yetiskin, T. Turhan, E. Karacan and N. Sahiner, Abstracts of Papers of the American Chemical Society,2013,245.
    141. X. M. Wang, B. S. Xu, X. G. Liu and H. Ichinose, New Carbon Materials,2004,19,209-213.
    142. N. Yan, C. X. Xiao and Y. Kou, Coordination Chemistry Reviews,2010,254,1179-1218.
    143.Q. Q. Zhuo, Y. Y. Ma, J. Gao, P. P. Zhang, Y. J. Xia, Y. M. Tian, X. X. Sun, J. Zhong and X. H. Sun, Inorg. Chem.,2013,52,3141-3147.
    144. Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science,2003,301,935-938.
    145. Y. Zhai, D. Pierre, R. Si, W. Deng, P. Ferrin, A. U. Nilekar, G. Peng, J. A. Herron, D. C. Bell, H. Saltsburg, M. Mavrikakis and M. Flytzani-Stephanopoulos, Science,2010,329,1633-1636.
    146. C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. Flytzani-Stephanopoulos and H. He, Angew. Chem. Int. Ed.,2012,51,9628-9632.
    147. S. T. Marshall, M. O'Brien, B. Oetter, A. Corpuz, R. M. Richards, D. K. Schwartz and J. W. Medlin, Nat. Mater.,2010,9,853-858.
    148. Y. Li and M. A. El-Sayed, J. Phys. Chem. B,2001,105,8938-8943.
    149. R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc.,2003,125,8340-8347.
    150. K. Paredis, L. K. Ono, F. Behafarid, Z. Zhang, J. C. Yang, A. I. Frenkel and B. R. Cuenya, J. Am. Chem. Soc.,2011,133,13455-13464.
    151. P. Christopher, H. Xin and S. Linic, Nat. Chem.,2011,3,467-472.
    152. P. Wang, B. Huang, X. Qin, X. Zhang, Y. Dai, J. Wei and M.-H. Whangbo, Angew. Chem. Int. Ed.,2008,47,7931-7933.
    153. P. Wang, B. B. Huang, Z. Z. Lou, X. Y. Zhang, X. Y. Qin, Y. Dai, Z. K. Zheng and X. N. Wang, Chem-Eur. J.,2010,16,538-544.
    154. P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei and M. H. Whangbo, Angew. Chem. Int. Ed.,2008,47,7931-7933.
    155. P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai and M. H. Whangbo, Inorg. Chem., 2009,48,10697-10702.
    156. P. Wang, B. B. Huang, Q. Q. Zhang, X. Y. Zhang, X. Y. Qin, Y. Dai, J. Zhan, J. X. Yu, H. X. Liu and Z. Z. Lou, Chem-Eur. J.,2010,16,10042-10047.
    157. P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang and M. H. Whangbo, Chem-Eur. J.,2009,15,1821-1824.
    158. H. F. Cheng, B. B. Huang, P. Wang, Z. Y. Wang, Z. Z. Lou, J. P. Wang, X. Y. Qin, X. Y. Zhang and Y. Dai, Chemical Communications,2011,47,7054-7056.
    159. Z. Z. Lou, B. B. Huang, P. Wang, Z. Y. Wang, X. Y. Qin, X. Y. Zhang, H. F. Cheng, Z. K. Zheng and Y. Dai, Dalton Transactions,2011,40,4104-4110.
    160. P. Wang, B. B. Huang, Y. Dai and M. H. Whangbo, Phys. Chem. Chem. Phys.,2012,14, 9813-9825.
    161. P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, Y. Dai, Z. Y. Wang and Z. Z. Lou, Chemcatchem,2011,3,360-364.
    162. C. Yu, G. Li, S. Kumar, K. Yang and R. Jin, Advanced Materials,2013, n/a-n/a.
    163. X. Chen, H.-Y. Zhu, J.-C. Zhao, Z.-F. Zheng and X.-P. Gao, Angew. Chem. Int. Ed.,2008,47, 5353-5356.
    164. H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie and D. Wang, Chemical Communications,2009,7524-7526.
    165. A. Tanaka, K. Hashimoto and H. Kominami, J. Am. Chem. Soc.,2012,134,14526-14533.
    166.S. K. Cushing, J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D. Bristow and N. Wu, J. Am. Chem. Soc.,2012,134,15033-15041.
