用户名: 密码: 验证码:
彩色棉与白色棉产量和品质差异的分子生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Study on the Molecular and Physiological Mechanism of Yield and Quality Difference between Colored and White Fiber Cotton
  • 作者:华水金
  • 论文级别:博士
  • 学科专业名称:作物学
  • 学位年度:2007
  • 导师:王学德
  • 学科代码:090101
  • 学位授予单位:浙江大学
  • 论文提交日期:2007-10-01
  • 答辩委员会主席:曹家树
摘要
天然彩色棉产量偏低和品质偏差是其在生产利用上需要解决的重要问题之一。天然彩色棉纤维发育过程中,除纤维素合成外,色素代谢的增加是区别白色棉纤维发育的重要特征之一。纤维中色素的合成将导致纤维细胞中碳水化合物的消耗,从而影响到纤维素的合成。为此,本文以底物竞争为中心点,从天然彩色棉与白色棉植株光合特性、纤维碳水化合物和色素含量变化、纤维细胞呼吸代谢和碳水化合物代谢相关酶的功能和基因表达等角度分析了造成产量和品质差异的分子生理机制。主要研究结果如下:
     1、天然彩色棉的光合特性与产量和品质的关系
     以棕色棉、绿色棉和两个棕色棉杂种:棕杂1(陆陆杂种)和棕杂2(海陆杂种)及白色棉对照为材料,研究了棉株不同发育时期叶片光合色素含量、叶绿体希尔活性、Mg~(2+)-ATPase和Ca~(2+)-ATPase活性、净光合速率和淀粉、蔗糖、果糖和葡萄糖等碳水化合物含量的变化,并对这些光合指标与棉花产量和品质间进行了相关性和通径分析。结果表明,绿色棉的产量最低,仅为白色棉的58%,其次是棕色棉,为白色棉的66%。棕杂1的产量最高,棕杂2介于棕杂和白色棉之间。绿色棉虽然叶片中的光合色素含量、净光合速率和其他光合指标与白色棉相当,甚至更高,但其产量仍然最低,引起绿色棉产量和品质低的主要原冈是营养生长过旺,单株铃数少,单铃重轻:相反,棕色棉产量低和品质较差的重要原因则是由于其光合作用弱,叶片中叶绿体生理活性不强,光合产物少。就两个杂种而言,棕杂1的光合能力要强于棕杂2,而且棕杂1的产量也显著高于棕杂2,但其品质却比棕杂2略差。棉株光合特性与天然彩色棉产量与品质之间的相关性和通径分析结果表明,净光合速率对棉花产量的贡献最大,其次为碳水化合物;而纤维长度则是叶片中的碳水化合物含量对其影响最大,净光合速率次之,这与棉花纤维发育过程中碳水化合物除用于原料支持各种代谢活动外,还起到调节纤维细胞渗透压,促进纤维伸长有关,尤其用于纤维素的合成,因为纤维素含量占总棉纤维的重量95%左右。研究结果表明,通过选育具有高光效的杂交组合提高天然彩色棉纤维的产量和品质是可行的。
     2、天然彩色棉纤维碳水化合物与色素含量对纤维长度的影响
     对白色棉、棕色棉、绿色棉、棕色棉陆陆杂种和海陆杂种纤维发育过程中碳水化合物、色素含量、纤维素含量和纤维长度动态进行了检测。结果表明,从开花当天至纤维成熟的整个发育过程中,白色棉和天然彩色棉纤维中的蔗糖含量在10 DPA前含量最高,之后持续降低;果糖含量从0 DPA至成熟一直处于减少状态,而葡萄糖含量则在20 DPA,即纤维素合成高峰期达到最高。绿色棉纤维和棕杂1纤维的糖含量相当,均比其他类型棉花高。但绿色棉纤维的产量和品质最低。这是因为其纤维中PAL活性高,导致色素大量合成,碳水化合物的消耗量较大,从而影响到纤维素的合成。而且,其碳水化合物的利用率低(马克隆值低,纤维中碳水化合物滞留量大),也是其纤维素合成量少的重要因素。另外,棕色棉纤维碳水化合物含量最少,因此,纤维素合成的原料少,加之部分碳水化合物用于色素的合成,导致其纤维产量和品质比白色棉低。陆陆杂种纤维中较高的碳水化合物含量可以补偿用于色素合成所消耗的部分碳水化合物含量。可见,天然彩色棉纤维中色素和纤维素的合成在碳水化合物的利用上存在着此消彼长的关系。
     3、天然彩色棉纤维细胞氧化还原状态与外源呼吸抑制剂对纤维发育的影响
     通过测定白色棉、棕色棉、绿色棉和两个棕色棉杂种纤维细胞发育过程中细胞含水量、pH值、细胞色素c氧化酶活性、NAD~+、NADH、NADP~+、和NADPH的含量及在组培条件下研究了鱼藤酮和硫脲两种呼吸抑制剂对白色棉和绿色棉纤维显色、胚珠鲜重和纤维长度及细胞色素c氧化酶和多酚氧化酶活性的影响。结果表明,绿色棉和棕色棉纤维细胞的显色时间和方式存在明显的差异。棕色棉在30 DPA后以“爆发式”显色;绿色棉则在20 DPA时以“渐进式”逐步使绿色加深,因此,棕色棉和绿色棉纤维中的生理代谢状况是不一样的。白色棉纤维中的水分含量较高,其纤维细胞中的pH值比绿色棉低,但比棕色棉系列棉花高。棕色棉系列纤维细胞中的细胞色素c氧化酶、NAD~+、NADH、NADP~+、和NADPH含量均远远高于白色棉和绿色棉,而且NAD~+或NADP~+含量比NADH或NADPH高,因此,其纤维细胞中的呼吸代谢旺盛;白色棉和绿色棉纤维细胞中的辅酶含量较低,而且两者差异不大。绿色棉在呼吸代谢强度上与白色棉相当,但综合纤维中的色素和纤维素合成两大重要代谢,因此,可以推断绿色棉纤维中大量碳水化合物可能未能被充分利用:相反棕色棉虽然呼吸代谢旺盛,但纤维细胞中的碳水化合物含量少,故造成其纤维素含量比白色棉低,但比绿色棉高;而色素含量比白色棉高,但比绿色棉低。鱼藤酮和硫脲均可抑制白色棉和绿色棉胚珠和纤维细胞的发育,胚珠鲜重减轻,纤维减短,但鱼藤酮的毒害作用更大,而且可使绿色棉纤维显色较对照(绿色棉末用鱼藤酮处理)提早1周;硫脲对胚珠和纤维的发育伤害虽然较小,但可使绿色棉纤维不显色,显然,硫脲对绿色棉纤维的色素代谢具有抑制作用。在鱼藤酮处理下,纤维细胞中的细胞色素c氧化酶的活性迅速降低,而在硫脲各浓度处理下,绿色棉纤维中的多酚氧化酶活性均降低了80%以上。
     4、天然彩色棉纤维细胞碳水化合物代谢关键酶活性及基因表达研究
     本试验以白色棉、棕色棉、绿色棉和2个棕色棉杂种为材料研究了纤维0-20 DPA发育阶段纤维中酸性和中性转化酶和蔗糖合成酶、蔗糖磷酸合成酶的活性。并且采用RT-PCR和荧光定量RT-PCR的方法对蔗糖合成酶基因的表达量进行了测定。结果表明,棕色棉纤维细胞中的转化酶和蔗糖合成酶最高,绿色棉和白色棉纤维细胞中转化酶和蔗糖合成酶活性均较低相差不大。在2 DPA至20 DPA期间,白色棉和天然彩色棉纤维细胞中的蔗糖合成酶活性高且变化幅度很小,说明纤维细胞发育过程中碳水化合物代谢非常旺盛。白色棉、棕色棉和绿色棉纤维细胞中蔗糖合成酶基因的表达量随纤维发育时期的推进变化不大,但棕色棉纤维细胞中的蔗糖合成酶基因的表达量比白色棉高,绿色棉相对较低。此外,白色棉、棕色棉和绿色棉纤维细胞中的蔗糖合成酶基因的表达量比胚珠和叶片的表达量高。绿色棉纤维细胞中蔗糖合成酶活性和基因表达量低是其碳水化合物利用率低的重要原因。
     5、棉花纤维发育特异启动子的克隆及其应用
     从棉花基因组DNA中分离到棉花纤维发育特异基因GaRDL 1的启动子,并在其后连接绿色荧光蛋白作为报告基因,采用花粉管通道法转化胚珠。结果表明,在子房注射3天后可在纤维中检测到绿色荧光蛋白,表明该基因启动子在棉花纤维中特异表达。利用反义抑制的方法,在启动子后面连接蔗糖合成酶反义基因,并采用花粉管通道法转化胚珠后,取子房注射3天后的胚珠与纤维的混合物进行蔗糖合成酶活性和碳水化合物含量的测定。结果表明,白色棉、棕色棉和绿色棉纤维中的蔗糖合成酶活性降低,但蔗糖含量因未被蔗糖合成酶分解,因此,蔗糖含量变化不大,同时导致纤维中的葡萄糖和果糖含量降低,从而降低了纤维的碳水化合物利用率。
Low yield and quality of naturally colored cotton fiber is one of the most important problems that is required to be solved in the genetic improvement. During fiber development, besides cellulose synthesis, pigment metabolism is an additional process in naturally colored cotton fiber that differed in white cotton fiber. Pigment synthesis in fiber will consume part of carbohydrate in fiber cells affecting cellulose synthesis for fiber yield and quality. Therefore, in present paper, the molecular and physiological mechanism for the difference of yield and quality between white and naturally colored cotton fibers were analyzed from plant photosynthesis, fiber carbohydrate and pigment content, fiber respiration, and gene function and expression that related with carbohydrate metabolic enzymes aspects according to substrate competition hypothesis. The main results wereshowed as below.
     1. Relationship between photosynthetic property and yield and quality of naturally colored cotton fiber
