用户名: 密码: 验证码:
施氮对甜菜氮素同化与碳代谢的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用桶栽试验,以标准偏高产型甜菜品种双丰16和标准偏高糖型甜菜品种甜研7为试材,系统的研究了不同氮素水平(0、60、120、180和240kg hm~(-2))及在同一氮素水平下不同硝态氮和铵态氮形态比例(1:1、1:2、1:3、2:1和3:1)对甜菜氮素同化及碳代谢的调控机理,明确了不同氮素水平和形态比例下甜菜植株体内干物质积累的变化规律,分析了氮素同化关键酶(硝酸还原酶NR、亚硝酸还原酶NiR、谷氨酰胺合成酶GS和谷氨酸合酶GOGAT)及碳代谢关键酶(RuBP羧化酶、蔗糖磷酸合成酶SPS、蔗糖合成酶SS和转化酶Inv)活力及相关指标的变化,以及甜菜体内与酶活力相伴的氮糖代谢产物(营养氮AN、功能氮FN、结构氮SN、葡萄糖、果糖和蔗糖)在生育期间的动态变化规律,并应用qRT-PCR技术对施氮调控下全生育期甜菜体内氮素同化关键酶基因的表达动态进行了检测分析,明确了施氮在转录水平上对氮素同化的调控机制;通过不同氮素水平和形态比例、酶活力与代谢产物含量等之间的相关分析,初步探讨了甜菜氮素同化与糖代谢对光合产物和能量的争夺在各生育时期的表现特点和产生这种争夺的关键代谢环节及其对甜菜产质量的影响,从而在酶学和分子水平上揭示氮素同化的机制,也为合理施用氮肥调节氮碳代谢提供了理论依据。本研究主要结论如下:
     1.甜菜体内NR和NiR活力均呈双峰曲线变化,NR活力苗期最高,叶片NiR活力高峰分别滞后于NR一个取样时期,而块根NiR活力高峰则在块根增长末期和糖分积累初期,N180处理叶片和块根NR和NiR活力均显著(P<0.05)高于其它氮素水平处理,同一氮素水平下NO_3~-/NH_4~+为3:1的混合态氮处理下NR和NiR活力显著(P<0.05)高于其它氮素形态比例处理,说明较高的施氮量水平以及NO_3~-/NH_4~+比例对于NR和NiR具有积极的促进作用,NR与NiR之间存在明显的偶联关系。
     2.全生育期甜菜叶片中GS、NADH-GOGAT以及块根中NADH-GOGAT活力均表现为双峰曲线变化趋势,而叶片中Fd-GOGAT和根中GS活力则表现为单峰曲线变化趋势。根中Fd-GOGAT活力很低。叶片中GS、Fd-GOGAT和NADH-GOGAT活力均随氮素水平的增加而升高,超过180kg hm~(-2)后随施氮水平的增加而降低,而块根中GS、NADH-GOGAT活力超过120kg hm~(-2)后迅速下降。叶片GS、Fd-GOGAT和NADH-GOGAT活力最适宜的NO-+3/NH4比例分别为1:1、3:1和2:1。而块根中GS、GOGAT对NH+4比较敏感,活力最适宜NO_3~-/NH_4~+比例为1:2。
     3.甜菜体内NR、NiR、GS和GOGAT基因的表达具有时间和空间上的差异变化。氮素调控对相应酶基因的mRNA表达的影响与酶活力存在一致性。施氮对氮素同化关键酶活力的调节发生在转录水平。
     4.各器官AN和SN以及叶柄和块根中的FN含量均呈单峰曲线变化,甜菜叶片中FN含量呈双峰曲线变化趋势。叶片和叶柄AN均于叶丛形成末期达到峰值;块根的AN含量于块根膨大期达峰值。两品种叶片FN峰值分别出现在叶丛形成期(SF16)和块根糖分积累初期(TY7),叶柄和块根中FN含量峰值则分别出现在块根膨大末期(SF16)和糖分积累期(TY7)。两品种甜菜各器官AN、FN和SN含量均表现为低氮水平处理低于高氮水平处理,高NO_3~-/NH_4~+比例处理高于低NO_3~-/NH_4~+比例处理。甜菜整个生育期中,各器官AN和SN含量表现为叶片>叶柄>块根,而各器官中FN含量表现为按照叶片、块根、叶柄的顺序依次降低。且各器官中均以SN含量占全氮的比例最高;AN含量在叶片和叶柄中所占比例次高,而FN含量最低;块根中FN和AN含量较为接近,这表明氮素的主要同化方向是结构性氮。
     5.不同氮素水平和形态比例处理均使甜菜的叶面积有不同程度的提高,其中180kg hm~(-2)和NO_3~-/NH_4~+为3:1的混合态氮效果较为显著(P<0.05);光系统II(PSII)最大光化学量子产量(Fv/Fm)、PSII实际光化学量子产量(ΦPSII)、光化学猝灭系数(qP)、净光合速率和气孔导度也表现出了一致的变化规律。甜菜RuBP羧化酶活力则在120kg hm~(-2)处理下显著高于其它氮素水平处理(与180kg hm~(-2)处理差异不显著);在NO_3~-/NH_4~+为2:1的混合态氮处理下显著高于(P<0.05)其它氮素形态比例处理。
     6.不同施氮处理下,甜菜叶片中糖分的积累以及各糖代谢相关酶活力得到了促进。其中,180kg·hm~(-2)以及NO-3/NH+4为3:1的施氮处理下,甜菜叶片中各糖组分积累以及SPS、SS分解方向以及Inv酶活力较高,而120kg·hm~(-2)以及NO_3~-/NH_4~+为2:1的施氮处理下,甜菜叶片中SS合成方向酶活力较高。SS在甜菜地上源的形成中起到重要的作用,120kg·hm~(-2)以及NO_3~-/NH_4~+为2:1的施氮处理,能够在生育前期有效的调节叶片中蔗糖的分配方向,促进源的形成和物质的生产,有利于生育后期块根含糖率的提高,同时在块根糖分积累期保证SS合成方向活力维持较高水平,促进甜菜光合源的扩大和物质的生产。甜菜叶柄中SPS和SS合成方向酶活力在180kg·hm~(-2)和NO-3/NH+4比例为3:1施氮条件下达较大值,但SPS、SS合成方向酶活力的无限制增强,而SS分解方向和Inv酶活力降低,可能会促进叶柄蔗糖的大量积累,而不利于叶片蔗糖向叶柄中的输入。甜菜块根中SPS活力在全生育期明显高于SS合成方向酶活力,但其与甜菜块根中糖分的积累不呈正相关关系,且效应不明显,甜菜块根中糖分的积累主要由SS合成和分解方向以及Inv酶协同作用来调节,同时合理的施氮水平和NO-3/NH+4比例可以使甜菜块根中糖代谢酶活力达到较高水平,使甜菜糖代谢各酶向有利于蔗糖合成的方向发展,从而在生产上可以通过氮肥的调控,使甜菜产质量达最佳水平。
     7.全生育期甜菜氮素同化与碳代谢关键指标均呈不同程度的相关,氮素同化与碳代谢关键指标对产质量的影响随生育期不断推进而不断变化。苗期叶片exNR和叶片SPS活力对甜菜产量的提高影响较大,块根NiR和叶片Inv活力对产糖量的影响最显著。块根NiR、叶片SS合成方向活力对含糖率促进作用最大。叶丛形成期叶片和块根NiR、RuBP羧化酶以及块根SS分解方向活力对甜菜产量影响最为明显,叶片Fd-GOGAT和NADH-GOGAT、叶片SPS、块根SS分解方向和块根Inv活力对含糖率的提升贡献较大。而叶片NiR和Fd-GOGAT、叶片和块根SS分解方向活力对甜菜产糖量的影响最大。块根膨大期叶片Fd-GOGAT活力对甜菜产质量均有积极且较大的促进作用,叶片SS分解方向和Inv以及块根NiR活力对甜菜产量贡献率较大,而叶片NADH-GOGAT、叶片SS合成方向和叶柄Inv活力对于块根含糖率以及叶柄SS合成方向和块根SS分解方向活力对产糖量的贡献率均较大。块根糖分积累期叶片NADH-GOGAT和叶柄Inv活力对含糖率及产糖量以及叶柄Inv活力对于产量和产糖量均具有很大的影响。
     8.随着施氮水平以及混合态氮素中NO3--N比例的不断提高,甜菜干物质积累呈增加的趋势,特别是在甜菜生育后期表现的更加明显。180kg hm~(-2)施氮量以及较高NO-3-N比例的混合态氮(NO_3~-/NH_4~+比例为3:1)有利于甜菜构建强大的营养体,制造更多的光合产物,为甜菜块根膨大生长期光合产物向块根中运转提供物质基础和保证。不同氮素水平处理下,SF16和TY7在180kg hm~(-2)处理下产量最高(P<0.05),而120kg hm~(-2)处理下产糖量最优;不同氮素形态比例处理下,SF16和TY7均在N3:1处理下产量最高,其次为N2:1处理,但二者差异不显著(P>0.05)。在各施氮素处理条件下,产糖量以N2:1处理最高。