    167. A. Marimuthu, J. Zhang and S. Linic, Science,2013,339,1590-1593.
    1. J. I. Kroschwitz, Kirk Othmer Encyclopeida of Chemical Technology, Wiley-Interscience Publications, New York,1992.
    2. T. Mallat and A. Baiker, Chem. Rev.,2004,104,3037-3058.
    3. G. Centi and M. Misono, Catal. Today,1998,41,287-296.
    4. S. Yurdakal, G. Palmisano, V. Loddo, V. Augugliaro and L. Palmisano, J. Am. Chem. Soc., 2008,130,1568-+.
    5. M. A. Zhang, C. C. Chen, W. H. Ma and J. C. Zhao, Angew. Chem. Int. Ed.,2008,47, 9730-9733.
    6. M. Zhang, Q. Wang, C. C. Chen, L. Zang, W. H. Ma and J. C. Zhao, Angew. Chem. Int. Ed., 2009,48,6081-6084.
    7. S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue and Y. Sakata, J. Catal.,2009,266,279-285.
    8. S. Higashimoto, K. Okada, T. Morisugi, M. Azuma, H. Ohue, T. H. Kim, M. Matsuoka and M. Anpo, Top. Catal.,53,578-583.
    9. S. Higashimoto, N. Suetsugu, M. Azuma, H. Ohue and Y. Sakata, J. Catal.,274,76-83.
    10. R. H. Li, H. Kobayashi, J. F. Guo and J. Fan, J. Phys. Chem. C,2011,115,23408-23416.
    11. R. H. Li, H. Kobayashi, J. F. Guo and J. Fan, Chem. Commun.,47,8584-8586.
    12. X. Y. Yang, C. Salzmann, H. H. Shi, H. Z. Wang, M. L. H. Green and T. C. Xiao, J. Phys. Chem. A,2008,112,10784-10789.
    13. K. S. Kim and M. A. Barteau, Surf. Sci.,1989,223,13-32.
    14. J. Fan, S. W. Boettcher and G. D. Stucky, Chem. Mater,2006,18,6391-6396.
    15. J. Fan, Y. H. Dai, Y. L. Li, N. F. Zheng, J. F. Guo, X. Q. Yan and G. D. Stucky, J. Am. Chem. Soc.,2009,131,15568-+.
    16. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys., 1992,64,1045-1097.
    17. V. Milman, B. Winkler, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya and R. H. Nobes, Int. J. Quantum Chem.,2000,77,895-910.
    18. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,1996,77,3865-3868.
    19. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett.,1997,78,1396-1396.
    20. D. Vanderbilt, Phys. Rev. B,1990,41,7892-7895.
    21. J. C. Yu, L. Z. Zhang, Z. Zheng and J. C. Zhao, Chem. Mater.,2003,15,2280-2286.
    22. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science,2001,293,269-271.
    23. Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh and M. Tachiya, J. Am. Chem. Soc., 2006,128,416-417.
    24. A. Kudo and Y. Miseki, Chem. Soc. Rev.,2009,38,253-278.
    25. R. Abe, H. Takami, N. Murakami and B. Ohtani, J. Am. Chem. Soc.,2008,130,7780-+.
    26. D. S. Muggli, J. T. McCue and J. L. Falconer, J. Catal,1998,173,470-483.
    27. S. Klosek and D. Raftery, J. Phys. Chem. B,2001,105,2815-2819.
    28. Y. Shiraishi, N. Saito and T. Hirai, J. Am. Chem. Soc.,2005,127,12820-12822.
    29. G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu and H. M. Cheng, J. Phys. Chem. C,2009,113,21784-21788.
    30. P. C. Angelome, L. Andrini, M. E. Calvo, F. G. Requejo, S. A. Bilmes and G. Soler-Illia, Journal of Physical Chemistry C,2007,111,10886-10893.
