用户名: 密码: 验证码:
零价铁还原地下水中硝基芳香化合物的效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,地下水中有机污染物的治理技术取得很大发展,已涵盖物理化学、微生物等学科领域。目前采用的主要方法有原位化学氧化、微生物曝气、井内曝气、多相抽提和渗透反应隔栅等技术。其中渗透反应隔栅技术由于其价格低廉,便于维护,在欧美等发达国家得到广泛应用,已经进入到实际工程阶段,但在我国该项技术却处于起步阶段。作为隔栅的填料介质,零价铁(Zero Valent Iron)具有价格低廉,易于获得,还原效果好等优点,日益受到广泛关注,展现出较为广阔的应用前景。本论文以商用还原铁粉为还原剂,系统地研究了其对硝基芳香化合物(NACs)的还原特性与机理,分析了还原反应动力学,特别针对我国东北地区地下水中铁、锰离子含量高的特点,讨论了水中铁、锰离子和溶解氧对还原的影响,为以零价铁为介质的渗透反应隔栅技术的实际应用奠定了理论基础。
     采用比表面积为3.5697m2/g的商用铁粉,考察了其对硝基苯的还原特性与机理。通过紫外扫描和气质联机,对零价铁还原硝基苯的产物进行了分析,结果表明,还原产物主要为苯胺;对还原过程中总质量的守恒进行了计算,发现在还原过程中存在硝基苯的挥发和苯胺的吸附,并由此造成了质量损失;分别选取pH值为3,5,7,9,12,考查溶液中的pH值对还原反应的影响,检测了还原过程中pH值的变化,发现pH值越低,还原反应越容易发生,还原速率越快;pH值小于7时,随着反应的进行pH值逐渐升高,而pH大于7时,反应过程中pH值变化不明显。选取不同初始浓度(0.127~3.248mmol/L)的硝基苯溶液,考查了初始浓度对还原的影响。经假一级动力学方程对硝基苯还原过程进行拟和,表明在不同pH值和初始浓度下,硝基苯的还原过程都符合假一级动力学模型,其中不同pH值下,苯胺的生成过程符合零级反应。
     考虑到我国东北地区地下水中铁、锰离子含量普遍较高,研究了溶液中的铁、锰离子对还原反应的影响。以硝基苯为污染物,向零价铁还原体系中加入不同浓度的Fe2+、Mn2+,通过气质联机分析还原过程,结果表明,Fe2+的加入可以提高反应速率,但是没有改变反应途径,而Mn2+对还原反应没有显著影响。Fe2+并不是作为反应的主要还原剂,它对反应体系具有缓冲作用。单纯的Fe(OH)2沉淀物对水中的硝基苯不具备还原能力,只有溶液中同时存在Fe2+时还原反应才能发生。溶液中的溶解氧减慢还原反应速率,造成溶液的pH值升高;但是加入Fe2+后,还原速率迅速提高,导致最终硝基苯的还原率只取决于溶液中Fe2+的量。采用X射线衍射和扫描电镜分析铁腐蚀产物,表明铁表面有纤铁矿(γ-FeOOH)生成;有Fe2+存在时,铁氧化物分层,氧化物内部主要成分是磁铁矿(Fe3O4); Fe2+的存在加速Fe0将纤铁矿还原为Fe3O4的反应速率。
     分别选取硝基甲苯和硝基氯苯两大类6个单取代硝基苯,采用紫外全波段扫描和液相色谱,用内标物分析法分析了NACs的还原产物,各取代硝基苯均分别还原为相应的苯胺。对不同初始浓度的NACs进行还原试验研究,发现NACs的浓度随时间延长而不断降低,由其生成的相应的苯胺浓度不断增加,还原过程遵循假一级动力学模型。以4-Cl硝基苯为参考物质,比较了各个NACs的相对速率常数krel ,发现logKrel和其单电子还原电势Eh1’(X-NB)之间存在线性关系,而且邻位取代的化合物反应更快。该现象可以用取代芳烃的邻位效应解释。为比较不同NACs在Fe0表面上的竞争,以4-Cl硝基苯为参考物质,进行了二元混合试验。结果表明,竞争现象明显存在,通过定义竞争系数Qc来量化比较,Qc大小的排列顺序基本上与其Eh1’相关,而与其在溶液中的正辛醇/水分配系数logKow无关。
Many treatment technologies for groundwater pollution caused by organic compounds have been developed, including in situ chemical oxidation, biosparging, in-well aeration, multi-phase extraction, permeable reactive barriers (PRB), etc. The PRB technology has been applied widely to engineering in the developed countries because of its lower cost and convenience for management, however, it is studied primarily in China. As a type of reactive media of permeable barriers, zero-valent iron (ZVI) has been widely used due to its low cost, availability and excellent reductive efficiency. We used commercial reductive iron powder as reductant in this study, investigated systematically the reductive characteristics and mechanisms of nitroaromatic compounds (NACs) by Fe0 system, analyzed the kinetics of reductive reaction, in view of the higher content of ferrous and manganese ions in groundwater in the north-east of China, examined the effects of ferrous and manganese ions on reductive reaction. As is helpful for the application of PRB technology using Fe0 as media.