In order to systemically and deeply study the regulation mechanism of nitrogen (N)application levels and different NO-3/NH+4ratio with same N application levels on nitrogenassimilation and carbon metabolism in sugar beet,‘Shuangfeng16’(higher yield diploid varieties)and ‘Tianyan7’(higher sugar content diploid varieties), two varieties were used in pot cultureexperiment with five N application levels and five different NO_3~-/NH_4~+ratio treatments (1:1,1:2,1:3,2:1,3:1). The changes of dry matter accumulation of sugar beet plants, the activities of keyenzymes of nitrogen assimilation (nitrate reductase NR, nitrite reductase NiR, glutaminesynthetase GS and glutamate synthase GOGAT) and carbon metabolism (RuBP carboxylase,sucrose phosphorus synthase SPS, sucrose synthase SS and invertase Inv) were analyzed, thedynamic changes of products accompanied with the enzyme activity of carbon and nitrogenmetabolism in sugar beet such as nutrition nitrogen AN, function nitrogen FN and structurenitrogen SN, glucose, fructose and sucrose in growing period. At the same time, through using theqRT-PCR, the expression of key enzymes gene for nitrogen metabolism of sugar beet regulated bynitrogen during the whole growth period was detected, and the regulation mechanism of nitrogenin nitroten metabolize on the transciriptional level was clear. Through the correlation analysisbetween the different nitrogen levels and different NO_3~-/NH_4~+ratio with enzyme activity andmetabolites content, we preliminary study the competitive characteristics between nitrogenassimilation and sugar metabolism for photosynthetic products and energy in every growth stages,the most essential segment of produce competition, and the effect of competitive characteristics onthe sugar beet yield and quality. The results of this study contributed to progressive understandingof nitrogen assimilation mechanism on enzymatic and molecular level, providing the theoreticfoundation for regulating carbon and nitrogen assimilation by reasonably nitrogen application. Themain conclusions of this study were as follows:
     1. Activity of NR and NiR in sugar beet showed bimodal curve. NR activity in seedling stagewas the highest, second peak appeared at the foliage formation to root growth stage. The leaf NiRactivity peak were behind a sampling period of the NR, while root NiR activity peaks appeared atthe root growth and sugar accumulation initial stage. Activity of NR and NiR in leaf and root were highest under N180levels. NR and NiR activity reaching the highest at NO_3~-/NH_4~+3:1show thathigh nitrogen and NO-3-N ratio has positive effect on NR and NiR, coupling relationship existsobviously and the NR and NiR.
     2. Activity of GS, NADH-GOGAT in sugar beet leaf and NADH-GOGAT in sugar beet roottuber all performance trend of bimodal curve, but activity of Fd-GOGAT in sugar beet leaf and GSin sugar beet root tuber all performance trend of unimodal curve, Fd-GOGAT of sugar beet roottuber were lowest. At the peak time, there is a certain synergy and complementarity relationsbetween GS and GOGAT,Fd-GOGAT and NADH-GOGAT. GS, Fd-GOGAT and NADH-GOGATin leaf were increased with the nitrogen level increasing, and decreased with the increase ofnitrogen level more than180kg hm~(-2).Activity of GS, NADH-GOGAT in roots tuber also increasedwith the nitrogen level increasing, but reached the highest enzyme activity decreased rapidly after120kg hm~(-2). The ratio of nitrogen with more high content of NO3--N leaves increased the activityof GS, GOGAT in leaf in the different forms of nitrogen treatment. The most suitable contents ofNO-3/NH+4to GS、Fd-GOGAT and NADH-GOGAT in leaves and GS and NADH-GOGAT in rootwere1:1,3:12:1and1:2, respectively. GS and GOGAT in root were more sensitive to NH4+, andthe enzyme activity increased with the NO3-/NH+4ratio decreasing. Activity of GS andNADH-GOGAT in root was best suited radio of NO_3~-/NH_4~+is equal to1:2.
     3. Gene expression of NR, NiR, GS and GOGAT in sugar beet was different in time and space.Content of MRNA was relatively high corresponding with nitrogen treatment which having highenzyme activity. Nitrogen treatment can regulate activity of nitrogen metabolism enzymes in sugarbeet at the level of transcription.