     Using brown fiber cotton, green fiber cotton, two brown hybrids, hybrid 1 (the parents were upland cotton) and hybrid 2 (the two parents were upland cotton and sea island cotton), white fiber cotton (control) as plant material, variation of photosynthetic pigment content, chloroplast Hill reaction activity, Mg~(2+)-ATPase and Ca~(2+)-ATPase activity, net photosynthetic rate, leaf starch, sucrose, fructose, and glucose content was determined. Furthermore, correlation and path analysis among yield and quality and these photosynthetic indexes were also analyzed. Result showed that yield ranking of cotton fiber was hybrid 1>white fiber cotton>hybrid 2> brown fiber cotton>green fiber cotton. Yield of green fiber cotton and brown fiber cotton was only 58% and 66% of white fiber cotton, respectively. Although leaf photosynthetic pigment content, net photosynthetic rate and other photosynthetic indexes of green fiber cotton plant was near to white fiber cotton even much higher, its yield was yet the lowest. Lower yield and quality in green fiber cotton was mainly caused by excessively nutritional plant growth, less bolls per plant, and lighter boll mass. However, the reason for low yield and quality of brown fiber cotton was its weak photosynthesis, less physiological activity of leaf chloroplast, and small amount of photosynthetic production. As for the two brown hybrids, photosynthetic ability of hybrid 1 much better than hybrid 2 and yield of hybrid 1 was significantly higher than hybrid 2. However, quality of hybrid 2 was slightly better than hybrid 1. Result of correlation and path analysis among yield and quality and photosynthetic indexes indicated that net photosynthetic rate had the most contribution to yield and the next important was carbohydrate content while had the reverse tendency for fiber length, which was possibly due to its fiber cellular osmotic regulation promoting fiber elongation besides it was used as metabolic substrate. These results indicated that it was feasible for fiber yield and quality improvement through screening for efficiency photosynthesis hybrid combination.
     2. Effect of fiber carbohydrate and pigment content on fiber length
     Fiber carbohydrate and pigment content, cellulose content, and fiber length dynamic were investigated in white fiber cotton, brown fiber cotton, green fiber cotton, and two brown hybrids during fiber development. Result showed that fiber sucrose content was the highest at 10 DPA and then continuously decreased in white fiber cotton and naturally fiber cotton from the day of anthesis to fiber maturation. Fiber fructose content kept decreasing state from 0 DPA to fiber maturation. However fiber glucose content peaked at 20 DPA, which was consistent with the vigorous stage of the fiber cellulose synthesis both in white and naturally fiber cotton. Fiber carbohydrate content in green fiber cotton and brown hybrid 1 was similar and much higher than other type cotton. However, green fiber cotton had the lowest yield and quality. It was because higher PAL activity leading to large amount of pigment synthesis in green cotton fiber, which would consume much carbohydrate. Thus cellulose synthetic amount reduced. In addition to this reason, low carbohydrate use efficiency was other possibly important reason for low cellulose content because of its low micronaire value, which indicated much carbohydrate was not to be used in cellulose synthesis as fiber maturation. In brown cotton fiber, its lower cellulose content than white cotton fiber was due to low carbohydrate content in fiber and consumption of part carbohydrate for pigment synthesis resulting in substrate reduction. As for hybrid 1, much higher carbohydrate content in fiber could partly make up for the usage of carbohydrate in pigment synthesis. These results demonstrated the substrate ebbing and flowing phenomenon in carbohydrate consumption for pigment and cellulose synthesis.
     3. Impact of cellular redox state and exogenous respiratory inhibitors on fiber development
     In this section, cellular water content, pH value, cytochrome c oxidase activity, NAD~+, NADH, NADP~+, and NADPH content was monitored as fiber cell development. Furthermore, color display, ovule fresh weight, fiber length, cytochrome c oxidase and polyphenoloxidase activity in green and white cotton fiber were also traced under two respiratory inhibitor treatment, rotenone and thiourea, with in vitro culture condition. Result showed that color display timing and manner was obviously different in green and brown cotton fiber. It displayed as "suddenly" style after 30 DPA in brown cotton fiber while as "increasingly" after 20 DPA in green cotton fiber. Therefore, it could be inferred that their physiological state was different in brown and green cotton fiber. White cotton fiber had much higher water content. However, its pH value was lower than green cotton fiber and higher than brown cotton fiber. Cytochrome c oxidase activity, NAD~+, NADH, NADP~+, and NADPH content in brown serials of cotton fiber was far higher than white and green cotton fiber and NAD~+ or