     The specific surface area of commercial iron powder is 3.5697m2/g, the reductive characteristics of nitrobenzene by Fe0 was studied in this experiment. The reductive products of reaction were determined using UV scanning and GC/MS method. The experiment results showed that the major reductive product was aniline. The total mass balance of reductive process was calculated, an d it showed that there existed volatilization of nitrobenzene and adsorption of aniline during the reductive process, which resulted in the mass loss. The effects of pH on reduction were examined at different pH value of 3.0, 5.0, 7.0, 9.0, 12.0, respectively, and the change of pH value during the reaction was also determined. The results showed that lower pH value was favorable for the reductive reaction, and the higher reductive rate was obtained at lower pH value. The pH value of solution increased over time when the pH value was lower than 7.0, however, the variation of pH was not observed apparently when the pH value was higher than 7.0. The effects of initial nitrobenzene concentration on reduction were examined at different initial concentrations (0.127~3.248mmol/L). The reduction of nitrobenzene was fitted with pseudo-first-order kinetic model, and the results indicated that the reduction of nitrobenzene was well fitted to pseudo-first-order kinetic model at different pH values and initial concentrations. The formation of aniline followed zero order reaction at different pH values.
     The effects of ferrous and manganese ions on reduction were firstly studied in this paper. Nitrobenzene was selected as the pollutant, and the Fe2+ and Mn2+ ions of different concentrations were added into the Fe0 system. According to the GC/MS results, the reactive rate was enhanced due to the addition of Fe2+ ions, however, the reactive pathway was not changed, and there existed no significant influence on the reduction of nitrobenzene due to the addition of Mn2+ ions. Fe2+ ions were not the main reductant, and it had a buffering capacity in the Fe0 system. The reduction of nitrobenzene caused by ferrous hydroxide deposits was examined, the results showed that the reductive reaction only occurred when the Fe2+ ions coexisted with Fe(OH)2. The effects of dissolved oxygen (DO) on reduction were also examined, the results showed that the presence of DO in solution lowered the reactive rate, resulting in the increase of pH value. However, the reductive rate of nitrobenzene was increased after the addition of Fe2+ ions, the final reductive ratio of nitrobenzene depended on the amount of Fe2+ ions in solution. The corrosive products were determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods, the results showed that lepidocrocite was formed on the surface of iron powder, and the iron corrosion coating had a stratified structure under the presence of Fe2+ ions, the inner layer mainly consisted of magnetite with negligible lepidocrocite. The addition of Fe2+ ions accelerated the reductive rate of lepidocrocite to Fe3O4 by Fe0.
     Six monosubstituted nitrobenzenes (NBs) were selected, according to a method based on all band ultraviolet scanning and HPLC, the reductive products of NACs were determined using internal standard gas chromatography, the results indicated that the reductive products of each monosubstituted NB were the corresponding aniline. The reduction of NACs was examined at different initial concentrations, the results showed that the NACs concentration decreased over time and the corresponding concentration of reductive products aniline increased over time, the reduction process was well fitted with pseudo-first-order kinetic model. The relative rate constant krel of each NAC was compared in the reference of 4-ClNB, the results showed that there existed a linear relationship between logKrel and Eh1’(X-NB), and the reactive rate of o-substituted compounds was the fastest, which could be explained by o-substituted effect. The competition experiments with binary mixtures of 4-ClNB and each one of the other NACs were performed, the results showed that there existed apparent competition, and the competition was quantitatively compared by definition of competition coefficient Qc. The order of Qc correlated well with its Eh1’, and there existed no correlation with logKow.
引文
1. WRI, UNEP. UNDP and World Bank. Word Resources 1998-99-A Guibe To the Global Envir. New York: Oxford University Press.1998.
    2.中国地质调查局.中国国土资源公报,北京,2004.
    3.王娅.建筑可持续发展的城市—“2002城市环境管理与可持续发展”中国环境报.2002-08-05
    4.杨强,李金轩,丁伟翠.浅析地下水污染的主要途径、危害与防治.地下水. 2007,29(3):72~74.
    5.吕贤弼.地下水污染的根源与防治.中国水利. 1999, 3:5~42.
    6.雷刚,崔彩贤,田义.农村饮用水安全问题研究.安徽农业科学.2005, 35(5):1481~1482.
    7. J.H. Langwaldt, J.A. Puhakka. On-site biological remediation of contaminated groundwater: a review. Environmental Pollution.2000, 107: 187~197.
    8. P. Wycisk, H. Weiss, A. Kaschl, et al. Groundwater pollution and remediation options for multisourcecontaminated aquifers (Bitterfeld/Wolfen, Germany). Toxicology Letters .2003,140:343~351
    9. D. Amarante. Applying in situ chemical oxidation several oxidizers provide an effective first step in groundwater and soil remediation. Pollut. Eng. 2000, 32 (2): 40~42.
    10. Jurate Virkutyte , Mika Sillanpaa , Petri Latostenmaa. Electrokinetic soil remediation-critical overview. The Science of the Total Environment. 2002, 289:97~121.
    11. J.Christopher, Duffy, David Brandes. Dimension reduction and source identification for multispecies groundwater contamination. Journal of Contaminant Hydrology. 2001, 48: 151~165.
    12. H. Prommer, D.A. Barry, G.B. Davis. Numerical modelling for design and evaluation of groundwater remediation schemes. Ecological Modelling. 2000, 128: 181~195.