     4. With reproductive process moves forward,contents of AN in sugar beet organs showedunimodal curve, AN of leaves and petiole reached peaking at foliage formation stage, AN of roottubes reached peaking in period of root growth.. With different nitrogen levels, N180was thehighest, in treatment of different nitrogen forms, the N3:1was the highest. The various organs ANcontent expressed as leaf> petiole> root in beet throughout the growing period. Expression of FNcontent in sugar beet leaves increased first and then decreased, and then increased and decreased,the peaks appeared at the formation stage of the leaves and the early stage of sugar accumulationof the root. The FN content in petioles and roots showed a single peak curve trend, the peaksappeared in the late of root growth and sugar accumulation period respectively. The levels ofnitrogen treatment performance for the N180> N120>N240>N60>N0, and the ammonium nitrateproportion is N2:1>N3:1>N1:1>N1:2>N1:3, FN content in each organ according to the reductionorder of leaf, root, petiole. Variation tendency of SN content in the whole growth period of sugarbeet's different organs was roughly same, showed a single-peak curve. The SN content in thedifferent organs of two varieties of sugar beet showed low nitrogen (N0and N60) lower than highnitrogen (N120, N180and N240), and high ammonium nitrate ratio (3:1,2:1and1:1) was higherthan that of low NH+4ratio (1:2and1:3). Two varieties of FN content was leaf> petiole> root tuber. Nitrogen in the process of the assimilation process, the dynamic changes and transformationof three nitrogen forms was little difference between the two varieties. The highest proportion ofthe total nitrogen of various organs are two varieties SN content; leaves and petioles followed byAN, while FN was lowest, content of FN in root tuber was close to AN, this indicates that thenitrogen assimilation direction is structural nitrogen. In the comparison of three organs at eachgrowth period, the content of AN in SF16and TY7petiole was highest, the content of FN in roottuber was highest, and the content of SN in the leaves was highest. The content of three nitrogenforms were different could relationship with the differences of organs function.
     5. The leaf area improved in different degrees under different nitrogen levels and forms ofproportional treatments,180kg hm~(-2)and NO-3/NH+43:1mixed nitrogen had a significant effect(P<0.05). At the same time the maximal photochemical quantum yield photosystem II (PSII),ΦPSII, photochemical quenching coefficient (qP), net photosynthetic rate and stomataconductance also showed a consistent variation. RuBP carboxylic activity was higher in120kghm~(-2)and nitrogen treatment NO_3~-/NH_4~+under2:1mixed.
     6. Under different nitrogen treatments, the accumulation of sugar beet leaves and activity ofkey enzyme in glucose metabolism had promoted. Under the content of fertilization in180kg·hm~(-2)and NO_3~-/NH_4~+3:1, accumulation of sugar components, SPS and SS decomposition and Invenzyme activity were high in sugar beet leaves, as well as the direction of.120kg·hm~(-2)fertilization,and the enzyme activity of the synthetic direction NO-3/NH+42:1beet leaves SS. SS plays animportant role in the formation of the beet earth source,120kg·hm~(-2)fertilizer NO-3/NH+4the2:1treatment can be effective in the early growth stage to adjust the allocation of sucrose direction,promoting the formation of the source and substance of the production, which is conducive to theincrease in the rate of fertility late tuber sugar,at the same time ensure SS synthetic directionvitality to maintain a higher level, to promote the expansion of the sugar beet photosyntheticsource and substance of production in the tuber sugar accumulation period. The SPS and SS of beetpetiole synthesis direction of enzyme activity in the180kg·hm~(-2)and the mixed nitrogenNO_3~-/NH_4~+ratio of3:1fertilizer was greater, but enhanced synthesis enzyme unlimited direction ofSPS and SS. The decomposition direction of SS and Inv enzyme activity was reduced. A largenumber of the petiole sucrose may be accumulation, the detriment of the blade sucrose to enter thepetiole. The beet petiole root in SPS vitality synthetic direction was significantly higher than of theSS enzyme activity in the whole growth, and the accumulation in sugar petiole root was positivelycorrelated, and the effect is obvious, Beet root sugar accumulation by SS synthesis anddecomposition direction Inv enzyme synergy to regulate, and the reasonable nitrogen levels andNO_3~-/NH_4~+ratio beet root sugar metabolism enzyme activity reached a high level, and beet sugarmetabolism enzyme to favor sucrose synthesis direction of development, the regulation of nitrogenfertilizer, sugar beet yield and quality up to the optimal level in production.
     7. In whole growth period, sugar beet nitrogen assimilation and carbon metabolism showed a correlation of different degree, effect of nitrogen assimilation and key indicators in carbonmetabolism on the yield changing with the growth period moving forward. Effect of exNR inleaves and SPS in leaves on root tuber yield was strong, effect of NiR in root and Inv in leaves onsugar yield was the most significant. The promoting effect of NiR in root and SS+on the contentof tuber sugar was most. In the foliage form of leaves, effect of NiR, RuBP carboxylase enzyme inroots and NiR, RuBP, SS-in leaves on sugar beet root yield was the most obvious. Effect ofFd-GOGAT in leaves, NADH-GOGAT in leaves, SPS in leaves, SS-in root and Inv in root onincreasing the sugar content was bigger contribution. Effect of NIR in leaves and Fd-GOGAT inleaves SS-in leaves SS-in root on sugar content was biggest. In the growth period, the promotingeffect of Fd-GOGAT in leaves on root yield of sugar beet positively. SS-in leaves, Inv in leavesand NiR in root had more contribution to root yield. The contribution of NADH-GOGAT in leaves,SS+in leaves, Inv in petioles and SS+in petioles and SS-in root to sugar content was big. Effectof NADH-GOGAT in leaves and Inv in root on sugar content and yield was great.
     8. Dry matter accumulation in sugar beet increased with the nitrogen level and nitratenitrogen in the mixed state increasing; especially in the late growth stage was more obvious.Nitrogen application amount of180kg hm~(-2)and mixed nitrogen with higher ratios NO-3-N(NO_3~-/NH_4~+3:1) were in favor of conducive to build a strong nutrition and make morephotosynthetic product providing the material basis for the root in the enlargement growth period.SF16and TY7under180kg hm~(-2)treatment got the highest yield,120kg hm~(-2)treatment reachedsugar yield optimal with different nitrogen levels; SF16and TY7under N3:1treatment reached thehighest yield, but N2:1treatment reached the highest sugar yield in different ratios of nitrogenforms processing.
引文
[1]陈连江,陈丽.我国甜菜产业现状及发展对策[J].中国糖料,2010,(4):62-68.
    [2]谢光辉,郭兴强,,王鑫,等.能源作物资源现状与发展前景[J].资源科学,2007,29(5):74-80.
    [3]王燕飞,李翠芳,李承业,等.我国甜菜栽培模式研究进展[J].中国糖料,2011,(1):55-57.
    [4]倪洪涛,孙元,黄雅曦.甜菜氮代谢的研究进展[J].中国甜菜糖业,2008,(4):35-38.