NADP~+ content was much higher than NADH or NADPH demonstrating vigorous respiration in fiber cells. However, coenzyme content in white and green fiber was relatively low and little difference between them. Because green cotton fiber contained two important metabolic systems, which were pigment and cellulose synthesis, it could be inferred lots of carbohydrate might be fully used. Although high activity of respiratory metabolism in brown cotton fiber, cellulose content was higher than green cotton fiber and lower than white cotton fiber while pigment content reversely because of less amount of carbohydrate content in fiber. Ovule and fiber development would be inhibited by both rotenone and thiourea causing ovule fresh weight reduction and fiber shortening. But rotenone was more harmful to ovule and fiber development and color displayed for one week earlier in green cotton fiber. Although thiourea had less effect on ovule and fiber development, it could result in no color display in green cotton fiber indicating pigment metabolism was inhibited by thiourea. Moreover, cytochrome c oxidase activity rapidly decreased in fiber cells after rotenone treatment and polyphenoloxidase activity reduced by more than 80% in green cotton fiber after thiourea treatment.
     4. Activity of key enzymes in carbohydrate metabolism in naturally cotton fibers and sucrose synthase gene expression
     Carbohydrate metabolic related enzymes, i.e. acidic and neutral invertase, sucrose synthase, and sucrose phosphate synthase, were measured in white, brown, green cotton fiber, and two brown hybrids when fiber was at 0-20 DPA developmental stages. Furthermore, expression amount of sucrose synthase gene was assayed using RT-PCR and real time RT-PCR method. Result showed that activity invertase and sucrose synthase was the highest in brown cotton fiber. These enzymatic activities were similar between green and white cotton fiber. Sucrose synthase activity in white and naturally colored cotton fiber varied little from 2 DPA o 20 DPA revealing high activity of carbohydrate metabolism during cotton fiber development. Furthermore, sucrose synthase gene expression in white, brown, and green cotton fiber altered little during fiber development which was in accordance with enzyme activity variation. However, expression level of sucrose synthase in brown cotton fiber was higher than white cotton fiber. Green cotton fiber had the lowest expression level in fiber cells. As for different organs, fiber cells had much higher expression level than ovule and leaf in white, brown, and green fiber cotton. Low activity of sucrose synthase and gene expression in green cotton fiber was an important reason for its low utilization efficiency of carbohydrate.
     5. Molecular cloning of cotton fiber development specific promoter and its application
     A cotton fiber development specific promoter of GaRDL 1 gene had been isolated from cotton genomic DNA. The promoter was connected GFP sequentially as report gene and was transformed into ovule by pollen tube pathway. Result showed that GFP could be detected in fiber after 3 days of ovary injection uncovering the specific expression of promoter in fiber. Sucrose synthase gene was reversely ligased after promoter and sucrose synthase activity and carbohydrate content of mixture of ovule and fiber was measured after 3 days of ovary injection using antisense inhibition method. Result showed that sucrose synthase activity reduced in white, brown, and green cotton fiber. However, sucrose content changes little because of its low degradation resulting in low content of glucose and fructose. And thus carbohydrate utilization efficiency was lowered.
引文
1.曹新川,何良荣,蔡臻伟,郑德明,梅拥军,胡守林,熊仁慈.2003.彩色棉与海岛棉种间F_1杂种优势分析.棉花学报,15,191-192
    2.陈大军,简桂良,李仁敬,张振南,刘丰疆,姚正培.2003.转天麻抗真菌蛋白基因彩色棉新品系抗枯黄萎病研究.分子植物育种,1,673-676
    3.陈旭升,刘剑光,狄佳睿,许乃银,肖松华.2001.棕色棉纤维色度与产量性状相关分析.中国棉花,28,12-13
    4.董合忠,李维江,唐薇,振怀.2002.2个彩色棉材料的农艺性状和纤维发育特点.山东农业科学,4,6-9
    5.高俊凤主编.2006.植物生理学实验指导,北京:高等教育出版社
    6.郭宝德,杨芬,牛永章,黄穗兰,冀丽霞.2005.远缘杂交与半配合育种相结合培育彩色棉.棉花学报,17,99-102
    7.郭江勇,王义琴,吴明刚,张利明,刘丰疆,李文彬,刘海峰,孙勇如.2003.利用RAPD标记对彩色棉遗传多样性的分析.棉花学报,15,269-273
    8.郭江勇,王义琴,吴明刚,张利明,刘丰疆,李文彬,刘海峰,赵天鹏,孙勇如.2004.棕色棉和绿色棉遗传多样性的比较研究.遗传,26,63-38
    9.郝再彬,苍晶,徐仲.2002.植物生理实验技术,哈尔滨:哈尔滨出版社
    10.侯必新,张美桃,李子辉,万海青.2006.棕色彩棉叶光合特性与氮肥调节效应.棉花学报,18,184-185
    11.黄培堂主译.2002.分子克隆实验指南(第三版),北京:科学出版社
    12.焦改丽,孟钊红,聂安全,南芝润,张换样,李俊峰,王胶娟,赵俊侠,李燕娥,郭三堆.2004.花椰菜花叶病毒(CaMV)35S启动子在转基因棉花中的表达.作物学报,30,1135-1139
    13.孔宪良,万英,郭景红,王林,刘建国,朱志新.2002.新疆早熟彩色棉育种初报.新疆农垦科技,2,19-21
    14.李合生主编.2000.植物生理生化实验原理和技术,北京:高等教育出版社
    15.李维江,张冬梅,唐薇,董合忠.2001.转Bt基因抗虫棉和有色棉苗期耐盐性差异研究.棉花学报,13,234-237
    16.李永山.2002.彩色棉纤维色泽遗传规律研究.山西农业科学,30,44-46