    13.何文杰,李伟光,张晓健.北方地区安全饮用水保障技术.北京:中国建筑工业出版社. 2006, 3~5.
    14. K.A. Czurda, R. Haus. Reactive barriers with fly ash zeolites for in situgroundwater remediation. Applied Clay Science. 2002, 21:13~21.
    15. H.David, A. Bass. Nicholas, A. Richard Hastings. Performance of air sparging systems: a review of case studies. Journal of Hazardous Materials 2000, 72:101~119.
    16. R. Krishna Reddy, A. Jeffrey Adams. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging. Journal of Hazardous Materials .2000, 71: 147~165.
    17. Y. Hu.Zhi, H. Huang Guo, W. Chan.Christine .A fuzzy process controller for in situ groundwater bioremediation. Engineering Applications of Artificial Intelligence. 2003, 16:131~147.
    18. Multi–phase extraction: state-of-the-practice, USEPA. Report, No.542-R-99-004, June, 1999.
    19. S. Jennifer Berkey, E. Thomas Lachmar, J. William Doucette, et al. Tracer studies for evaluation of in situ air sparging and in-well aeration system performance at a gasoline-contaminated site. Journal of Hazardous Materials. 2003, B98:127~144.
    20. B.L. Hall, C.K. Baldwin, T.E. Lachmar, R.R. Dupont. Instrumentation design and installation for monitoring air injection technologies. Groundwater Monitor. Remediat. 2000, 20 (2):46~54.
    21. B.L. Hall, T.E. Lachmar, R.R. Dupont. Field monitoring and performance evaluation of an in situ air sparging system at a gasoline-contaminated site. Journal of Hazardous Materials.2000, B74:165~186.
    22. B.L. Hall, T.E. Lachmar, R.R. Dupont, Field monitoring and performance evaluation of a field-scale in-well aeration system at a gasoline-contaminated site, Journal of Hazardous Materials.2001, B82:197~212.
    23. W.S. Clayton, R.A. Brown, D.H. Bass, Air sparging and bioremediation: the case for in situ mixing.In situ biosparging at an Amoco site: subsurface air distribution and biostimulation, in: Proceedings of the Third International In Situ and On-Site Bioreclamation Symposium. San Diego, CA. 1995, 75~85。
    24. B.S. Tunnicliffe, N.R. Thomson. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate. Journal of Contaminant Hydrology.2004, 75:91~114.
    25. A.John Bergendahl, P. Thies.Timothy. Fenton’s oxidation of MTBE with zero-valent iron. Water Research. 2004, 38:327~334.
    26. J. Bergendahl, S. Hubbard, D. Grasso. Pilot-scale fenton’s oxidation of organic contaminants in groundwater using autochthonous iron. Journal of Hazardous Materials.2003, 99:43~56.
    27. G. Chen, G.E Hoag, P.Chedda, et al. The mechanism and applicability of in situ oxidation of trichloroethylene with Fenton’s reagent. Journal of Hazardous Materials.2001, 87:171~186.
    28. N.R. Mohanty, I.W. Wei. Oxidation of 2, 4-dinitrotoluene using Fenton’s reagent: reaction mechanisms and their practical applications. Hazardous Waste Hazardous Mater.1993, 10(2):171~183.
    29. B. Neppolian, H. Jung, H. Choi, et al. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulfate ion. Water Research. 2002, 36:4699~4708.
    30. S.H.Conrad, R.J.Glass, W.J. Peplinski. Bench-scale visualization of DNAPL remediation processes in analog heterogeneous aquifers: surfactant floods and in situ oxidation using permanganate. Journal of Contaminant Hydrology. 2002, 58: 13~ 49.
    31. J.H.Damm, C.Hardacre, R.M.Kalin, K.P. Walsh. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate. Water Research. 2002, 36: 3638~3646.
    32. D.D.Gates Anderson, R.L.Siegrist, S.R.Cline. Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils. J. Environ. Eng. 2001,127 (4): 337~ 347.
    33. H. Gallard, J. De Laat. Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2 Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III). Chemosphere.2001, 42:405~413.
    34. G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross.Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (dOH/dO–) in aqueous solution. J Phys Chem Ref Data.1988, 17(2):513~759.
    35. M.A. Engwall, J.J.Pignatello, D. Grasso. Degradation and detoxification of the wood preservatives creosote and pentachlorophenol in water by the photofenton reaction. Water Research.1999, 33(5):1151~1158.
    36. Jurate Virkutyte, Mika Sillanpaa, Petri Latostenmaa. Electrokinetic soil remediation -critical overview. The Science of the Total Environment. 2002, 289:97~121.
    37. Y.B.Acar, A.N. Alshawabkeh. Principles of electrokinetic remediation. Environ.Sci.Technol.1997, 27:13~21.
    38. K.Reddy, Parupudi U.S. Effects of soil composition on the removal of chromium by electrokinetics. Journal of Hazardous Materials. 1997, 55:135~158.
    39. A.B. Ribeiro, J.T.Mexia. A dynamic model for the electrokinetic removal of copper from polluted soil. Journal of Hazardous Materials. 1997, 56:257~271.