    [5]周仁喜.论甜菜氮代谢与糖代谢的关系[J].甜菜糖业,1986,(4):12-14.
    [6]于海彬,孙立英,蔡葆.甜菜氮糖代谢特点的研究[J].中国甜菜,1988,(4):11-17.
    [7]曲文章,崔杰,李滨胜.施氮量与甜菜产量的形成[J].中国甜菜,1992,(4):29-34.
    [8]张多英,马凤鸣.甜菜高同化氨途径研究进展[J].中国糖料,2005,(1):54-56.
    [9] ANDREW M,LEA P J,RAVEN J A,et al. Can genetic manipulation of plant nitrogenassimilation enzymes result in increased crop yield and greater N-use efficiency? Anassessment[J].Annals of applied biology,2004,145:25-40.
    [10]赵越,魏自民,马凤鸣.不同水平铵态氮对甜菜硝酸还原酶和谷氨酰胺合成酶活力的影响[J].中国糖料,2003,(1):22-25.
    [11]李彩凤,马凤鸣,赵越,等.氮素形态对甜菜氮糖代谢关键酶活性及相关产物的影响[J].作物学报,2003,29(1):128-132.
    [12]王晔.氮素营养对甜菜根中蔗糖代谢的调控[D].哈尔滨:东北农业大学硕士论文,2009.
    [13]杜永成,王玉波,范文婷,等.不同氮素水平对甜菜硝酸还原酶和亚硝酸还原酶活性的影响[J].植物营养与肥料学报,2012,18(3):717-723.
    [14]温明章,陈悦,谷锐升,等.谈中国植物科学基础研究与农业发展[J].植物学通报,2008,25(6):633-637.
    [15]丁广洲,侯静,陈丽,等.甜菜NADH-NR基因的克隆和序列分析[J].生物技术通报,2011,(10):90-96.
    [16]丁广洲,侯静,陈丽,等.甜菜nia基因的克隆及不同氮素形态诱导的差异表达[J].作物学报,2011,(9):1-9.
    [17]丁广洲,侯静,马凤鸣.甜菜硝酸还原酶基因编码氨基酸偏好及功能预测分析[J].中国糖料,2011,(4):3-6.
    [18]石晓燕,曾彦达,李世龙,等.甜菜亚硝酸还原酶基因(NiR)的克隆与表达分析[J].作物学报,2011,(5):1-12.
    [19]康传红,王淑春,陈胜勇,等.甜菜胞质型谷氨酰胺合成酶基因组DNA的克隆[J].植物生理学通讯,2008,44(4):710-714.
    [20]陈胜勇,侯静,李彩凤,等.蛋白和核酸合成抑制剂对氮素诱导甜菜谷氨酰胺合成酶基因表达的影响[J].作物学报,2009,35(3):445-451.
    [21]北京农业大学.农业化学[M].北京:中国农业大学出版社,1989.
    [22]丁广洲.甜菜硝酸还原酶基因的克隆及其特性研究[D].哈尔滨:东北农业大学博士论文,2008:1-2.
    [23]陆景陵.植物营养学(上册)[M].北京:中国农业大学出版社,2003.
    [24]武维华.植物生理学[M].北京:科学出版社,2006.
    [25] EVANS J R.Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivumL.)[J].Plant Physiology,1983,72:297-302.
    [26] SINCLAIR T R,HORIE T.Crop physiology&metabolism:leaf nitrogen, photosynthesis andcrop radiation use effiencency:a review[J].Crop Science,1989,29:90-98.
    [27]汪建飞,刑素芝,陈世勇,等.设施黄瓜干物质累积与NPK吸收规律[J].土壤通报,2005,36(5):708-711.
    [28]邰翔.氮素对温室黄瓜叶面积影响的模拟研究[D].南京:南京农业大学硕士论文,2007.
    [29] SCHJOERRING J K,HUSTED S,MACK G.The regulation of ammonium translocation inplants[J].Journal of Experimental Botany,2002,53:883-890.
    [30] STITT M,MULLER C,MATT P,et al.Steps towards an integrated view of nitrogenmetabolism[J].Journal of Experimental Botany,2002,53:959-970.
    [31]王忠.植物生理学[M].北京:中国农业出版社,2000.
    [32]陈进明.各种化肥对甜菜品质的影响[J].甜菜糖业,1976,(2):34-40.
    [33]高祖明,渡边陆生,王子善清,等.以NADH、NADPH、MV作为电子供体的亚硝酸还原酶的分离研究[J].南京农业大学学报,1986,(4):121-124.
    [34]莫良玉,吴良欢,陶勤南.高等植物GS/GOGAT循环研究进展[J].植物营养与肥料学报,2001,7(2):223-231.
    [35] MELO-OLIVEIRA R, OLIVEIRA I C, CORUZZI G M. Arabidopsis mutant analysis and generegulation define a nonredundant role for glutamate dehydrogenase in nitrogen assimilation[J].Proe. Natl. Aead. Sei.,1996,93:4718-4723.
    [36]马凤鸣,高继国.硝酸还原酶活力作为甜菜氮素营养诊断及预测产糖量指标的研究[J].中国农业科学,1996,(5):16-22.
    [37]张杰,吴迪,彭胜民,等.甜菜硝酸还原酶活性分析及基因片段的克隆[J].哈尔滨商业大学学报,2008,24(5):610-613.
    [38]侯静,马凤鸣,陈胜勇,等.甜菜基因组DNA的提取及Southem杂交分析[J].东北农业大学学报,2008,39(12):14-18.
    [39]陈胜勇,李彩凤,马凤鸣,等.甜菜谷氨酞胺合成酶基因在不同氮素条件下的表达分析[J].作物杂志,2008,(4):64-67.
    [40] FAURE J D,VINCENTZ M,KRONENBERGER J,et al. Co-regulated expression of nitrateand nitrite reductase[J].Plant J,1991,(1):107-113.
    [41] LEA P J,BLACKWELL R D,JOY K W.Ammonia assimilation in higher plants[M]//MENGK,PILBEAM D J.1st eds.Nitrogen melabotism of plant.New York:Oxford UniversityPress,1992,1153-1861.
    [42] COSCHIGANO K T,MELO-OLIVEIRA R,LIM J,et al. Arabidopsis gls mutants and distinctFd-GOGAT genes: implications for photorespiration and primary nitrogenassimilation[J].Plant Cell,1998,10:274-752.
    [43] FINNEMANN J,SCHIOERRING J K.Translocation of NH+4in oilseed rape plants in relationto glutamine synthetase isogene expression and activity[J].Physiol Plant,1999,105:469-477.
    [44] GENCHI G,SPAGNDET T,DE SANTIS A,et al.Purification and characterization of thereconstitutively active citrate carrier from maize mitochondria[J].Plant physiol,1999,120:841-847.