    17.李悦有,王学德.2002.彩色棉纤维的超微结构观察.浙江大学学报:农业与生命科学版,28,379-382
    18.李悦有,王学德,徐亚浓.2002.棕色棉细胞质雄性不育花药的细胞学观察.浙江大学学报:农业与生命科学版,28,11-15
    19.李悦有,王学德.2002.细胞质雄性不育彩色棉杂种优势的表现.浙江大学学报:农业与生命科学版,28,7-10
    20.刘丰疆,刘海峰,黄芳,李慕春,曹燕燕,罗成,李金枫.2006.GAFP基因导入对彩色棉抗病性和农艺及经济性状的影响.中国农学通报,22,57-59
    21.刘丰疆,马德成,李仁敬,李卫平,陈大军,姚正培,宋武,李玮.2004.天麻抗真菌蛋白基因(GAFP)转化彩色棉新品系抗黄、枯萎病性鉴定.新疆农业科学,41,244-247
    22.鲁忠于,张亚良,姚云芳.2000.彩色棉试种初报.安徽农学通报,6,31-32
    23.马轩,杜雄明,孙君灵.2003.18个彩色棉品系的SSR指纹分析.植物遗传资源学报,4,305-310
    24.潘瑞炽主编.2004.植物生理学.北京:高等教育出版社,56-66
    25.潘兆娥,杜雄明,孙君灵,周忠丽,庞保印.2006.遮光对彩色棉的色泽和纤维品质的影响.棉花学报,18,264-268
    26.邱新棉,俞碧霞,朱乾浩,吴逸飞.2000.天然彩色棉育种初报.中国棉花,27,24-25
    27.邱新棉,俞碧霞,朱乾浩,赵连英,傅杏花.1 999.天然彩色棉育种研究.浙江农业学报,11,238-241
    28.邱新棉,周文龙,李茂松,马永根.2002.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学,35,610-615
    29.上海植物生理学会 主编.1985.植物生理学实验手册,上海:上海科学技术出版社
    30.石玉真,杜雄明,刘国强,强爱娣,周忠丽,潘兆娥,孙君灵.2002.天然有色棉纤维和短绒色泽遗传分析.棉花学报,14,242-248
    31.孙东磊,杜雄明,马峙英.2006.应用特异引物对彩色棉花色苷合成关键酶基因初步研究.棉花学报,18,315-316
    32.孙济中,陈布圣主编.1999.棉作学.北京:中国农业出版社,153-155
    33.王冬梅,胡守江,姚正培,李建平,刘清明,王玉珍,焦明钰,李仁敬,田颖川.2005.转基因抗虫彩色棉对棉蚜抗性的初步鉴定.核农学报,19,24-28
    34.王国祥.1998.彩色棉的色彩及遗传分析.甘肃农业科技,11,7-9
    35.万国祥.2004.彩色棉与海岛棉远缘杂交后代表现.中国棉花,31,10-11
    36.王冬梅,李建平,黄乐平,李仁敬,郭江勇,吴明刚,田颍川,国洪年.2003.转抗虫基因彩色棉的获得.农业生物技术学报,11,101-102
    37.王关林,方宏筠.2002.植物基因工程,北京:科学出版社
    38.王荣,李冠,李燕.2005.诱抗剂对彩色棉花一些抗病相关生化物质的影响.棉花学报,17,107-111
    39.王学德,李悦有.2002.彩色棉纤维发育的特性.浙江大学学报:农业与生命科学版,28,237-242
    40.王学德,李悦有.2002.彩色棉纤维色素提取和测定方法的研究.浙江大学学报:农业与生命科学版,28,596-600
    41.王学德,李悦有.2002.彩色棉雄性不育系、保持系和恢复系的选育及DNA指纹图谱构建.浙江大学学报:农业与生命科学版,28,1-6
    42.王新绘,李冠,吕杰,张秋云.2004.氮离子注入彩棉种子引起M_1代的变化.激光生物学报,13,294-297
    43.王义琴,陈大军,危晓薇,吴明刚,王冬梅,姚正培,黄全生,刘丰疆,美丽古丽,李仁敬,孙勇如.2003.天麻抗真菌蛋白基因(gafp)转化彩色棉的研究.植物学通报,20,703-712
    44.吴永成,丁海萍,李首成.2002.天然彩色棉叶片光合色素测定分析.2002.四川农业大学学报,20,182-184
    45.吴永成,李守成.2006.天然有色棉纤维发育特性.西南农业学报,19,1010-1013
    46.吴永成,李守成.2006.天然有色棉纤维早期分化发育的细胞形态观察.四川农业大学学报,24,40-43
    47.邢朝柱,喻树迅,郭立平,苗成朵,冯文娟,王海林,赵云雷.2007.不同环境下抗虫陆地棉杂交种优势表现及经济性状分析.棉花学报,19,3-7
    48.徐崇志,李青,曹新川.2003.彩色棉与海岛棉种间杂种优势及其主要性状的遗传分析.中国棉花,30,17-19
    49.杨伯祥,周宜军,王治斌.1999.彩色棉主要经济性状研究.中国棉花,26,9-10
    50.杨国正,展茗.2002.静电场处理对彩色棉产量和相关性状的影响.棉花学报,14,60-61
    51.杨国正,展茗,骆炳山.2004.抗虫棉、彩色棉光合特性及其与生态生理因子相关性研 究.华中农业大学学报,23,197-202
    52.杨兴洪,邹琦,赵世杰.2005.遮阴和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,29,8-15
    53.曾广文主编.植物生理学.四川:成都科技大学出版社,115-132
    54.詹少华,林毅,蔡永萍,李正鹏.2006.天然彩棉棕色素稳定性及其机理研究.激光生物学报,15,354-358
    55.詹少华,林毅,蔡永萍,汪曙.2004.天然棕色棉色素提取、纯化及UV光谱研究.激光生物学报,13,324-328
    56.詹少华,林毅,蔡永萍,吴甘霖,李正鹏.2006.棕色棉纤维中酚类物质动态变化与色素合成的关系.作物学报,32,1684-1688
    57.詹少华,林毅,蔡永萍.2005.彩色棉棉铃生长发育动态研究简报.棉花学报,17,127-128
    58.詹少华,林毅,吕凯.2005.天然彩色棉过氧化物酶·丙二醛及硝酸还原酶的测定.安徽农业科学,33,17-18
    59.詹少华,林毅,张倩.2005.天然棕、绿彩色棉叶片光合色素分析.安徽农业大学学报,32,174-177
    60.詹少华,林毅.2005.天然彩棉棕色素定量测定方法的建立.分子植物育种,3,439-444
    61.张红艳,李冠,李仁敬.2004.彩色棉再生体系影响因子及抗病基因NP-1转化的研究.新疆大学学报:自然科学版,21,94-98
    62.张兴中,周雁生,蓝家祥.2002.天然彩色棉研究现状及部分性状的遗传表现.中国农学通报,18,92-93
    63.张林水,朱祯,吴霞,姜艳丽,徐鸿林,上官小霞,李波,李燕娥.2005.转三价抗虫基因彩色棉的获得.西北植物学报,25,1126-1131
    64.张美冬,詹先进,张献龙.2003.彩色棉品种资源的RAPD多态性分析.华中农业大学学报,22,427-430
    65.张培通,朱协飞,郭旺珍,俞敬忠,张天真.2006.高产棉花品种泗棉3号产量及其产量构成因素的遗传分析.作物学报,32,1011-1017
    66.张秋云,郭江勇.2004.RAPD技术在彩棉品种鉴定中的应用.新疆农业科学,41,143-146
    67.张雪林.1996.彩色棉引种试验小结.中国棉花,23,23
    68.张雪林.1998.彩色棉选育初报.中国棉花,25,18
    69.赵向前,王学德.2002.纤维颜色作为指示性状的三系杂交棉制种技术.浙江大学学报:农业与生命科学版,28,123-126
    70.赵向前,王学德.2005.天然彩色棉纤维色素成分的研究.作物学报,31(4),456-462
    71.赵向前,王学德.2005.细胞质雄性不育彩色棉的杂种优势利用和制种研究.棉花学报,17,8-11
    72.朱伟,王学德,华水金,张小全,蒋培东.2005.鸡脚叶标记的三系杂交棉光合特性的研究.中国农业科学,38,2211-2218
    73.Albrizio R,Steduto P.2003.Photosynthesis,respiration and conservative carbon use efficiency of four field grown crops.Agricultural and Forest Meteorology,116,19-36
    74.Amor Y,Haigler CH,Johnson S,Wainscott M,Delmer DP.1995.A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants.Proceedings of National Academic Science of U.S.A.,92,9353-9357
    75.Babb VM,Haigler CH.2001.Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems.Plant Physiology,127,1234-1242
    76.Baier M,Dietz K.2005.Chloroplasts as source and target of cellar redox regulation:a discussion on chloroplast redox signals in the context of plant physiology.Journal of Experimental Botay,56,1449-1462
    77.BandyopadhyayA,Datta K,Zhang J,YangW,RaychaudhuriS,Miyao M,Datta SK.2007.Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene from maize.Plant Science,172,1204-1209
    78.Basra A,Malik CP.1984.Development of the cotton fiber.International review of cytology-a survey of cell biology,89,65-113
    79.Bauer P J,Frederic JR,Bradow JM,Sadler E J,Evans DE.2000.Canopy photosynthesis and fiber properties of normal- and late-planted cotton.Agronomy Journal,92,518-523
    80. Beasley CA. 1973. Hormonal regulation of growth in unfertilizered cotton ovules. Science, 179, 1003-1005
    