    31. D. M. Antonelli and J. Y. Ying, Angewandte Chemie-International Edition in English,1995, 34,2014-2017.
    32. W. Y. Dong, Y. J. Sun, C. W. Lee, W. M. Hua, X. C. Lu, Y. F. Shi, S. C. Zhang, J. M. Chen and D. Y. Zhao, Journal of the American Chemical Society,2007,129,13894-13904.
    33. Y. Sakatani, D. Grosso, L. Nicole, C. Boissiere, G. Soler-Illia and C. Sanchez, Journal of Materials Chemistry,2006,16,77-82.
    34. C. K. Tsung, J. Fan, N. F. Zheng, Q. H. Shi, A. J. Forman, J. F. Wang and G. D. Stucky, Angewandte Chemie-International Edition,2008,47,8682-8686.
    35. J. C. Yu, J. G. Yu and J. C. Zhao, Applied Catalysis B-Environmental,2002,36,31-43.
    36. W. Y. Dong, Y. J. Sun, C. W. Lee, W. M. Hua, X. C. Lu, Y. F. Shi, S. C. Zhang, J. M. Chen and D. Y. Zhao, J. Am. Chem. Soc.,2007,129,13894-13904.
    37. T. Ohno, S. Izumi, K. Fujihara, Y. Masaki and M. Matsumura, J. Phys. Chem. B,2000,104, 6801-6803.
    38. H. Tada, M. Fujishima and H. Kobayashi, Chem. Soc. Rev.,40,4232-4243.
    1. X. Chen and S. S. Mao, Chem. Rev.,2007,107,2891-2959.
    2. X. B. Chen, S. H. Shen, L. J. Guo and S. S. Mao, Chem. Rev.,2010,110,6503-6570.
    3. C. C. Chen, W. H. Ma and J. C. Zhao, Chem. Soc.Rev.,2010,39,4206-4219.
    4. H. Tada, T. Kiyonaga and S. Naya, Chem. Soc. Rev.,2009,38,1849-1858.
    5. H. J. Zhang, G. H. Chen and D. W. Bahnemann, J. Mater. Chem.,2009,19,5089-5121.
    6. A. Hagfeldt and M. Gratzel, Chem. Rev.,1995,95,49-68.
    7. A. Kubacka, M. Fernandez-Garcia and G. Colon, Chem. Rev.,2012,112,1555-1614.
    8. A. Maldotti, A. Molinari and R. Amadelli, Chem. Rev.,2002,102,3811-3836.
    9. D. J. Stacchiola, S. D. Senanayake, P. Liu and J. A. Rodriguez, Chem. Rev.,2013,113, 4373-4390.
    10. T. L. Thompson and J. T. Yates, Chem. Rev.,2006,106,4428-4453.
    11. H. Ariga, T. Taniike, H. Morikawa, M. Tada, B. K. Min, K. Watanabe, Y. Matsumoto, S. Ikeda, K. Saiki and Y. Iwasawa, J. Am. Chem. Soc.,2009,131,14670-+.
    12. H. G. Yu, H. Irie and K. Hashimoto, J. Am. Chem. Soc.,2010,132,6898-+.
    13. X. Q. Qiu, M. Miyauchi, H. G. Yu, H. Irie and K. Hashimoto, J. Am. Chem. Soc.,2010,132, 15259-15267.
    14. X. B. Chen and C. Burda, J. Am. Chem. Soc.,2008,130,5018-+.
    15. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science,2001,293,269-271.
    16. F. Zuo, L. Wang, T. Wu, Z. Y. Zhang, D. Borchardt and P. Y. Feng, J. Am. Chem. Soc.,2010, 132,11856-11857.
    17. X. B. Chen, L. Liu, P. Y. Yu and S. S. Mao, Science,2011,331,746-750.
    18. I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi and A. Figueras, Adv. Mater.,2002,14,1399-1402.
    19. X. Y. Yang, C. Salzmann, H. H. Shi, H. Z. Wang, M. L. H. Green and T. C. Xiao, J. Phys. Chem. A,2008,112,10784-10789.