    [45] MORCUENDE R,KRAPP A,HURRY V,et al.Sucrose-feeding leads to increased rates ofnitrate assimilation, increased rates of α-oxoglutarate synthesis, and increased synthesis of awide spectrum of amino acids in tobacco leaves[J].Planta,1998,206:304-409.
    [46] HAYAKAWA T,HOPKINS L,PEAT L J,et al.Quantitative intercellular localization ofNADH-dependent glutamate synthase protein in different types of root cells in riceplants[J].Plant Physiol,1999,119:409-416.
    [47] YAMAYA T,TANNO H,HIROSE N,et al.A supply of nitrogen cause increase in the levelof NADH-dependent glutamate synthase protein and in the activity of the enzyme in roots ofrice seedlings[J].Plant Cell Physiol,1995,36:1197-1204.
    [48] HIROSE N, HAYAKAWA T, YAMAYA T. Inducible accumulation of mRNA forNADH-dependent glutamate synthasein rice roots in response to ammonium ions[J].PlantCell Physiol,1997,38:1295-1297.
    [49]王月福,于振文,李尚霞,等.小麦开花后不同器官中硝酸还原酶和谷氨酰胺合成酶的活性比较[J].植物生理学通讯,2003,(3):209-210.
    [50]沈建辉,戴廷波,荆齐,等.施氮时期对专用小麦干物质和氮素积累、运转及产量和蛋白质含量的影响[J].麦类作物学报,2004,24(1):55-58.
    [51]戴廷波,孙传范,荆齐,等.不同施氮水平和基追比对小麦籽粒品质形成的调控[J].作物学报,2005,31(2):248-253.
    [52]杨铁刚.不同品种和氮素水平下小麦高效氮素利用的生理机制研究[D].南京:南京农业大学博士论文,2007.
    [53] CLAVER I P,ZHOU H M.Enzymatic hydrolysis of defatted wheat germ by proteases and theeffect on the functional properties of resulting protein hydrolysates[J].J Food Biochem,2005,29(1):13-26.
    [54] RHODES D I,STONE B A.Proteins in walls of wheat aleurone cells[J].J Cereal Sci,2002,36(1):83-101.
    [55]王月福,于振文,李尚霞,等.不同施肥水平对不同品种小麦籽粒蛋白质和地上器官游离氨基酸含量的影响[J].西北植物学报,2003,23(3):417-421.
    [56] PEELERS K U U,VAN LAERE J.Amino acid metabolism associated with N-mobilizationfrom the flag leaf of wheat (Triticum aestivum L.) during grain development[J]. Plant CellEnviron,1994,17:131-141.
    [57]李淑文,文宏达,薛宝民,等.小麦高效吸收利用氮素的生理生化特性研究进展[J].麦类作物学报,2003,23(4):131-135.
    [58]刚爽,赵宏伟,王敬国,等.不同氮肥水平下寒地粳稻器官不同形态氮含量变化特征研究[J].植物营养与肥料学报,2011,17(2):276-282.
    [59]白祥和,衣春生,刘山莉.光合作用与甜菜产量研究综述[J].中国糖料,1998,(1):58-60.
    [60]赵宏伟,曲文章,邹德堂.关于甜菜光合特性的研究[J].中国糖料,1996,4:18-21.
    [61]李国龙.甜菜抗(耐)丛根病光合特性的初步研究[D].呼和浩特:内蒙古农业大学博士论文,2004.
    [62]村田吉男(日)编著,吴笑鹏等译.作物的光合作用与生态——作物生产的理论及应用
    [M].上海:科学技术出版社,1982.
    [63]曲文章,耿立清,高妙真.磷素水平对甜菜光合作用的影响[J].中国甜菜糖业2001,3:8-11.
    [64]朱建华,李秋菊.甜菜幼苗叶片蔗糖磷酸合成酶的一些特性[J].中国甜菜糖业,1998,6:7-8.
    [65] FIEUW S,WILLENBRINK J.Sugar transport and sugar-metabolizing enzymes in sugar beetstorage roots (Beta vulgoris ssp.altissima)[J].Journal of Plant Physiology,1990,137(2):216-223.
    [66]刘涧洋.甜菜根中蔗糖代谢机理的初步探讨[D].哈尔滨:东北农业大学硕士论文,2000.
    [67] Павлинова O A, Балахонцев E H,Прасолова М Ф,et al.Сахарозофосфатиназа,сахарозосинтаза и инвертаза в листьях сахарной свеклы[J].Физиология растений,2002,49(1):78-84.
    [68]刘娜,于海彬,周芹.丰田液体肥对甜菜蔗糖代谢酶活性的影响[J].中国糖料,2007,4:32-34.
    [69] PAVLINOVA O A,PRASOLOVA M F.Physiological role of SS in sugar beet roots[J].FiziolRast,1972,19:920-925.
    [70]库尔萨诺夫.植物体内同化物的运输[M].北京:科学出版社,1986.
    [71] FIEUW S,WILLNOBRINK J.Sucrose and sucrose phosphate synthase in sugar beetplants[J].Plant Physiol,1987,131(1):153-162.
    [72] VASSEY T L.Light dark profiles of phosphate synthetase.sucrose synthate and acid invertasein leaves of sugar beet[J].Plant Physiology,1989,1:347-351.
    [73]曲文章.甜菜生理学[M].哈尔滨:黑龙江科技出版社,1990.
    [74]张宏纪.甜菜高同化氨途径的探讨[D].哈尔滨:东北农业大学硕士论文,1998:2-11.
    [75]赵越,马凤鸣.不同但氮源对甜菜蔗糖合成酶的影响[J].黑龙江农业科学,2001,(2):11-12.
    [76] KLOTZ K L,CAMPBELL L G.Sucrose catabolism in developing root of three beta vulgarisgenotypes with different yield and sucrose accumulating capacities[J].Journal of Sugar BeetResearch,2004,3:73-88.
    [77]刘娜,周芹,于海彬.不同氮、磷施用量对甜菜叶片中蔗糖代谢有关酶活性的影响[J].中国糖料,2006,(1):30-33.
    [78] GONZALEZ M C,ROITSCH T,CEJUDO F J.Circadian and developmental regulation ofvacuolar invertase expression in petioles of sugar beet plants[J].Planta,2005,222(2):386-395.
    [79]宋建民,田纪春,赵世杰.植物光合碳和氮代谢之间的关系及其调节[J].植物生理学通讯,1998,34(3):230-238.
    [80]田纪春,王学臣,刘广田.植物的光合作用与光合碳氮代谢的祸联及调节[J].生命科学,2001,13(4):145-147.