    81. Beasley CA, Ting IP. 1973. The effects of plant growth substances on in vitro fiber development from fertilized cotton ovules. American Journal of Botany, 60, 130-139
    
    82. Beasley CA. 1977. Temperature-dependent response to indoleacetic acid is altered by NH_4~+ in cultured cotton ovules. Plant Physiology, 59, 203-206
    
    83. Beasley CA, Egli MA, Chang S, Radin JW. 1979. Independent control fiber development and nitrate reduction in cultured cotton ovules. Plant Physiology, 63, 57-60
    
    84. Bem-Shem A, FrolowF, Nelson N. 2003. Crystal structure of plant photosystem 1. Nature, 426, 630-635
    
    85. Benfey PN, Chua NH. 1990. The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science, 250, 959-966
    
    86. Biolley JP, Jay M. 1993. Anthocyanins in modern roses: chemical and colorimetric fertures in relation to the colour range. Journal of Experimental Botany, 11, 1725-1734
    
    87. Bondada BR, Oosterhuis DM, Wullschleger SD, Kim KS, Harris WM. 1994. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, brackets, and the capsule wall. Journal of Experimental Botany, 45, 111-118
    
    88. Boquet DJ, Moser EB. 2003. Boll retension and boll size among intrasympodial fruiting sites in cotton. Crop Science, 43, 195-201
    
    89. Bouma TJ, De Visser R, Van Leeuwen PH, De Kock MJ, Lambers H. 1995. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature leaves and their contribution to leaf dark respiaration. Journal of Experimental Botany, 46, 1185-1194
    
    90. Brummell DA. 1986. Cell wall acidification and its role in auxin-stimulated growth. Jounal of Experimental Botany, 37, 270-276
    
    91. Burbulis lE, lacobucci M, Winkel-Shirley B. 1996. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell, 8, 1013-1025
    
    92. Campanero-Rhodes MA, ChildsRA, Kiso M, Komba S, Le NarvorC, Warren J, Otto D, Feizi T. 2006. Carbohydrate microarrays reveal sulphation as a modulator of seglec binding. Biochemcial and Biophysical Research Communications, 344, 1141-1146
    
    93. Chen ZH, Wu FB, Wang XD, Zhang GP. 2005. Heterosis in CMS hybrids of cotton for photosynthetic and chlorophyll fluorescence parameters. Euphytica, 114, 353-361
    
    94. Chourey PS, Nelson OE. 1976. The enzymatic deficiency conditioned by the shrunken-1-1 mutations in maize. Biochemical Genetics, 14, 1041-1055
    
    95. Cornish K, Edgar LJW, Lu TZ, Zieger E. 1991. Enhanced photosynthesis and stomatal conductance of pima cotton {Gossypium barbadense L.) bred for increased yield. Plant Physiology, 97, 484-489
    
    96. DavidonisGH, Johnson AS, LandivarJA, Fernandez CJ. 2004. Cotton fiber quality is related to boll location and planting date. Agronomy Journal, 96, 42-47
    
    97. Delmer DP, Amor Y. 1995. Cellulose biosynthesis. Plant Cell, 7, 987-1000
    
    98. De Vetten N, Ter Horst J, Van Schaik HP, De Boer A, Mol J, Koes R. 1999. A cytochrome b_5 is required for full activity of flanonoid 3', 5'-hydroxylase, a cytochrome P450 involved in the formation of blue flowers. Proceedings of National Academic Science of U. S. A., 96, 778-783
    
    99. Dhindsa RS, Beasley CA, Ting IP. 1975. Osmoregulation in cotton fiber. Plant Physiology, 56, 364-389
    
    100.Dickerson DK, Lane EF, Rodriguez DF. 1999. Naturally colored cotton: resistance to changes in color and durability when refurbished with selected laundry aids. California Agricultural Technology Institute, California State University, Fresno, 1-42
    
    101.Dutilluel C, Garmier M, Noctor G, Mathieu C, Philippe C, Foyer CH, De Paepe R. 2003. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell, 15, 1212-1226
    
    102.DuttY, WangXD, ZhuYG, Li YY. 2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding, 123, 145-151
    103.Ecker JR, Davis RW. 1986. Inhibition of gene expression in plant cells by expression of antisense RNA. Proceedings of National Academic Science of USA, 83, 5372-5376
    104.Elzenga JTM, Prins BA. 1989. Light-induced polar pH changes in leaves of Elodea canadensis II. Effects of ferricyanide: evidence for modulatin by the redox state of the cytoplasm. Plant Physiology, 91, 68-72
    105.Ennahli S, Earl HJ. 2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Science, 45, 2374-2382
    106.Fang RX, Nagy F, Sivasubramaniam S, Chua NH. 1989. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell, 1, 141-150
    107.Gepts P. 2002. A comparison between crop demostication, classical plant breeding, and genetic engineering. Crop Science, 42, 1780-1790
    108.Gibon Y, Larher F. 1997. Cycling assay for nicotinamide adenine dinucleotides: NaCI and ethanol solubilization of the reduced tetrazolium. Analytial Biochemistry, 251, 153-157
    109.Gokani SJ, Thaker VS. 2002. Physiological and biochemical changes associated with cotton fiber development K. Role of IAA and PAA. Field Crops Research, 77, 127-136
    110.Grabber JH. 2005. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Science, 45, 820-831
    111 .Griesbach RJ. 1998. The effect of the ph 6 gene o the color of Petunia hybrida Vilm. flower. Journal of American Society for Horticulture Science, 123, 486-737
    112.Gu MY. 1992. Dye industry to do more to protect environment. Filtration & Separation, 29, 485
    113.Gutierrez OA, Basu S, Saha S, Jenkins JN, Shoemaker DB, Cheatham CL, McCarty JJC. 2002. Genetic distance among selected cotton genotypes and its relationship with F_2 performance. Crop Science, 42, 1841-1847
    