    40. J.H. Langwaldt, J.A. Puhakka. On-site biological remediation of contaminated groundwater: a review. Environmental Pollution. 2000, 107:187~197.
    41. C.M. Kao,S.C. Chen, J.Y. Wang, et al. Remediation of PCE-contaminated aquifer by an in situ two-layer biobarrier: laboratory batch and column studies. Water Research .2003, 37:27~38.
    42. EPA, US Environmental Protection Agency. Technical protocol for evaluating natural attenuation of chlorinated solvents in ground water. EPA/600/R-98/128, Washington, DC, 1998.
    43. R.C. Borden, R.T. Goin, C.M.Kao. Control of BTEX migration using a biologically enhanced permeable barrier. GroundWater Monit Remediation 1997, 17:70~80.
    44. W.M. Wu, J. Nye, M.K. Jain, R.F.Hickey. Anaerobic dechlorination of trichloroethylene to ethylene using complex organic materials. Water Res. 1998, 32:1445~1454.
    45.武晓峰,唐杰,藤间幸久.土壤、地下水中有机物的就地处置.环境污染治理技术与设备. 2000, 1(4):46~51.
    46.瞿斌. PRB在地下水污染修复中的应用.中国环保产业. 2005,2:33~35.
    47. K.R.Waybrant, D.W. Blowes, C.J.Ptacek. Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ. Sci. Technol. 1998, 32:1972~1979.
    48. D.W.Blowes, C.J. Ptacek. Geochemical remediation of groundwater by permeable reactive walls: removal of chromate by reaction with iron-bearing solids. Proc. Subsurface Restoration Conference, 3rd International Conference on Ground Water Quality Research. Dallas, Texas 1992, June,. pp. 214~216.
    49.束善治,袁勇.污染地下水原位处理方法:可渗透反应墙.环境污染治理技术与设备. 2002, 3(1):47-35.
    50. S.F.O’hannesin, R.W. Gillham. Long-Term Performance of an in Situ“Iron Wall”for Remediation of VOCs.Ground Water.1998, 36(1):164~170.
    51.段志婕,吴德礼,马鲁铭.零价金属还原技术处理氯代有机物的研究进展.环境科学与管理.2007, 6:79~83.
    52.王文成,吴德礼,马鲁铭.零价金属还原降解水中污染物的应用研究综述.四川环境. 2007, 6:99~103.
    53.刘菲,钟佐.地下水中氯代烃的格栅水处理技术.地学前缘.2001 ,8(2):309~314.
    54. D.W.Blowes, C.J.Ptacek, J.L. Jambor. In-Situ remediation of chromate contaminated groundwater using permeable reactive walls. Environ. Sci. Technol. 1997, 31, 3348~3357.
    55. G.Antoine. Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron power. Chemosphere. 2001, 43:1109~1117.
    56. R. Venkatapathy, D.G. Bessingpas, S. Canonica, J.A. Perlinger. Kinetics models for trichloroethylene transformation by zero-valent iron, Appl.Catal. B. Environ. 2002, 37:139~159.
    57. D.I. Kaplan, K.J. Cantrell and T.W. Wietsma. Formation of a barrier to groundwater contaminants by injecting metallic-iron colloids: Effect of influent colloid concentration and injection rate, Abstracts of Papers, Western Pacific Geophysics Meeting of the American Geophysical Union, Hong Kong, American Geophysical Union, Washington, DC, 1994.
    58.董军,赵勇胜,黄奇文等.垃圾渗滤液对地下水污染的PRB原位处理技术.环境科学. 2003, 24(5):151~156.
    59. Hsing-Lung Lien,Weixian Zhang. Enhanced dehalogenation of halogenated methanes by bimetallic Cu/Al. Chemosphere .2002, 49: 371~378.
    60. H.L.Lien, W.Zhang. Activated Al/Al2O3 for transformation of chlorinated hydrocarbons. In: Proceedings of the 1999 ASCE–CSCE National Conference on Environmental Engineering. Norfolk.VA. 1999, pp. 827~831.
    61. R.W.Gillhma, S.F.O’hnnaesin. Ehnnaced degradation of halogenated aliohatics by zero-valent iron. Ground Water.1994,32:958~967.
    62. L.J.Metheson, P.G. Tranyek. Reductive dehalogenation of chlorinated methanesby iron metal. Environ.Sci.Technol.1994, 28:2045~2053.
    63. B.Deng, D.R.Burris, T. J.Campbell. Reduction of vinyl chloride in melatlic iron-water systems. Environ.Sci.Technol.1999, 33(15):2651~2656.
    64. S.Choe, S.H.Lee, Y.Y.Chang, K.Y.Hwang, J.Khim. Rapid reductive destruction of hazardous organic compound by nanoscale Fe0. Chemosphere.2001, 42:367~372.
    65. S.F.O’Hannesin, R.W.Gillham Long-term performance of an in-situ iron wall for remediation of VOCs. Groudwater.1998, 36:467~478.
    66. G.D.Sayles, You Guanrong, Wang Maoxiu, et al. DDT, DDD, and DDE Dechlorination by Zero-Valent Iron. Environ.Sci.Technol. 1997, 31:3448~3454.