    [81] HUPPE H C,TURPIN D H.Intergration of carbon and nitrogen metabolism in plant andalgale cells[J].Ann Rev Plant Physiol Plant Mol Biol,1991,45:577-607.
    [82] B NZIGER M,FEIL B,STAMP P.Competition between nitrogen accumulation and graingrowth for carbohydrates during grain filling of wheat [J].Crop Science,1993,34(2):440-446.
    [83] ROBERT D,SIMS A P.Glutamate synthase and the control of nitrogen assimilation in Lemmaminor L.[J].Nitrogen Assimilation of Plant,1994,501-502.
    [84] MOLL R H,JACKSON W A,MIKKELSEN R L.Recurrent selection for maize grain yield:dry matter and nitrogen accumulation and partitioning changes[J].Crop Science,1994,34:874-881.
    [85]史宏志,韩锦峰.烤烟碳氮代谢几个问题的探讨[J].烟草科技,1998,(2):34-36.
    [86]金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,33(4):55-62.
    [87]李彩凤.甜菜高同化氨途径及其与蔗糖代谢关系的初步研究[D].东北农业大学硕士论文,2000.
    [88]闫桂萍.不同供氮水平甜菜(Beta vulgaris L.)GS、GOGAT、GDH活性动态的研究[D].东北农业大学硕士论文,1994.
    [89]赵越,魏自民,李成,等.甜菜氮代谢关键酶与其产质量的关系[J].东北农业大学学报,2003,34(4):368-371.
    [90] ULRICH A.Plant analysis: A guide for sugar beet fertilization[J].Califomia AgrieulturalExperiment Station Bulletin,1959,766:1-23.
    [91]唐仁.试论氮素与甜菜产量和质量的关系[J].中国甜菜,1982,(1):10-18.
    [92]闫桂萍,马凤鸣,李文华,等.不同供氮水平甜菜氨同化酶活性动态的研究[J].东北农业大学学报,2(l):17-24.
    [93]赵越.氮调控对甜菜(Beta vulgaris. L)氮同化和蔗糖代谢关键酶的影响[D].长沙:湖南农业大学博士论文,2001.
    [94] UHART S A,ANDRADE F H.Nitrogen and carbon accumulation and remobilization duringgrain filling in maize under different source sink ratios[J].Crop Sci,1995,35:183-190.
    [95] PAU W L,CANBERATO J J,MALL R H,et al.Altering source-sink relation ships in prolificmaize hybrids: Consequences for nitrogen uptake and remobilization[J].Crop Sci,35:836-845.
    [96]关义新,林葆,凌碧莹.光、氮及其互作对玉米幼苗叶片光合和碳、氮代谢的影响[J].作物学报,2000,26(6):50-512.
    [97]邵金旺,蔡葆,张家骅.甜菜生理学[M].北京:农业出版社出版,1991.
    [98]李海燕,马凤鸣,朱延明,等.甜菜氮糖代谢酶活力与蔗糖代谢的关系[J].东北农业大学学报,2002,(1):72-76.
    [99]朱根海,张荣铣.叶片含氮量和光合作用[J].植物生理学通讯,1985,(2):9-12.
    [100] YAMAZAK M,WATANAKE A,SUGIYAMA T.Nitrogen regulated accumulation ofmRNA and protein for photosynthetic carbon assimilating enzymes in maize[J]. Plant CellPhysiol,1986,27:443-452.
    [101]于海彬,王桂岚.甜菜氮营养对蔗糖积累转化及有关酶活性的调节[J].中国甜菜糖业[J].中国甜菜糖业,1995,(6):6-11.
    [102]潘少英,耿贵,周建朝,等.氮素形态对甜菜抗氮胁迫能力的效应研究[J].中国糖料,2002,(l):6-10.
    [103]陈国安.不同氮肥对糖甜菜与小麦生长的影响[J].土壤,1998,(2):93-96.
    [104]王光霞,张少英,邵世勤,等.氮素形态对甜菜代谢酶活性和生长发育的影响[J].中国甜菜糖业,2004,(l):35-37.
    [105]黄兆庆,王维成.甜菜氮、磷、钾营养规律的研究初探[J].中国甜菜,1987,(2):31-38.
    [106]蔡葆,孙丽英,于海彬,等.甜菜低糖原因的研究——II不同施肥水平甜菜产量和质量的关系[J].中国甜菜,1993,3:24-29.
    [107]吕风山,徐修容,张胜,等.甜菜高产高糖氮素营养指标的研究[J].中国糖业,1987,(l):25-32.
    [108]韩锦峰,董钻.作物生物化学[M].北京:中国农业出版社,1995,337-348.
    [109]黄留玉. PCR最新技术原理、方法及应用[J].化学工业出版社,2011,1-80.
    [110]潘耀谦,金春彬.聚合酶链反应(PCR)技术体系研究进展[J].动物医学进展,20(4):11~17.
    [111]王甜,陈庆富.荧光定量PCR技术研究进展及其在植物遗传育种中的应用[J].种子,2007,26(2):56-61.
    [112]叶嘉良,陈健,吕正兵,等.家蚕泛肽-核糖体蛋白S27a的表达功能研究[J].蚕业科学,2007,33:394-402.
    [113]张中保,李会勇,石素云,等.应用实时定量PCR技术分析玉米水分胁迫诱导基因的表达模式[J].植物遗产资源学报,2007,(8):421-425.
    [114]胡延吉.植物育种学[M].北京:高等教育出版社,2003,220-227.
    [115]李影,何蕴韶.用荧光定量PCR方法检测转染细胞中外源基因的拷贝数[J].中山医科大学学报,2005,22(1):8-10.
    [116]张鹤晓,赖平安,刘环,等.荧光RT-PCR检测活禽和禽组织中禽流感病毒的研究[J].检验检疫科学,2004,14(1):125.
    [117]宋志军,宋长绪,杨增岐,等.猪生殖与呼吸综合征病毒Taq-Man荧光定量RT-PCR检测方法的建立[J].中国兽医科学,2006,36(2):98-102.
    [118]阳成波,印遇龙,龚建华.实时定量PCR研究进展及其应用[J].中国预防兽医学报,2003,25(5):395.
    [119] BENGTSSON M,KARLSSON H J,WESTMAN G,et al.A new minor groove bindingasymmetric cyanine reporter dye for real-time PCR[J].Nucleic Acids Res,2003,31(8):145.
    [120] BO-RA K,HEE-YOUNG N,SOO-UN K,et al.Normalization of reverse transcriptionquantitative-PCR with house keeping genes in rice[J].Biotechnol Lett,2003,25(21):1869-1872
    [121]侯宇.荧光定量PCR技术研究进展及其应用[J].贵州农业科学,2009,37(6):29-32.
    [122] SEVALL J S,PRINCE H,GARRATTY G,et al. Rapid enzymatic analysis for humanimmunodeficiency virus type1DNA in clinical specimens[J].Clinical Chemistry,1993,39:433-439.
