用户名: 密码: 验证码:
机动车尾气排放中NO_X的吸附储存材料研制及性能测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物储存还原技术(NO_X Storage-Reduction,NSR)可以有效去除稀燃机动车尾气中NO_X,但是如何在较低温度条件下提高催化剂的NO_X储存性能是国内外学术界的研究热点。本研究采用水热合成方法制备了不同前驱体的三种MnO_X-SnO_2催化剂(HH、MH和CH),考察了其在100℃时的NO_X吸附性能,并系统地研究了MH方法制备的不同Mn/Sn比例的催化剂的吸附性能,利用比表面积测试(BET)、X射线衍射(XRD)、程序升温还原(TPR)、X射线光电子能谱(XPS)以及原位漫反射红外光谱(DRIFTS)等手段对催化剂进行了表征。主要研究结果如下:
     不同前驱体制备的三种MnO_X-SnO_2催化剂在100℃都具有良好的NO氧化能力和NO_X储存能力,其中以MH催化剂效果最好。在MH和HH催化剂中Mn物种主要是Mn4+,CH催化剂中Mn物种主要为Mn~(3+),Mn的高氧化态更有利于NO_X的储存。XPS的结果显示,缺陷氧物种或表面处于低配位的氧物种在MnO_X-SnO_2催化剂低温储存NO_X的过程中也起到重要的作用。
     不同Mn/Sn比例的MnO_X-SnO_2(MH)催化剂在100℃下都具有一定的NO_X储存能力,其中Mn_5Sn0和Mn0Sn_5效果较差,Mn2Sn3催化剂效果最好。表征结果表明,在MnO_X-SnO_2(MH)系列催化剂制备过程中,MnO_X和SnO_2在制备的过程中部分形成了固溶体,比表面积增大,氧化性增强,吸附活性位增加,从而使得催化剂的低温储存NO_X量得到大大提高。
     原位漫反射红外光谱研究表明:MnO_X的催化氧化性很强,但NO吸附活性位较少,主要以吸附NO_2转化成硝酸盐的方式储存NO_X,SnO_2的氧化性很弱,但NO吸附位点较多,可以主要以吸附NO转化成亚硝酸盐的方式储存NO_X,而部分亚硝酸盐也可以被氧化成硝酸盐。MnO_X-SnO_2催化剂上Mn和Sn在储存NO_X时形成了明显的协同作用,从而提高了催化剂低温NO_X储存性能。
The NO_X storage reduction (NSR) technology can effectively remove the NO_X in the presence of excess oxygen from lean burn engine exhaust. However, the low-temperature NO_X storage capacity (NSC) of NSR catalyst is still unsatisfactory due to the the low NO oxidation rate at relatively low temperature region. In this work, MnO_X-SnO_2 binary metal oxides were prepared by three hydrothermal methods with different precursors and were donated as HH, MH and CH respectively. A series of catalysts perpared with different ratio of Mn/Sn have been studied. These catalysts have been investigated on their performance on NO_X storage capability at 100℃. They have been characterized by BET, X-ray Diffraction, Temperature Programmed Reduction, X-ray Photoelectron Spectroscopy, and in-situ Diffuse- Reflectance Infrared Fourier Transform Spectroscopy. The main results were summarized as follows:
     The HH, MH and CH catalysts all showed good performance on NO oxidation capacity and NO_X storage capability, especially for the MH catalyst. In the HH and MH catalysts, manganese species were dominantly presented as Mn4+, whereas Mn~(3+) was the dominant species in the CH catalyst. The high oxidation state of Mn was beneficial to NO storage. XPS results revealed that the defect oxide or the surface oxygen ions with low coordination might play an important role in the NO_X adsorption.
     The catalysts perpared with various ratio of Mn/Sn showed different NSC at 100℃. The Mn2Sn3 catalyst showed the longest breakthough time and the highest NO_X storage capacity; whereas Mn5Sn0 and Mn0Sn5 showed lower NSC. According to characterization results, it can be concluded that MnO_X and SnO_2 partialy formed solid solution in the preparation process. As a result, The BET surface areas of the samples became larger, NO oxidation was enhanced and due to the increase of NO adsorption sites, and then the NO_X storage capacity were improved at the low temperature.