    20. J. Fan, S. W. Boettcher and G. D. Stucky, Chem. Mater.,2006,18,6391-6396.
    21. S. Higashimoto, N. Kitao, N. Yoshida, T. Sakura, M. Azuma, H. Ohue and Y. Sakata, J. Catal.,2009,266,279-285.
    22. S. Higashimoto, K. Okada, T. Morisugi, M. Azuma, H. Ohue, T. H. Kim, M. Matsuoka and M. Anpo, Top. Catal.,2010,53,578-583.
    23. Unpublished results.
    24. E. L. Quah, J. N. Wilson and H. Idriss, Langmuir,2010,26,6411-6417.
    25. X. J. Tang, Y. Bai, A. Duong, M. T. Smith, L. Y. Li and L. P. Zhang, Environ. Int.,2009,35, 1210-1224.
    26. P. Urizzi, M. C. Monje, J. P. Souchard, A. Abella, J. Chalas, A. Lindenbaum, L. Vergnes, S. Labidalle and F. Nepveu, J. Chim. Phys.-Chim. Biol,1999,96,110-115.
    27. J. H. Stathis and S. T. Pantelides, Phys. Rev. B,1988,37,6579-6582.
    28. M. R. Hoffmann, S. T. Martin, W. Y. Choi and D. W. Bahnemann, Chem. Rev.,1995,95, 69-96.
    1.J. C. F. Johnson, Getting Gold a Practical Treatise for Prospectors, Miners and Students with Illustrations, British Library, Historical Print Editions,2011.
    2. P. Pyykko, Angewandte Chemie-International Edition,2004,43,4412-4456.
    3. A. Rubo, R. Kellens, J. Reddy, N. Steier and W. Hasenpusch, in Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,2000.
    4. X.-B. Wang, Y.-L. Wang, J. Yang, X.-P. Xing, J. Li and L.-S. Wang, J. Am. Chem. Soc.,2009, 131,16368-+.
    5. V. Urban, T. Pretsch and H. Hartl, Angew. Chem. Int. Ed.,2005,44,2794-2797.
    6. S. T. Oyama, J. Gaudet, W. Zhang, D. S. Su and K. K. Bando, Chemcatchem,2,1582-1586.
    7. M. B. Jacobs, P. W. Jagodzinski, T. E. Jones and M. E. Eberhart, Journal of Physical Chemistry C,2011,115,24115-24122.
    8. M. J. Katz, T. Ramnial, H. Z. Yu and D. B. Leznoff, J. Am. Chem. Soc,2008,130, 10662-10673.
    9. Y. Ling, Z. X. Chen, Y. M. Zhou, L. H. Weng and D. Y. Zhao, Crystengcomm,13,1504-1508.
    10. D. S. Marlin, M. M. Olmstead and P. K. Mascharak, Angew. Chem. Int. Ed.,2001,40, 4752-+.
    11. G. Reniers and C. A. Brebbia, Sustainable Chemistry, Computational Mechanics.
    12. Y. Hirata, A. Yada, E. Morita, Y. Nakao, T. Hiyama, M. Ohashi and S. Ogoshi, J. Am. Chem. Soc.,132,10070-10077.
    13. M. R. Grochowski, T. Li, W. W. Brennessel and W. D. Jones, J. Am. Chem. Soc.,132, 12412-12421.
    14. M. Ochiai, H. Hashimoto and H. Tobita, Angewandte Chemie International Edition,2007,46, 8192-8194.
    15. Z. Jiang, Q. Huang, S. Chen, L. Long and X. Zhou, Advanced Synthesis & Catalysis,354, 589-592.
    16. The Flavonoids:advances in research/edited by J.B. Harborne and T.J. Mabry, Chapman and Hall, London; New York:,1982.
    17. R. Skouta and C.-J. Li,Angew. Chem. Int. Ed.,2007,46,1117-1119.
    18. C. Wei and C.-J. Li, J. Am. Chem. Soc.,2003,125,9584-9585.
    19. D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev.,2008,108,3351-3378.
    20. G. Ma, X. Yan, Y. Li, L. Xiao, Z. Huang, Y. Lu and J. Fan, Journal of the American Chemical Society,2010,132,9596-9597.