    [123]滕祥勇,李彩凤,谷维,等.甜菜谷氨酸合成酶活性与块根产量、含糖率的相关性分析[J].中国土壤与肥料,2012,(3):65-69.
    [124]张福锁,樊小林.土壤与植物营养研究新动态[J].中国农业出版社,1995.
    [125] HENDRICKSON L,FURBANK R T,CHOW W S.A simple alternative approach toassessing the fate of absorbed light energy using chlorophyll fluorescence[J].PhotosynthesisResearch,2004,82(1):73-81.
    [126] CABRERA-BOSQUET L,ALBRIZIO R,ARAUS J L,et al.Photosynthetic capacityof field-grown durum wheat under different N availabilities: a comparative study from leaf tocanopy[J].Environmental and Experimental Botany,2009,67(1):145-152.
    [127]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006,134-192.
    [128]李立人,王维光,韩祺.苜蓿二磷酸核酮糖(RuBP)羧化酶体内活化作用的调节[J].植物生理学报,1986,12(1):33-39.
    [129]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000,29-91.
    [130]于海彬,蔡葆,孙国琴,等.甜菜硝酸还原酶活性研究[J].中国甜菜,1993,(3):18-23.
    [131] JOY K W,HAGEMAN R H.The purification and properties of nitrite reductase fromhigher plants, and its dependence on ferredoxin[J]. Biochemical Journal,1966,100(1):263-273.
    [132] MIFLIN B J,LEA P J.Aminoacid metabolism[J].Annual Review of Plant Physiology,1977,28:299-329.
    [133]郑朝峰,林振武.谷氨酸合酶活力的快速测定[J].植物生理学通讯,1985,(4):43-46.
    [134] HECHT U,OELMüLLER R,SCHMIDT S,et al.Action of light, nitrate and ammoniumon the levels of NADH-and ferredoxin-dependent glutamate synthases in the cotyledons ofmustard seedings[J].Planta,1988,175:130-138.
    [135] MIGGE A,CARRAYOL E,KUNZ C, et al. The expression of the tobacco genesencoding plastidic glutamine synthetase or ferredoxin-dependent glutamate synthase does notdepend on the rate of nitrate reduction, and is unaffected by suppression ofphotorespiration[J].Journal of Experimental Botany,1997,48(311):1175-1184.
    [136]卢永恩,罗风,杨猛,等.抑制表达谷氨酸合酶基因对水稻碳氮代谢的影响[J].中国科学(生命科学),2011,41(6):481-493.
    [137]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [138]徐向东.便携式数字糖度计[J].计量与测量仪器,1997,24(1):1-5.
    [139]张福锁.环境胁迫与植物营养[M].北京:北京农业大学出版社,1993.
    [140] FAURE J D,VINCENTZ M,KRONENBERGER J,et al.Co-regulated expression ofnitrate and nitrite reductase[J].The Plant Journal,1991,1(1):107-113.
    [141] BACK E,BURKHART W,MOYER M,et al.Isolation of cDNA clones coding forspinach nitrite reductase: complete sequence and nitrate induction[J].Molecular and GeneralGenetics,1988,212(1):20-26.
    [142] HECHT U,OELMULER R,SCHMIDT S,et al.Action of light,nitrate and ammoniumon the levels of NADH-and ferredoxin-dependent glutamate synthases in the cotyledons ofmustard seedlings[J].Planta,1988,175:130-138.
    [143]冯伟,李晓.小麦叶绿素荧光参数叶位差异及其与植株氮含量的关系[J].作物学报,2012,38(4):657-664.
    [144]冯玉龙,曹坤芳,冯志立.生长光强对4种热带雨林树苗光合机构的影响[J].植物生理与分子生物学学报,2002,28(2):153-160.
    [145]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [146]鞠正春,于振文.追施氮肥时期对冬小麦旗叶叶绿素荧光特性的影响[J].应用生态学报,2006,17(3):395-398.
    [147] GALTIER N,FOYER C H,HUBER J,et al.Effects of elevated sucrose-phosphatesynthase activity on photosynthesis, assimilate partitioning, and growth in tomato(Lycopersicon esculentum var UC82B)[J]. Plant Physiology,1993,101:535-543.
    [148]曲文章.甜菜高产群体生产力及其生理参数的研究[J].中国农业科学,1986,4:71-97.
    [149]陈志英.甜菜氮素同化与蔗糖代谢机理研究及其人工调控[D].哈尔滨:东北农业大学,2008.
    [150]于海彬,蔡葆.不同氮素水平甜菜生长量与产质量关系初探[J].中国甜菜,1992,(2):14-19.
    [151]李文华.氮素水平和形态对甜菜(Beta vulgaris L.)形态建成和氮素同化的影响[D].哈尔滨:东北农业大学,2002.
    [152]严志萌.氮磷钾对甜菜产量及氮代谢关键酶影响[D].哈尔滨:东北农业大学,2011.
    [153]陈卫平,诸秀次.NO-2,Fe2+对稻苗亚硝酸还原酶和硝酸还原酶活性的影响[J].西南农业大学学报,1991,13(2):207-209.
    [154]邢雪荣,吕春生,郭大立.有机酸对蔬菜硝酸还原酶亚硝酸还原酶活性的影响[J].植物学通讯,1995,12:156-162.
    [155]郑怀忠,陈发河,李淑燕,等.亚硝酸还原酶高产菌株的筛选及发酵条件优化[J].中国农业科技导报,2009,11(3):81-87.
    [156]赵越,马凤鸣,张多英,等.甜菜对不同氮素吸收动力学的研究[J].东北农业大学学报,2006,37(3):294-298.
    [157] RAAB T K,TERRY N.Carbon, nitrogen, and nutrient interactions in Beta vulgaris L. asinfluenced by nitrogen source, NO-+3versus NH4[J].Plant Physiology,1995,107(2):575-584.
    [158]张华珍,徐恒玉.植物氮素同化过程中相关酶的研究进展[J].北方园艺,2011,(20):180-183.
    [159]王小纯,程振云,何建国,等.不同氮素形态对专用小麦苗期氨同化关键酶活性的影响[J].麦类作物学报,2008,25(5):836-840.
    [160]陆彬彬,周卫,张吉,等.温度对水稻谷氨酰胺合成酶和NADH-谷氨酸合酶表达的影响[J].武汉大学学报(理学版),2002,48(2):239-242.
    [161]王英,吕德国,秦嗣军,等.低温对不同供氮水平下山定子幼苗根系氮代谢的影响[J].果树学报,2009,26(6):769-773.
    [162]曲文章,催杰,高妙贞,等.施氮量对甜菜氮代谢及产量与品质的影响[J].中国甜菜,1994,(4):16-21.