    67. D.J.Matheson, P.G. Tratnyek. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ.Sci.Technol. 1994, 28:2045~2053.
    68. Deng Baolin, D.R.Burris, T.J.Campbell. Reduction of Vinyl Chloride in Metallic Iron-Water Systems. Environ.Sci.Technol. 1999, 33:2651~2656.
    69. C.Schlimm, E.Heitz. Development of a wastewater treatment process: reductive dehalogenation of chlorinated hydrocarbons by mentals. Environ. Sci. Technol .1994, 28:2045~2053.
    70. H.K.Yak, B.W.Wenclawiak, J.F.Cheng, et al.Reductive Dechlorination of Polychlorinated Biphenyls by Zero valent Iron in Subcritical Water. Environ.Sci.Technol.1999, 33:1397~1399.
    71. A.L.Roberts, L.A.Totten, W.A. Arnold, et al. Reductive Elimination of Chlorinated Ethylenes by Zero-Valent Metals. Environ. Sci. Technol. 1996, 30:2654~2659.
    72. M.M.Scherer, B.A.Balko, D.A.Gallagher, et al.Correlation Analysis of Rate Constants for Dechlorination by Zero-Valent Iron. Environ. Sci. Technol. 1998, 32:3021~3033.
    73. J.Gotpagar, E.Gruike, T.Tsang, et al. Reductive Dehalogenation of trichloroethylene Using Zero-Valent Iron. Environmental progress. 1997, 16:137~142.
    74. R.Muftikian, Q.Fernando, N.Korte. A Method for the Rapid Dechlorination of low Molecular Weight Chlorinated Hydrocarbons in Water. Water Research. 1995, 29:2434~2439.
    75. D.J.Matheson, P.G.Tratryek. Reductive dehalogenation of chlorinated methanes by iron mental. Environ.Sci.Technol. 1994, 28:2045~2053.
    76. J.L Vogan, R.M.Focht, D.K.Clark. S.L.Graham. Performance evaluation of permeable reactive barrier for remediation of dissolved chlorinated solvents groundwater. Journal of Hazardous Materials.1999, 68:97~108.
    77. R.W.Gillham, S.F.O’Hanesin. Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater.1994, 32:958~967.
    78. A. Agrawal, P.G.Tratnyek. Reduction of nitroaromatic compounds by zero-valent iron metal. Environ. Sci. Technol. 1996, 30(1):153~160.
    79. J.Klausen. J.Ranke, R. P.Sehwarzenbach. Influence of Solution Composition and Column Aging on the Reducetion of Nitroaromatic Compounds by Zero Valent Iorn. Chemosphere.2001, 44:511~517.
    80. J.Z.Bandstra, R.Miehr, P.G.Tratnyek, et al. Reduction of 2,4,6-Trinitrotoluene by IornMetal: Kinetic Controls on Porduct Distributions in Batch Experiments. Environ. Sci. Technol.2005, 39:230~238.
    81. Y.H.Kim, R.C.Elizabeth. Dechlorination of pentachlrophenol by zero valent iron and modified zero valent irons. Environ.Sci.Technol.2000, 34:2014~2017.
    82. Y.S.Keum, Q.X.Li. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere.2004, 54:255~263.
    83. S.E.Barrows, C.J.Cramer, D.G.Truhlar, et al. Factors controlling regioselectivity in the reduction of polynitroaromatics in aqueous solution. Environ. Sci.Technol.1996, 30:3028~3038.
    84.曹晨忠.有机化学中的取代基效应.北京:科学出版社.2003, 71~82.
    85. G.V.Lpwry, K.M.Johnson. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent in a water/methanol solution. Environ.Sci.Technol.2004, 38:5208~5216.
    86. F.John Devlin, Jorg Klausen, et al. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments. Environ.Sci.Technol. 1998, 32:1941~1947.
    87. J.Klausen, P.J.Vikesland, T.Kohn, et al. Longevity of graunular iron in groundwater treatment processes: solution composition effects on reduction of organohalides and nitroaromatic compound. Environ.Sci.Technol. 2003, 37:1208~1218.
    88. J.E. Davlin, J. Klausen, R. R.Sehwarzenbach. Kinetics of nitoraormaticre duction on granular iron in recirculating batch experiments. Enviornmental Science andTechnology. 1998, 32(13):1941~1947.
    89. J.F.Devlin, K. O.Allin. Major anion effects on the kinetics and reactivity of granular iron in glass-encased magnet batch reactor experiments. Environ.Sci.Technol. 2005, 39:1868~1874.
    90. M. J.Alowitz, M. M. Scherer. Kinetics of nitrate, nitrite and Cr (VI) reduction by iron metal. Environ. Sci. Technol. 2002, 36 (3): 299~306.
    91. L.Kielemoes, P. D.Boever, W.Werstraete. Influence of denitrification on the corrosion of iron and stainless steel powder. Environ. Sci.Technol. 2000, 34:663~671.
    92. Y.H.Huang, T.C.Zhnag. Effects of low pH on nitrate reduction by iron powder. Water Research.2004, 38:2631~2642.
    93. A.M.Moore, T.M.Young, A.M.Asce. Chloride interactions with iron surfaces: implications for perchlorate and nitrate remediation using permeable reactive barriers. Journal of Environmental Engeering. 2005, 131:924~933.