    114.Haber AH, Luippold HJ. 1960. Effects of gibberellin, kinetin, thiourea, and photomorphogenic radiation on mitotic activity in dormant lettuce seed. Plant Physiology, 35, 486-494
    115.Haigler CH, Rao NR, Roberts EM, Huang J, Upchurch DR, Trolinder NL. 1991. Cultured ovules as models for cotton fiber development under low temperature. Plant Physiology, 95, 88-96
    116.Hilton TA, Bruliera F, Lester DR, Tanaka Y, Hyland CD, Menting JGT, Lu CY, Farcy E, Stevenson TW, Cornish EC. 1993. Cloning and expression of cytochrome P450 genes controlling flower color. Nature, 366, 276-279
    117.Hochli M, Hackenbrock CR. 1979. Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proceedings of the National Academy of Sciences of the U.S.A., 76, 1236-1240
    118.Hsu CY, Creech RG, Jenkins JN, Ma DP. 1999. Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Science, 143, 63-70
    119.HuaSJ, Wang XD, Yuan SN, Shao MY, Zhu SJ, Jiang LX. 2007. Characterization of pigmentation and cellulose synthesis in colored cotton fiber. Crop Science, 47, 1540-1546
    120.HofJV. 1999. Increased nuclear DNA content in developing cotton fibers. American Journal of Botany, 86, 776-779
    121.Jasaitis A, Rappaport F, Pilet E, Liebl U, Vos MH. 2005. Activitonless electron transfer through the hydrophobic core of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the U.S.A., 102, 10882-10886
    122.Jauhar PP. 2006. Modern biotechnology as an integral supplement to conventional plant breeding. Crop Science, 46, 1841-1859
    123. Ji SJ, Lu YC, Feng JX, Wei G, Li J, Shi YH, FuQ, Liu D, Luo JC, ZhuYX. 2003. Isolation and analysis of genes preferentially expressed during early cotton fiber development by substractive PCR and cDNA array. Nucleic Acids Research, 31, 2534-2543
    124. Jiang LX, Yang SL, Xie LF, Puah CS, Zhang XQ, Yang WC, Sundaresan V, YE D. 2005. VANGUARD1 encodes a pectin methylesterase that enhances pollen tube growth in the Arabidopsis style and transmitting tract. Plant Cell, 17, 584-596
    125.John ME, Crow LJ. 1992. Gene expression in cotton (Gossypium hirustum L.) fiber: . cloning of the mRNAs. Proceedings of the National Academy of Sciences of the U.S.A., 89, 5769-5773
    126.Johnson-Flanagan AM, Spencer MS. 1981. The effect of rotenone on respiration in pea cotyledon mitochondria. Plant Physiology, 68, 1211-1217
    127.Jorgensen RA. 1995. Cosuppression, fower color patterns, and metastable gene expression states. Science, 268, 686-691
    128.Kay R, Chan A, Daly M, Mcpherson J. 1987. Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 236, 1299-1302
    129.Kim HJ, Williams MY, Triplett BA. 2002. A novel expression assay system for fiber-specific promoters in developing cotton fibers. Plant Molecular Biology Reporter, 20, 7-18
    130.Kohel. 1985. Genetic analysis of fiber color variants in cotton. Crop Science, 25, 93-797
    131.Kruger JN. 1990. Carbohydrate synthesis and degration. In Plant Physiology, Biochemistry, and Molecular Biology. Dennis DT, Turpin DH, eds. Harlow, UK: Longman Scientific and Technical Publishers, 59-76
    132.Li XB, Cai L, Cheng NH, Liu JW. 2002. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiology, 130, 666-674
    133.Li XB, Fan XP, Wang XL, Cai L, Yang WC. 2005. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 17, 859-875
    134.Liu HC, Creech RG, Jenkins JN, Ma DP. 2000. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3. Biochimica et Biophysica Acta, 1487, 106-111
    135.Ma DP, Liu HC, Tan H, Creech RG, Jenkins JN, Chang YF. 1997. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells. Biochimica et Biophysica Acta, 1344, 111-114
    136.Ma DP, Tan H, Si Y, Creech RG, Jenkins JN. 1995. Differential expression of a lipid transfer protein gene in cotton fiber. Biochimica et Biophysica Acta, 1257, 81-84
    137.Martin LK, Haigler CH. 2004. Cool temperature hinders flux from glucose to sucrose during cellulose synthesis in secondary wall stage cotton fibers. Cellulose, 11, 339-349
    138.Mathur N, Bhatnagar P, Nagar P, Bijarnia MK. 2005. Mutagenicity assessment of effluents from textile/dye industries of Sanganer, Jaipru (India): a case study. Ecotoxicology and Environmental Safety, 61, 105-113
    139.May OL, Murdock EC. 2002. Yield ranks of glyphosate-resistant cotton cultivars are unaffected by herbicides systems. Agronomy Journal, 94, 889-894
    140.McCarty JC, Wu JX, Jenkins JN. 2007. Use of primitive derived cotton accessions for agronomic and fiber traits improvement: variance components and genetic effects. Crop Science, 47, 100-110
    141.McLELLAN AR. 1977. Minerals, carbohydrates, and amino acid of pollens from some woody and herbaceous plants. Annals of Botany, 41, 1225-1232
    142.Meinert MC, Delmer DP. 1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiology, 59, 1088-1097
    143. Mellon JE. 1991. Purification and characterization of isoperoxidases elicited by Aspergillus flavus in cotton ovule cultures. Plant Physiology, 95, 14-20
    144.Millar H, Considine MJ, Day AA, Whelan JJ. 2001 Unraveling of the role of mitochondria during oxidative stress in plants. Internation Union of Biochemistry and Molecular biology Life, 51, 201-205
    145.Milroy SP, Bange MP. 2003. Nitrogen and light responses of cotton photosynthesis and implications for crop growth. Crop Science, 43, 904-913
    146.Moyano E, Martinez-Garcia JF, Cathie M. 1996. Apparent redundancy in myb gene function provides gearing for the control of flavonoid biosynthesis n antirrhinum flowers. Plant Cell, 8, 1519-1532
    147.Muranoto K, Hirata K, Shinzawa-ltoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S. 2007. A histidine residue acting as a cotrolling site for dioxygen reduction proton pumping by cytochrome c oxidase. Proceedings of the National Academy of Sciences of the U.S.A., 104, 7881-7886
    148.Namslauer A, Pawate AS, GennisRB, Brzezinski P. 2003. Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase. Proceedings of the National Academy of Sciences of the U.S.A., 100, 15543-15547
    149.Neves-Piestun BG, Bernstein N. 2001. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology, 125, 1419-1428
    150.Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. 2001. Flavonoids: a review of probable mechanisms of action and potential applications. American Journal of Clinic Nutrition, 74, 418-425
    151.Noctor G, Queval G, Gakiere B. 2006. NAD (P) synthesis and pyridine nucleotide cycling in plants and their potential importance in stress conditions. Journal of Experimental Botay, 57, 1603-1620
    152.Nolte KD, Hendrix DL, Radin JW, Koch KE. 1995. Sucrose synthase localization during initiation of seed development and trichome differentiation in cotton ovules. Plant Physiology, 109, 1285-1293
    153.0utlaw JWH, Zhang S. 2001. Single-cell dissection and microdroplet chemistry. Journal of Experimental Botany, 52, 605-614
    154.Ow DW, De Wet JR, Helinski DR, Howell SH, Wood KV, Deluca M. 1986. Transient and stable expression of the firefly Iuciferase gene in plant cell and transgenic plants. Science, 234, 856-859
    155.Pearce Cl, Lloyd JR, Guthrie JT. 2003. The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58, 179-196
    156.Petsch KA, MylneJ, Botella JR. 2005. Cosuppression of eukaryotic release factor 1-1 in Arabidopsis affects cell elongation and radical cell division. Plant Physiology, 139, 115-126
    157.Pettigrew WT. 2001. Environmental effects on cotton fiber hydrate concentration and quality. Crop Science, 41, 1108-1113
    158.Pettigrew WT, Turley RB. 1998. Variation in photosynthetic components among photosynthetically diverse genotypes. Photosynthesis Research, 56, 15-25
    159Preuss ML, Kovar DR, Lee YRJ, Staiger CJ, Delmer DP, Liu B. 2004. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers. Plant Physiology, 136, 3945-395
    160.Quattrocchil F, VerweijW, Kroof A, Spelt C, Mol J, KoesR. 2006. pH4 of petunia is an R2R3 MYB protein that activates vacuolar adidification through interactions with basic-helix-looo-helix transcription factors of the anthocyanin pathway. Plant Cell, 18, 1274-1291
    161.Radin JW, Kimball BA, Hendrix DL, Mauney JR. 1987. Photosynthesis of cotton plants exposed to elevated levels of carbon dioxide in the field. Photosynthesis Research, 12, 191-203
    162.Rayle DL. 1973. Auxin-induced hydrogen-ion secretion in Avena coleotiles and implicatins. Planta, 114, 63-73