    [163]师素云,薛启汉,练兴明,等.玉米与大豆氮代谢关键酶活性比较[J].江苏农业学报,2000,16(3):191-192.
    [164] HAYAKAWA T, NAKAMURA T, HATTORI F, et al. Cellular localization ofNADH-dependent glutamate synthase protein in vascular bundles of unexpanded leaf bladesand young grains of rice plants[J].Planta,1994,193:455-460.
    [165] RAJASEKHAR V K,MOHR H.Appearance of nitrite reductase in cotyledons of themustard (Sinapis alba L.) seedling as affected by nitrate, phytochrome and photooxidativedamage of plastids[J].Planta,1986,168:369-376.
    [166] MORCUENDE R,KRAPP A,HURRY V,et al.Sucrose-feeding leads to increased ratesof nitrate assimilation, increased rates of α-oxoglutarate synthesis,and increased synthesis ofa wide spectrum of amino acids in tobacco leaves[J].Planta,1998,206:304-409.
    [167]周阮宝,谷丽萍.植物硝酸还原酶的研究进展[J].植物杂志,1994,(3):5-7.
    [168] OCHS G,SCHOTH G,TRISCHLER M,et al.Complexity andexpression of theglutamine synthetase multi-genefamily in the amphidiploid crop Brassica napus[J].PlantMol1Biol1,1999,39:395-4051.
    [169] DUBOIS F,BRUGIERE N,SANGWAN R S,et al.Localization of tobacco cytosolicglutamine syntheses enzymes and the corresponding transcripts shows organ-and-cell specificpatterns of protein synthesis and gene expression[J].Plant Mol Biol,1996,31:803-817.
    [170] Mack G,Tischer R.Constitutive and inducible net NH+4uptake of barly (Hordeumvulgare L.) seedlings[J]. J Plant Physiol,1994,144:351-357.
    [171] OBARA M,SATO T,YAMAYA T.High content cytosolic glutamine synthetase doses notaccompany a high activity of the enzymein rice (Oryza sativa) leaves of indicacultivars[J].Physiol Plant,2000,108:11-181.
    [172] CREN M,HIREL B.Glulamine synthetase in higher plant:regulation of gene and proteinexpression from the organ to the cell[J].Plant Cell Physiol,1999,40:1187-1193.
    [173] HAYAKAWA T, NAKAMURA T, HATTORI F, et al. Cellular localization ofNADH-dependent glutamate synthase protein in vascular bundles of unexpanded leaf bladesand young grains of rice plants[J].Planta,1994,193:455-460.
    [174] YAMAYA T,TANNO H,HIROSE N,et al.A supply of nitrogen cause increase in thelevel of NADH-dependent glutamate synthase protein and in the activity of the enzyme inroots of rice seedlings[J].Plant Cell Physiol,1995,36:1197-1204.
    [175] TURANO F J, MUHITCH M J. Differential accumulationof ferrdeoxin-andNADH-dependent glutamate synthase activities,peptides,and transcripts in developingsoybean seedlings in response to light,nitrogen,and nodulation[J].Physiol Plant,1999,107:407-418.
    [176] REDINBAUGH M G, CAMPBELL W H. Glutamine synthetase andferredoxin-dependent glutamate synthase expression in the maize (Zea mays) root primaryresponse to nitrate:evidence for an organ-specific response[J].Plant Physiol,1993,101:1249-1255.
    [177]李泽松,林清华,张楚富,等.不同氮源对水稻幼苗根氨同化酶的影响[J].武汉大学学报,2000,46(6):729-732.
    [178]张林生,蒋纪云,张保军,等.小麦籽粒发育过程游离氨基酸的变化[J].作物学报,24(4):459-463.
    [179]段留生,何钟佩,韩碧文.籽粒发育期小麦体内氨基酸组分及运输[J].麦类作物学报,2000,20(2):17-22.
    [180]朱新开,周君良,封超年,等.不同类型专用小麦籽粒蛋白质及组分含量变化动态差异分析[J].作物学报,2005,31(3):342-347.
    [181] ZHANG C F,PENG S B,LAZA R C.Senescence of top three leaves in field-grown riceplants[J].Journal of Plant Nutrition,2003,26(12):2453-2468.
    [182] MAKINO A,MAE T,OHIRA K.Relation between nitrogen and1,5-bisphosphatecarboxylase in rice leaves from emergence through senescence[J].Plant Cell Physiol,1984,25:429-437.
    [183] CECHIN I, DE TEREZINHA F F. Effect of nitrogen supply on growth andphotosynthesis of sunflower plants grown in the greenhouse[J]. Plant Science,2004,166(5):1379-1385.
    [184] GRASSI G,MEIR P,CROMER R,et al.Photosynthetic parameters in seedlings ofEucalyptus grandis as affected by rate of nitrogen supply[J]. Plant Cell and Environment,2002,25(12):1677-1688.
    [185]郭盛磊,闫秀峰,白冰,等.供氮水平对落叶松幼苗光合作用的影响[J].生态学报,2005,25(6):1291-1298.
    [186]孙旭生,林琪,李玲燕,等.氮素对超高产小麦生育后期光合特性及产量的影响[J].植物营养与肥料学报,2008,14(5):840-844.
    [187]上官周平.氮素营养对旱作小麦光合特性的调控[J].植物营养与肥料学报,1997,3(2):105-110.
    [188]郭卫东,桑丹,郑建树,等.缺氮对佛手气体交换、叶绿素荧光及叶绿体超微结构的影响[J].浙江大学学报,2009,35(3):307-314.
    [189]赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.
    [190]曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学报,1999,27(4):96-101.
    [191] NATHALIE G,FOYER C H,HUBER J,et al.Elevated sucrose-phoshpatesynthaseactivities on photosynthesis, assimilate partitioning and growth in Tomato (Lycopersiconesculentum var UC82B)[J].Plant Physiol,1993,101:535-543.
    [192] HUBER S C,HUBER J L.Role and regulation of sucrose-phosphate synthase in higherplants[J].Annu Rev Plant Physiol Plant Mol Biol,1996,47:431-441.
    [193]高妙贞,蔡伯岩,曲文章.氮素水平对甜菜干物质积累、分配和产糖量的影响[J].中国甜菜糖业,1999,(5):5-9.
    [194]李强,章建新,甘玉柱.施氮对高产甜菜干物质积累分配及产量和品质的影响[J].干旱地区农业研究,2008,26(5):55-59.
    [195]盖志佳,王玉波,王志农,等.定量施肥对甜菜干物质积累与分配的影响[J].作物杂志,2012,(1):72-75.
    [196]王南博,李彩凤,张翼飞,等.氮素形态及pH值交互作用对甜菜产量和含糖率的影响[J].核农学报,2012,26(9):1333-1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700