    21. M. A. Rawashdeh-Omary, M. A. Omary and H. H. Patterson, Journal of the American Chemical Society,2000,122,10371-10380.
    22. Z. Assefa, B. G. McBurnett, R. J. Staples, J. P. Fackler, B. Assmann, K. Angermaier and H. Schmidbaur, Inorganic Chemistry,1995,34,75-83.
    23. K. H. Leung, D. L. Phillips, M. C. Tse, C. M. Che and V. M. Miskowski, Journal of the American Chemical Society,1999,121,4799-4803.
    24. K. Cho, Y. S. Jang, M. S. Gong, K. Kim and S. W. Joo, Appl. Spectrosc.,2002,56, 1147-1151.
    25. B. C. Bal, Autoxidation, International Book Marketing Service Ltd,2011.
    26. S. D. Stan and M. A. Daeschel, Journal of Agricultural and Food Chemistry,2005,53, 4906-4910.
    27. O. V. Zalomaeva, N. N. Trukhan, I. D. Ivanchikova, A. A. Panchenko, E. Roduner, E. P. Talsi, A. B. Sorokin, V. A. Rogov and O. A. Kholdeeva, Journal of Molecular Catalysis a-Chemical, 2007,277,185-192.
    28. A. Molinari, M. Montoncello, H. Rezala and A. Maldotti, Photochemical & Photobiological Sciences,2009,8,613-619.
    29. Y. R. Chen, B. E. Sturgeon, M. R. Gunther and R. P. Mason, Journal of Biological Chemistry, 1999,274,24611-24616.
    30. L. A. Reinke, D. R. Moore and Y. Kotake, Analytical Biochemistry,1996,243,8-14.
    31. T. Miyajima and Y. Kotake, Free Radical Biology and Medicine,1997,22,463-470.
    32. D. Rehorek, J. Salvetter, A. Hantschmann, H. Hennig, Z. Stasicka and A. Chodkowska, Inorganica Chimica Acta,1979,37, L471-L472.
    33. I. G. Namyatov and V. I. Babushok, Combustion Explosion and Shock Waves,1996,32, 270-275.
    34. A. M. Nowicka, U. Hasse, M. Hermes and F. Scholz, Angew. Chem. Int. Ed.,49,1061-1063.
    35. G. Z. Chen, Angew. Chem. Int. Ed.,49,5413-5415.
    36. J. Sa, A. Goguet, S. F. R. Taylor, R. Tiruvalam, C. J. Kiely, M. Nachtegaal, G. J. Hutchings and C. Hardacre, Angew. Chem. Int. Ed.,50,8912-8916.
    37. J. Rodriguez-Fernandez, J. Perez-Juste, P. Mulvaney and L. M. Liz-Marzan, J. Phys. Chem. B, 2005,109,14257-14261.
    38. S. J. Hibble, A. C. Hannon and S. M. Cheyne, Inorganic Chemistry,2003,42,4724-4730.
    39. G. A. Bowmaker, B. J. Kennedy and J. C. Reid, Inorg. Chem.,1998,37,3968-3974.
    40. R. E. Bachman, M. S. Fioritto, S. K. Fetics and T. M. Cocker, Journal of the American Chemical Society,2001,123,5376-5377.
    41. C. A. Bayse, T. P. Brewster and R. D. Pike, Inorg. Chem.,2009,48,174-182.
    42. J. Lefebvre, F. Callaghan, M. J. Katz, J. E. Sonier and D. B. Leznoff, Chemistry-a European Journal,2006,12,6748-6761.
    43. C. F. Shaw, Chem. Rev.,1999,99,2589-2600.
    44. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J. Catal,1989,115,301-309.
    45. M. Comotti, W. C. Li, B. Spliethoff and F. Schuth, J. Am. Chem. Soc.,2006,128,917-924.
    46. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, J. Catal., 1993,144,175-192.