    94. B.M.Sass, D.Rai. Solubility of amorphous chromium (III)-iron (III) hydroxide solid solutions. Inorganism Chemistry. 1987, 26:228~232.
    95. D.Rai, B.M.Sass, D.A.Moore. Chromium (III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorganism Chemistry. 1987, 26: 345~349.
    96. R.T.Wilkin, C.Su, R.G.Ford, C.J.Paul. Chromium-removal processes during groundwater remediation by a zerovalent iron permeable reactive barrier. Environm.Sci.Technol. 2005, 39:4599~4605.
    97. R.W.Puls, C.J.Paul, P.M.Powell. The application of situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater:a field test. Applied Geochemistry. 1999, 14:989~1000.
    98. K.J.Cantrell, D.I.Kaplan, T.W.Wietsma. Zero-valent iron for the in situ remediation of selected metals in groundwater. Journal of Hazardous Material. 1995, 42:201~212.
    99. S.J.Morrison, S.R.Metzler, C.E.Carpenter. Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron. Environ.Sci.Technol. 2001, 35:385~390.
    100. Lin Qi, A. Orcgac. Fe0 System for the Remediation of Trichloroethylene and Mono-Chlorobenzen Contaminated Aquifer: Adsortpation and Degradation. Journal of Environmental Sciences. 2004, 16(1):108~112.
    101. Seunghee Choe, Sang-Hyun Lee,Yoon-Young Chang, et al. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere. 2001, 42:367~372.
    102.陈芳艳,唐玉斌,吕锡武.纳米零价铁对水中Cr(VI)的还原动力学研究.化学世界. 2007, 3:144~147.
    103.李铁龙,刘海水,金朝晖等.纳米铁去除水中硝酸盐氮的批试验.吉林大学学报(工学版). 2006, 36(2):264~268.
    104.全燮,刘会娟,杨凤林等.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国境科学. 1998, 18(4):333~3364
    105. A. William Arnold,A. Lynn Roberts. Pathways and kinetics of chlorinated ethylene and chlorinated accytlene reaction with Fe0 particles. Environ. Sci.Technol. 2000, 34:1794~1805.
    106. J. Leah Matheson, Q. Paul Tratnyek. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 1994, 23: 2045~2053.
    107.全燮,杨凤林,薛大明等.钯-铁催化还原法对水中二氯乙烯的快速脱氯研究.大连理工大学学报. 1997, 37(l):46~48.
    108. N.E. Korte, J.L.Zuman, R.M. Schlosser. Field Application of Palladized Iron for the Dechlorination of Trichloroethene. Waste Management. 2000, 20:687~694.
    109.何小娟,汤鸣皋,沈照理等. Ni/Fe双金属对PCE脱氯影响效果因素研究.地球科学:中国地质大学学报. 2003, 28(3):337~340.
    110.何小娟,汤鸣皋,李旭东等.镍/铁和铜/铁双金属降解四氯乙烯的研究.环境化学. 2003, 22(40):334~339.
    111. Yihui Liu, Fenglin Yang, Polock Yue, Guohua Chen. Catalytic Dechlorination of ChloroPhenols in water by Palladium/Iron. Water Research. 2001, 35:1887~1890.
    112. J. Lisa Graham, Goran Jovanovic. Dechlorination of p-ChloroPhenol on a Pd/Fe Catalyst in a Magnetically Stabilized Fluidized Bed: ImPlications for Sludge and Liquid Remediation. Chemical Engineering Science.1999, 54:3085~3093.
    113. Young Hun Kim, R.Elizbaeth Carraway. Dechlorination of pentachlorophenol By Zaro Valent Iron and Modified ZeroValent Irons. Environ.Sci.Technol. 2000, 34:2014~2017.
    114. Carina Grittini, Mark Malcomson, Quinuts Fernando, et al. Rapid Dechlorination of Polychlorinated Biphenyls on the Suarfce of a Pd/FeBimetallic System. Environ.Sci.Technol.1995, 29:2898~2900.
    115. H.M. Hung, F.H. Ling, M.R. Hoffmann. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ. Sci.Technol.2000, 34:1758~1763.
    116. H.M. Hung, M.R. Hoffmann. Kinetics and Mechanism of the Enhanced Reductive Degradation of CCl4 by Elemental Iron in the Presence of Ultrasound. Environ.Sci.Technol.1998, 32:3011~3016.
    117. H. Zhang, L. Duan, Y. Zhang, F. Wu. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments. 2005, 65(1):39~43.
    118.胡文勇,郑正,郑寿荣等.超声波/零价铁降解对硝基苯胺的试验研究.环境污染治理技术与设备. 2005, 6(3):28~36.
    119. L.S.Bell, J.F. Devlin, R.W. Gillham, P.J.Binning. A sequential zero valent iron and aerobc biodegradation treatment system for nitrobenzene. Journal of contaminant hydrology. 2003, 66:201~217.
    120. H.Y.Kahng, J.J.Kukor, K.H.Oh. Characterization of strain HY99, a novel microorganism capable of aerobic and anaerobic degradation of aniline. FEMS Microbiology Letters. 2000. 190 (2): 215~221.
    121. C.D.Lyons, S.Katz, R. Bartha. Mechanisms and pathways of aniline elimination from aquatic environments. Applied and Environmental Microbiology. 1984, 48 (3): 491~496.