    163.Rayle DL, Cleland R. 1972. The in vitro acid-growth response: relation to in vivo growth response and auxi action. Planta, 104, 282-296
    164.Rayle DL, Havghtox PM, Cleland R. 1970. An in vitro system that simulates plant cell extension growth. Proceedings of National Academy Science of the U.S.A., 67, 1814-1817
    165.Ramesh A, Lee DJ, Wong JWC. 2005. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents. Journal of Colloid and Interface Science, 291, 588-592
    166.Reddy AR, Reddy KR, Hodges HF. 1998. Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves. Plant Growth Regulation, 26, 33-40
    167. Richards RA. 2000. Selectible traits to increase crop photosynthesis and yield of graid crops. Journal of Experimental Botany, 51, 447-458
    168.Rieping M, Fritz M, Prat S, Gatz C. 1994. A dominant negative mutant of PG13 suppresses transcription from a cauliflower mosaic virus 35S truncated promoter in transgenic tobacco. Plant Cell, 6, 1087-1098
    169.Rinehart JA, Petersen MW, John ME. 1996. Tissue-specific and developmental regulation of cotton gene FbL2A: demonstration of promoter activity in transgenic plants. Plant Physiology, 112, 1331-1341
    170.RobertsE, Rao NR, Huang J, TronlinderNL, HaiglerCH. 1992. Effects of cycling temperatures on fiber metabolism in cultured cotton ovules. Plant Physiology, 100, 979-986
    171.Rohd A, Morreel K, Ralph J, GoeminneG, HostynV, deRyckeR, KushnirS, van Doorsselaere J, JoseleauJ, Vuylsteke M, van Driessche G, van BeeumenJ, Messens E, Boerjan W. 2004. Molecular phynotyping of the pal1 and pal2 mutants of Arabidopsis thaliana reveals far-reaching consequences on phenylpropanoid, amino acid, and carbohydrate metabolism. Plant Cell, 16, 2749-2771
    172.Ronen M, Rosenberg R, Shraiman Bl, Alon U. 2002. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proceedings of the National Academy of Sciences of the U.S.A., 99, 10555-10560
    173.Ruan YL, Chourey PS. 1998. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alteration in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiology, 118, 399-406
    174.Ruan YL, Chourey PS, Delmer DP, Perez-Gran L. 1997. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed. Plant Physiology, 115, 375-385
    175.Ruan YL, Llewellyn DJ, Furbank RT. 2000. Pathway and control of sucrose importinto initiating cotton fibers. Austrilian Journal of Plant Physiology, 27, 795-800
    176.RuanYL, Llewellyn DJ, Furbank RT. 2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of piasmodesmata and coordinated expression of sucrose and K~+ transporters and expansin. Plant Cell, 13, 47-60
    177.RuanYL, Llewellyn DJ, Furbank RT. 2003. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell, 15, 952-964
    178.Ruan YL, Xu SM, White R, Furbank RT. 2004. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiology, 136, 4104-4113
    179.RuanYL, Llewellyn DJ, FurbankRT, Chourey PS. 2005. The delayed initiation and slow elongation of fuzz-like short fibre cells in relation to altered patterns of sucrose synthase expression and plasmodesmata gating in a lintless mutant of cotton. Journal of Experimental Botany, 56, 977-984
    180.Rufty JTW, MacKown CT, Volk RJ. 1989. Effects of altered carbohydrate avalibility on whole-plant assimilation of ~(15)NO_3~-. Plant Physiology, 89, 457-463
    181.SahaS, Jenkins JN, WuJX, McCartyJC, Gutierrez OA, Percy RG, CantrellRG, Stelly DM. 2006. Effects of chromosome-specific introgression in upland cotton on fiber and agronomic traits. Jenetics, 12, 1927-1938
    182.Salomonsson L, Faxen K, Adelroth P, Brezezinski P. 2005. The timing of proton migration in membrane-reconstituted cytochrome c oxidase. Proceedings of the National Academy Sciences of the U.S.A., 102, 17624-17629
    183.Sanders PR, Winter JA, BarnasonAR, Rogers SG, Fraley RT. 1987. Comparison of cauliflower mosaic virus 35S and nopaline synthase promoters in transgenic plants. Nucleic Acid Research, 15, 1543-1558
    184.Saxena IM, Brown RM. 2005. Cellulose biosynthesis: current views and evolving concepts. Annals of Botany, 96, 9-21
    185.Schmutz A, Buchala AJ, Ryser U. 1996. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiology, 110, 403-411
    186.Shen XL, Zhang TZ, GuoWZ, ZhuXF, Zhang XY. 2005. Mapping fiber and yield QTLs with main, epistatic, and QTL × environment interaction effects in recombinant inbred lines of upland cotton. Crop Science, 46, 61-66
    187.Shen WY, Wei YD, Dauk M, Tan YF, Taylor DC, Selvaraj G, Zou JT. 2006. Involvement of a glycerol-3-phosphate dehydrogenase in modulating the NADH/NAD~+ ratio provides of evidence of mitochondrial glycerol -3-phosphate shuttle in Arabidopsis. Plant Cell, 18, 422-441
    188.Shi YH, ZhuSW, Mao XZ, Feng JX, QinYM, Zhang L, Cheng J, Wei LP, Wang ZY, ZhuXY. 2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber elongation. Plant Cell, 18, 651-664
    189.Shimizu M, Kimura T, KoyamaT, Suzuki K, Ogawa N, Miyashita K, Sakka K, Ohmiya K. 2002. Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene. Applied and Environmental Microbiology, 68, 4061-4066
    190.Shiratsuchi H, YamagishiT, Ishii R. 2006. Leaf nitrogen distribution to maximize the canopy photosynthesis in rice. Field Crops Research, 95, 291-304
    191.SiboutR, EudesA, MouilleG, PolletB, LapierreC, JouaninL, SeguinA. 2005. CINNAMYL ALCOHOL DEHYDROGENASE-C and -D are the primary genes involved in lignin biosynthesis in thr floral stem of Arabidopsis. Plant Cell, 17, 2059-2076
    192. Smart LB, Vojdani F, Maeshima M, Wilkins TA. 1998. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated. Plant Physiology, 116, 1539-1549
    193.Smith MW, Rohla CT, Maness NO. 2007. Correlation of crop load and return bloom with root and shoot concentrations of potassium, nitrogen, and nonstructural carbohydrates in pecan. Journal of the American Society for Horticultural Science, 132, 44-51
    194.Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. 2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 140, 637-646
    195.Soderman EM, Brocard IM, Lynch TJ, Finkelstein RR. 2000. Regulation and fuction of the Arabidopsis ABA-insensitive 4 gene in seed and abscisic acid response signaling networss. Plant Physiology, 124, 1752-1765
    196.Sun Y, Veerabomma S, Abdel-Mageed HA, Fokar M, Aami T, Yoshida S, Allen RD. 2005. Brassinosteroid reglates fiber development on cultured cotton ovules. Plant and Cell Physiology, 46, 1384-1391
    197.Tarr JA. 1985. Industrial wastes and public health: some historical notes, part 1. 1876-1932. American Journal of Public Health, 75, 1059-1067
    198.Tiwari SC, WilkinsTA. 1995. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Canadian Journal of Botany, 73, 746-757
    199.Tajima S, Kouzai K. 1989. Nucleotide pools in soybean nodule tissue, a survey of NAD(P)/NAD(P)H ratios and enery charge. Plant and Cell Physiology, 30, 589-593
    200.Tauber MM, Guebitz GM, Rehorek A. 2005. Degradation of azo dyes by laccase and ultrasound treatment. Applied and Environmental and Microbiology, 71, 2600-2607
    201.Teng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. 2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology, 139, 1840-1852
    202.To A, Valon C, Savino G, Guilleminot J, Devic M, GiraudatJ, Parcy F. 2006. A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell, 18, 1642-1651
    203.Valent BS, Albersheim P. 1974. The structure of plant cell walls V. On the binding of xyloglucan to cellulose fibers. Plant Physiology, 54, 105-108
    204.Vertapetian BB, Andreeva IN, Generozova IP, Polyakova L, Maslova IP, Dolgikh Yl, Stepanova AY. 2003. Functional electron microscopy in studies of plant response and adaption to anaerobic stress. Annals of Botany, 91, 155-172
    205.VidalG, Ribas-Carbo M, GarmierM, DubertretG, RasumssonAG, Mathieu C, Foyer CH, De Paepe. 2007. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell, 19, 640-655
    206.Vreeland JMJ. 1993. Naturally colored and organically grown cotton: anthropological and historical perspectives. Beltwide Cotton Conferences, National Cotton Council, Memphis, 1533-1535
    207.Vreeland JMJ. 1999. The revival of colored cotton. Scientific America, 280, 112-119
    208. Wade HK, Sohal AK, Jenkins Gl. 2003. Arabidopsis ICX1 is a negative regulator of several pathways regulating flavnoid biosynthesis genes. Plant Physiology, 131, 707-715
    