    47. H. Yang, J. Li, J. Yang, Z. Liu, Q. Yang and C. Li, Chem. Commun.,2007,1086-1088.
    48. X. Zhang and A. Conna, Angew. Chem. Int. Ed.,2008,47,4358-4361.
    1. A. T. Bell, Science,2003,299,1688-1691.
    2. G. Prieto, J. Zecevic, H. Friedrich, K. P. de Jong and P. E. de Jongh, Nat. Mater.,2013,12, 34-39.
    3. H. Friedrich, P. E. de Jongh, A. J. Verkleij and K. P. de Jong, Chem. Rev.,2009,109, 1613-1629.
    4. B. C. Gates, Chem. Rev.,1995,95,511-522.
    5. L. N. Lewis, Chem. Rev.,1993,93,2693-2730.
    6. A. Cao and G. Veser, Nat. Mater.,2010,9,75-81.
    7. A. Cao, R. Lu and G. Veser, PCCP,2010,12,13499-13510.
    8. J. L. Lu, B. S. Fu, M. C. Kung, G. M. Xiao, J. W. Elam, H. H. Kung and P. C. Stair, Science, 2012,335,1205-1208.
    9. M. Schrinner, M. Ballauff, Y. Talmon, Y. Kauffmann, J. Thun, M. Moller and J. Breu, Science, 2009,323,617-620.
    10. R. H. Li, H. Kobayashi, J. W. Tong, X. Q. Yan, Y. Tang, S. H. Zou, J. B. Jin, W. Z. Yi and J. Fan, J. Am. Chem. Soc.,2012,134,18286-18294.
    11. S. H. Zou, R. H. Li, H. Kobayashi, J. J. Liu and J. Fan, Chem. Commun.,2013,49, 1906-1908.
    12. X. L. Ji, K. T. Lee, R. Holden, L. Zhang, J. J. Zhang, G. A. Botton, M. Couillard and L. F. Nazar, Nature Chemistry,2010,2,286-293.
    13. Z. X. Wu, Y. Y. Lv, Y. Y. Xia, P. A. Webley and D. Y. Zhao, J. Am. Chem. Soc.,2012,134, 2236-2245.
    14. M. Winter and R. J. Brodd, Chem. Rev.,2004,104,4245-4270.
    15. C. Xu, A. Faghri, X. L. Li and T. Ward, Int. J. Hydrogen Energy,2010,35,1769-1777.
    16. M.Ahmed and I. Dincer,Int.J. Energy Res.,2011,35,1213-1228.
    17. A. S. Hollinger, R. J. Maloney, R. S. Jayashree, D. Natarajan, L. J. Markoski and P. J. A. Kenis, J. Power Sources,2010,195,3523-3528.
    18. C. Xu and T. S. Zhao,J. Power Sources,2007,168,143-153.
    19. J. H. Yang and Y.C. Bae, J. Electrochem. Soc,2008,155, B194-B199.
    20. J. Fennell, D. S. He, A. M. Tanyi, A. J. Logsdail, R. L. Johnston, Z. Y. Li and S. L. Horswell, J. Am. Chem. Soc.,2013,135,6554-6561.
    21. Z. W. Chen, M. Waje, W. Z. Li and Y. S. Yan, Angew. Chem. Int. Ed.,2007,46,4060-4063.
    22. X. M. Ma, H. Meng, M. Cai and P. K. Shen, J. Am. Chem. Soc.,2012,134,1954-1957.
    23. D. L. Wang, H. L. Xin, H. S. Wang, Y. C. Yu, E. Rus, D. A. Muller, F. J. DiSalvo and H. D. Abruna, Chem. Mater.,2012,24,2274-2281.
    24. D. L. Wang, H. L. Xin, Y.C. Yu, H. S. Wang, E. Rus, D. A. Muller and H. D. Abruna, J. Am. Chem. Soc.,2010,132,17664-17666.
    25. D. L. Wang, H. L. L. Xin, R. Hovden, H. S. Wang, Y. C. Yu, D. A. Muller, F. J. DiSalvo and H. D. Abruna, Nat. Mater.,2013,12,81-87.