    122. C.M.Peres, H. Naveau, S.N.Agathos. Biodegradation of nitrobenzene by its simultaneous reduction into aniline and mineralization of the aniline formed. Applied Microbiology and Biotechnology. 1998, 49 (3): 343~349.
    123. D.Roy, H. Moustafa, K. Maillacheruvu. Aniline degradation in a soil slurry bioreactor. Journal of Environmental Science and Health: Part A. Environmental Science and Engineering & Toxic and Hazardous Substance Control. 1997.32 (8): 2367~ 2377.
    124.刘云,沈幸,鲜鸣等.地表水中微量氯代芳烃和硝基芳烃化合物的分析方法.环境化学. 2005, 24(4):463~466.
    125.王建刚,郭景海,张建等.高效液相色谱法测定水中硝基苯含量.吉林化工学院学报. 2003, 20(4):40~43.
    126.沙耀武,赵文超.含硝基苯或硝基氯苯的废水处理研究.精细化工.1996,13(58):57~59.
    127. Peil, Valckenborg RME, Kopinga K, et al. Nitrobenzene adsorption in activated carbon as observed by NMR. American Institute of Chemical Engineers Journal,2003, 49(1): 232~236.
    128.刘志生,尹军,张立国等.炭化稻壳吸附去除水中硝基苯的试验.环境化学.2008,27(2):190~192.
    129. Jun Yin, Lei Liu, Liguo Zhang, et al.Utilization of furnace ash and slags for adsorpotion of nitrobenzene from groundwater. Environmental engineering science.2008,25(5):643~648.
    130.毛连山,赵泉珍.硝基苯废水的治理.环境污染与防治.2000,22(:6)22~ 24.
    131.张耀煌,郦长瑞.乳状液膜法处理硝基苯废水的研究.环境污染与防治.2002,24 (2): 95~97.
    132.孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧氧化降解水中微量硝基苯.环境科学.2006,27(2):285~289.
    133.沈吉敏,陈忠林,李学艳等.O3/H2O2去除水中硝基苯效果与机理.环境科学.2006,27(9):96~102.
    134.童少平,褚有群,马淳安等. O3/UV降解水中的乙酸和硝基苯.中国环境科学.2005,25(3):366~369.
    135.肖羽堂,王继徽.二硝基氯苯废水预处理技术研究.化工环保,1997,17(5):264~267.
    136.马汐平,宋鑫.硝基苯好氧降解菌的驯化和筛选.辽宁大学学报:自然科学版.1998,25(4):384~388.
    137.侯轶,任源.硝基苯好氧降解菌筛选及其降解特性.环境科学研究.1999,12(6:)25~27.
    138.王庆生,王金梅.利用白腐菌处理含硝基苯类化工废水的研究.环境科学研究.2002,15(2):19~21.
    139. F. Osrhansky,and N.Narkis. Characteristics of ogrnaics removal byPACT Simultaneous adsorption and biodegradation. Water research.2003,31(3):391~398.
    140. M.A.De, O.A.O’Connor, D.S.Kosson. Metabolism of aniline under different anaerobic electron accepting nutritional conditions. Environmental Toxicology and Chemistry.1994, 13(2):233~239.
    141. C.M.Peres, H.Naveau, S.N.Agathos. Biodegradation of nitrobenzene by itssimultaneous reduction into aniline and mineralization of the aniline formed. Applied Microbiology and Biotechnology .1998. 49 (3): 343~ 349.
    142. O.Dickel, W.Haug, H.J.Knackmuss. Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation. 1993, 4: 187~ 194.
    143. P.H.Nielsen, T.H.Christensen. Variability of biological degradation of phenolic hydrocarbons in an aerobic aquifer determined by laboratory batch experiments. Journal of Contaminant Hydrology. 1994, 17 (3): 55~ 67.
    144. T.B.Hofstetter, C.G.Heijman, S.B.Haderlein, et al.Complete reduction of TNT and other (poly) nitroaromatic compounds under iron reducing subsurface conditions. Environmental Science and Technology. 1999, 33 (9): 1479~1487.
    145.荣国斌译,朱士正校.波谱数据表—有机化合物的结构解析.华东理工大学出版社.121~123.
    146. Abinash Agrawal, G. Paul, Tratnyek. Reduction of nitro aromatic compounds by zero-valent iron metal. Environ.Sci.Technol. 1996, 30: 153~160.
    147. M.I.Panayotova. Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Management. 2001, 21: 671~681.
    148. T.L.Johnson, M.M.Scherer, P.G. Tratnyek. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 1996, 30: 2634~2640.
    149. S.Nam, P.G. Tratnyek. Reduction of azo dyes with zero-valent iron. Wat. Res. 2000, 34: 1837~1845.
    150. M.M.Scherer, B.A.Balko, P.G.Tratnyek. Correlation analysis of rate constants for dechlorination by zero-valent iron. Environ. Sci. Technol. 1998, 32: 3026~3033.
    151. H.H.Hung, R.H.Ling, M.R.Huffmann. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environ. Sci. Technol. 2000, 34: 1758~1763.
    152. Jorg Klausen, Johannes Ranke, Rene P. Schwazenbach. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere. 2001, 44:511~517.