    209.Wang BH, WuYT, GuoWZ, ZhuXF, Huang NT, Zhang TZ. 2007. QTLanalysis and epistasis effects dissection of fiber quality in an elite cotton hybrid grown in second generation. Crop Science, 47, 1384-1392
    210.Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY. 2004. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell, 16,2323-2334
    211.Wilkinson JE, TwellD, LindseyK. 1997. Activities of CaMV35S and nos promoters in pollen: implications for field release of transgenic plants. Journal of Experimental Botany, 48, 265-275
    212.Winkel-Shirley B. 2001. Flavonoid biosynthesis: a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 126, 485-493
    213.Wu AM, Ling C, Liu JY. 2006. Isolation of a cotton reversibly glycosylated polypeptide (GhRGP1) promoter and its expression activity in transgenic tobacco. Journal of Plant Physiology, 163, 426-435
    214.Wu AM, Liu JY. 2006. Isolation of the promoter of a cotton (3-galactosidase gene (GhGal1) and its expression in transgenic tobacco plants. Science in China: Series C Life Sciences, 49, 105-114
    215.Wu YR, Machado AC, White RG, Llewellyn DJ, Dennis ES. 2006. Expression profiling indentifiers genes expressed early during lint fibre initiation in cotton. Plant Cell Physiology, 47, 107-127
    216.Xiao FM, Tang XY, Zhou JM. 2001. Expression of 35S::Pto globally activates defense-related genes in tomato plants. Plant Physiology, 126, 1637-1645
    217.Xiao YH, Zhang ZS, Yin MH, Luo M, LiXB, Hou L, PeiY. 2007. Cotton flavonoid structural genes related to the pigmentation in brown fibers. Biochemical and Biophysical Research Communications, 358, 73-78
     218.Xie DY, Sharma SB, Paiva NL, Ferreira D, DixonRA. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 299, 396-399
    219.Xu DP, Sung SJS, LobodaT, KormanikPP, Black CC. 1989. Characterization of sucrolysis via the uridine diphosphate and pyrophosphate-dependent sucrose synthase pathway. Plant Physiology, 90, 635-642
    220.Yatsu LY, Espelie KE, Kolattukudy PE. 1983. Ultrastructral and chemical evidence that the cell wall of green cotton fiber is suberized. Plant Physiology, 73, 521-524
    221.Yoshioka Y, Takahashi Y, Matsuoka K, Nakamura K, Koizumi J, Kojima M, Machida Y. 1996. Transient gene expression in plant cells mediated by Agrobacterium tumefaciens: application for the analysis of virulence loci. Plant and Cell Physiology, 37, 782-789
    222.Zeh M, CasazzaAP, KreftO, RoessnerU, Bieberich K, Willmitzer L, Hoefgen R, Hesse H. 2001. Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants. Plant Physiology, 792-802
    223.ZhangJF, LuY, Cantrell RG, Hughs E. 2005. Molecular marker diversity and field performance in commercial cotton cultivars evaluated in the Southerwesten USA. Crop Science, 45, 1483-1490
    224.ZhuSW, Gao P, Sun JS, Wang HH, LuoXM, Jiao MY, Wang ZY, XiaGX. 2006. Genetic transformation of green-colored cotton. In Vitro Cellular and Development Biology-Plant, 42, 439-444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700