    26. H. Y. Zhu, S. Zhang, S. J. Guo, D. Su and S. H. Sun, J. Am. Chem. Soc.,2013,135, 7130-7133.
    27. S. J. Guo, D. G. Li, H. Y. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic and S. H. Sun, Angew. Chem. Int. Ed.,2013,52,3465-3468.
    28. S. J. Guo and S. H. Sun, J. Am. Chem. Soc.,2012,134,2492-2495.
    29. J. Kim, Y. Lee and S. H. Sun, J. Am. Chem. Soc.,2010,132,4996-+.
    30. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. F. Wang, P. N. Ross, C. A. Lucas and N. M. Markovic, Science,2007,315,493-497.
    31. M. K. Carpenter, T. E. Moylan, R. S. Kukreja, M. H. Atwan and M. M. Tessema, J. Am. Chem. Soc.,2012,134,8535-8542.
    32. J. B. Wu, J. L. Zhang, Z. M. Peng, S. C. Yang, F. T. Wagner and H. Yang, J. Am. Chem. Soc., 2010,132,4984-+.
    33. X. Q. Huang, E. B. Zhu, Y. Chen, Y. J. Li, C. Y. Chiu, Y. X. Xu, Z. Y. Lin, X. F. Duan and Y. Huang, Adv. Mater.,2013,25,2974-2979.
    34. D. Strmcnik, M. Escudero-Escribano, K. Kodama, V R. Stamenkovic, A. Cuesta and N. M. Markovic, Nature Chemistry,2010,2,880-885.
    35. B. Genorio, D. Strmcnik, R. Subbaraman, D. Tripkovic, G. Karapetrov, V. R. Stamenkovic, S. Pejovnik and N. M. Markovic, Nat. Mater.,2010,9,998-1003.
    36. B. Genorio, R. Subbaraman, D. Strmcnik, D. Tripkovic, V. R. Stamenkovic and N. M. Markovic, Angew. Chem. Int. Ed.,2011,50,5468-5472.
    37. M. Escudero-Escribano, G. J. Soldano, P. Quaino, M. E. Z. Michoff, E. P. M. Leiva, W. Schmickler and A. Cuesta, Electrochim. Acta,2012,82,524-533.
    38. M. Escudero, J. F. Marco and A. Cuesta, J. Phys. Chem. C,2009,113,12340-12344.
    39. A. Cuesta, M. Escudero, B. Lanova and H. Baltruschat, Langmuir,2009,25,6500-6507.
    40. A. Cuesta and M. Escudero, PCCP,2008,10,3628-3634.
    41. A. Cuesta, J. Am. Chem. Soc.,2006,128,13332-13333.
    42. Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science,2003,301,935-938.
    1. Vallari, R.; Pietruszko, R., Human aldehyde dehydrogenase:mechanism of inhibition of disulfiram. Science 1982,216, (4546),637-639.
    2. Que, L.; Ho, R. Y. N., Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem. Rev.1996,96, (7),2607-2624.
    3. Krebs, C.; Fujimori, D. G.; Walsh, C. T.; Bollinger, J. M., Non-heme Fe(IV)-oxo intermediates. Ace. Chem. Res.2007,40, (7),484-492.
    4. Hohenberger, J.; Ray, K.; Meyer, K.., The biology and chemistry of high-valent iron-oxo and iron-nitrido complexes. Nat Commun 2012,3,720.
    5. Nam, W., High-Valent Iron(IV)-oxo Complexes of Heme and Non-Heme Ligands in Oxygenation Reactions. Ace. Chem. Res.2007,40, (7),522-531.
    6. Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Dioxygen Activation at Mononuclear Nonheme Iron Active Sites:Enzymes, Models, and Intermediates. Chem. Rev.2004,104, (2), 939-986.
    7. Abu-Omar, M. M.; Loaiza, A.; Hontzeas, N., Reaction Mechanisms of Mononuclear Non-Heme Iron Oxygenases. Chem. Rev.2005,105, (6),2227-2252.
    8. Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A 1988,38, (6),3098-3100.
    9. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988,37, (2),785-789.
    10. Becke, A. D., A NEW MIXING OF HARTREE-FOCK AND LOCAL DENSITY-FUNCTIONAL THEORIES. J. Chem. Phys.1993,98, (2),1372-1377.