    153. J.F.Devlin, K.O.Allin. Major anoin effects on the kinetics and reactivity of guanular iron in glass-encased magnet batch reactor experiments. Environ. Sci. Technol.2005, 39:1868~1874.
    154. L. S. Bell, J. F. Devlin, R. W. Gillham, et al. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene. Journal of Contaminant Hydrology. 2003, 66:201~217.
    155. Yang MU, Han-Qing YU, Jia-Chuang Zheng, et al. Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron.Chemosphere. 2004, 54:789~794.
    156. J.F. Devlin, J. Klausen, R.P. Schwarzenbach. Kinetics of nitroaromatic reduction on granular iron in recirculating batch experiments. Environ. Sci. Technol. 1998, 32: 1941~1947.
    157. J.Farrell, M. Kason, N. Melitas, et al. Investigation of the long-term performance of zero-valent iron for reductive dechlorination of trichloroethylene. Environ. Sci. Technol. 2000, 34:514~521.
    158. Jorg Klausen, P. Serge . Trober et al. Reduction of substituted Nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ. Sci. Technol. 1995, 29:2396~2404.
    159. G. B.Aaron , Williams, Michelle M. Scherer. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ. Sci. Technol.2004, 38:4782~4790.
    160. T.B.Hofstetter, C.G.Heijman, S.B.Haderlein, et al. Complete Reduction of TNT and other (Poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ. Sci. Technol. 1999, 33: 1479~1487.
    161. C.A.Schultz, T.J.Grundl. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(II)/montmorillonite systems. Environ. Sci. Technol. 2000, 34: 3641~3648.
    162. A.G.B.Williams, M.M.Scherer. Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide–water interface. Environ. Sci. Technol. 2004, 38: 4782~4790.
    163. K.Ritter, M. S. Odziemkowski, R. W. Gillham. An in situ study of the role of surface films on granular iron in the permeable iron wall technology. J. Contam. Hydrol. 2002, 55:87~111.
    164. Y.H.Huang, T.C.Zhang. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe(II). Water Res. 2005, 39, 1751~1760.
    165. R.L.Johnson, P.G.Tratnyek, R. Miehr, et al. Reduction of hydraulic conductivityand reactivity in zero-valent iron columns by oxygen and TNT. Ground Water Monit. 2005, 25:129~136.
    166. Y.H.Huang, T.C.Zhang, P.J. Shea, S.D. Comfort. Effect of iron coating and selected cations on nitrate reduction by iron. J. Environ. Qual. 2003,32, 1306~1315.
    167. K.Ritter, M.S.Odziemkowski, R.Simpgraga, et al. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron. J. Contam. Hydrol. 2003, 65, 121~136.
    168. J.Klausen, S.P.Trober, S.B.Haderlein, R.P.Schwarzenbach. Reduction of substituted nitrobenzenes by Fe(II) in aqueous mineral suspensions. Environ. Sci. Technol. 1995, 29, 2396~2404.
    169. C.A.Schultz, T.J.Grundl. pH dependence on reduction rate of 4-Cl-nitrobenzene by Fe(II)/montmorillonite systems. Environ.Sci. Technol. 2000, 34: 3641~3648.
    170. M.Nagayama, M.Cohen. The anodic oxidation of iron in a neutral solution: The nature and composition of the passive film. J. Electrochem. Soc. 1962, 109: 781~790.
    171. B.D.Cahan, C.T. Chen. The nature of the passive film on iron (III) The chemi-conductor model and further supporting evidence. J. Electrochem. Soc. 1982, 129: 921~925.
    172. B.A.Logue, J.C.Westall, Kinetics of reduction of nitrobenzene and carbon tetrachloride at an iron-oxide coated gold electrode. Environ. Sci. Technol. 2003, 37, 2356–2362.
    173. M.M.Scherer, B.A.Balko, P.G.Tratnyek. Mineral-water interfacial reactions: kinetics and mechanisms. In: Sparks, D.L., Grundl, T.J. (Eds.), ACS Symposium Series 715. American Chemical Society, Washington, DC. 1998, pp:301~322.
    174. J.P.Jolivet, C. Chaneac, E. Tronc. Iron oxide chemistry: from molecular clusters to extended solid networks. Chem. Commun. 2004, 32:481~487.
    175. R.M.Cornell, U. Schwertmann. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. VCH Publishers, New York, NY. 2003.
    176. J.F.Devlin, J.Klausen, R.P.Schwarzenbach. Kinetics of Nitroaromatic Reduction on Granular Iron in Recirculating Batch Experiments. Environmental Science and Technology. 1998. 32:1941~1947.
    177. S.Nam, P.G. Tratnyek. Reduction of Azo Dyes with Zero Valent Iron. WaterResearch. 2000, 34(6):1837~1845.
    178. L.S. Bell, J.F. Devlin, R.W.Gillham, et al. A sequential zero valent iron and aerobic biodegradation treatment system for nitrobenzene.Journal of Contaminant Hydrology. 2003, 66: 201~217.
    179.陈荣业著.分子结构与反应活性.化学工业出版社. 2001: 32~36.
    180.郑昱,徐向阳,蔡文祥等. ZVI还原转化硝基芳烃特性及QSAR的研究.浙江大学学报(农业与生命科学版). 2006, 32(1): 32~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700