    11. Gill, P. M. W.; Johnson, B. G.; Pople, J. A.; Frisch, M. J., AN INVESTIGATION OF THE PERFORMANCE OF A HYBRID OF HARTREE-FOCK AND DENSITY FUNCTIONAL THEORY. Int. J. Quantum Chem.1992,319-331.
    12. Hay, P. J.; Wadt, W. R., ABINITIO EFFECTIVE CORE POTENTIALS FOR MOLECULAR CALCULATIONS-POTENTIALS FOR THE TRANSITION-METAL ATOMS SC TO HG. J. Chem. Phys.1985,82, (1),270-283.
    13. Dunning, T. H. J.; Hay, P. J. In Modern Theoretical Chemistry; Schaefer, Ⅲ, H. F., Ed.; Plenum Press:New York,1976; p 1-35.
    14. Gaussian 03, Revision B.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.; Hratchian,H.P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev, O.;Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Moth,G. A.;Salvador.P.;Dannenberg,J.J.;Zakrzewski,V G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D,;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V;Cui,Q.; Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.; Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,t.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara,A.; Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.;Gonzalez,C.;Pople,J.A., Gaussian,Inc.,Pittsburgh PA,2003.
    15.Fukui,K.,The path of chemical reactions-the IRC approach.Acc.Chem.Res.1981,14,(12), 363.368.
    16.Gonzalez,C.;Schlegel,H.B.,AN IMPROVED ALGORITHM FOR REACTION-PATH FOLLOWING,J.Chem.Phys.1989,90,(4),2154-2161.
    17.Gonzalez,C.;Schlegel,H.B.,REACTION-PATH FOLLOWING IN MASS-WEIGHTED INTERNAL COORDINATES.Phys.Chem.1990,94,(14),5523-5527.
    18. Chen,M.S.;Goodman,D.W.,The structure of catalytically active gold on titania.Science 2004,306,(5694),252-255.
    19.Johnson,K.A.;Goody,R.S.,The Original Michaelis Constant:Translation of the 1913 Michaelis-Menten Paper.Biochemistry 50,(39),8264.8269.
    20. Abdelrazek,E.M.,Influence of FeCl3 filler on the structure and physical properties of polyethyl一methacrylate films.Physica B-Condensed Matter 2007,400,(1-2),26-32.
    21.Li,R.;Kobayashi,H.;Tong,J.;Yan,X.;Tang,Y.;Zou,S.;Jin,J.;Yi,WvFan,J., Radical-Involved Photosynthesis of AuCN Oligomers from Au Nanoparticles and Acetonitrile J. Am.Chem.Soc.2012,134,(44),18286-18294.
    22.Hong,S.;Lee,YM.;Shin,W.;Fukuzumi,S.;Nam,W.,Dioxygen Activation by Mononuclear Nonheme lron(Ⅱ)Complexes Generates Iron-Oxygen Intermediates in the Presence of an NADH Analogue and Proton.J Am.Chem.Soc.2009,131,(39),13910-+.
    23. Kharat,B.;Deshmukh,V.;Chaudhari,A.,Hydrogen-bonding interactions in acetonitrile oligomlers using density functional theory method.Struct.Chem.2012,23,(3),637.644.
    24. Hathawa y,B.J.;Holah,D.G.,TRANSITION-METAL HALIDE-METHYL CYANIDE COMPLEXES.2. IRON. J. Chem. Soc.1964, (JUL),2408-&.
    25. Kim, S. O.; Sastri, C. V.; Seo, M. S.; Kim, J.; Nam, W., Dioxygen activation and catalytic aerobic oxidation by a mononuclear nonheme iron(Ⅱ) complex. J. Am. Chem. Soc.2005,127, (12), 4178-4179.
    26. Heterogeneous Catalysis. American Chemical Society:1983; p 556.
    27. Mallat, T.; Baiker, A., Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev.2004,104, (6),3037-3058.
    28. Shi, Z.; Zhang, C.; Tang, C.; Jiao, N., Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant. Chem. Soc. Rev.2012,41, (8),3381-3430.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700