     DRIFTS results revealed that MnO_X showed high NO oxidation capacity and poor NO adsorption sites. NO_3~- formed by NO_2 adsorption was the main species on the surface of the MnO_X catalyst. SnO_2 with low NO oxidation capacity and rich NO adsorption sites could direct adsorb NO and form NO_2-. And then NO_2~- partialy changed to NO_3~-. Therefore, on the surface of the MnO_X-SnO_2 catalyst, Mn and Sn showed an obvious co-operative effect in the process of NO_X adsorption/desorption, which resulted in the improvement of the NO_X storage capacity at low temperature.
引文
[1]张其瑶.汽车污染何时休.科学时报,2004,7.20
    [2]郝吉明,傅立新,贺克斌.城市机动车排放污染控制:国际经验分析与中国的研究成果.北京:中国环境科学出版社,2001
    [3]孟赫.部分选择性催化加氢还原NO反应的研究:[硕士学位论文].大连:中国科学院大连化学物理研究所,1998
    [4] European emission standards. http://en.wikipedia.org/wiki/European_emission_standards
    [5] Koltsakis G C and Stamatelos A M. Catalytic automotive exhaust after treatment. Prog Energy Combustion Science, 1997, 23(1): 1~39
    [6]王建昕,傅立新,黎维彬.汽车排气污染治理与催化转化器.北京:化工出版社,2000,167~169
    [7] Farrauro R J and Heck R M. Catalytic converters: state of the art and perspectives. Catalysis Today, 1999, 51(3~4): 351~360
    [8] Fritz A and Pitchon V. The current state of research on automotive lean NOx catalysis. Applied Catalysis B: Environment, 1997(13): 1~25
    [9] Takahashik N, Shinjoh H, Suzuki T, et al. The new concept 3-Wang catalyst automotive lean-burn engine: NO_X storage and reduction catalyst. Catalysis Today, 1996, 27(1~2): 63~69
    [10] Katoh K, Kihara T, Harada J, et al. Development of NO_X Storage-Reduction 3-Way Catalyst System(I): Recognition of NO_X Purification Mechanism and its Application to Automobile. JSAE Review, 1995, 16(1): 108~108
    [11] Tanaka T, Takeshina S, Matsumoto S, et al. Development of NO_X storage-reduction 3-way catalyst system(II): NO_X reduction mechanism and improvement of conversion efficiency. JSAE review, 1995, 16 (1): 108~108
    [12]康守方.稀燃气氛下NOx储存材料和氧化催化剂的研究: [博士学位论文].北京:中国科学院生态环境研究中心,2004
    [13] Miyoshi N, Matsumoto S, Katon K, et al. Development of new concept tree-way catalyst for automotive lean-burn engines. SAE 950809
    [14] Fridell E, Skoguyndh M, Westerberg B, et al. NO_X storage in barium-containing catalysts. Journal of Catalysis, 1999, 183(2): 196~209
    [15] Nakajima F and Hamada I. The state-of-the art technology of NOx control. Catalysis Today, 1996 (29): 109~115
    [16] Koebel M, Elsener M and Kleemann M. Urea-SCR: a promising technique to reduce NO,r emissions from automotive diesel engines. Catalysis Today, 2000, 59(3~4): 335~345
    [17]程昊.稀燃发动机尾气NOx存储-还原催化剂研究:[博士学位论文].大连:中国科学院大连化学物理研究所,2004
    [18] Shelef M. Selective catalytic reduction of Nq with N-Free reductants. Chemical Reviews, 1995, 95 (1): 209~225
    [19] Halasz I, Brenner A, Hou Y, et al. Catalytic activity and selectivity of H-ZSMS for the reduction of nitric oxide by propane in the presence of oxygen. Journal of Catalysis, 1996, 161(1): 359~372
    [20]朱兵,李平.贫燃NO_X选择性催化还原技术及其研究进展.化学世界,1999,6:283~ 287
    [21] Hamada H, Kintaichi Y, Sasaki M, et al. Transition metal-promoted silica and alumina catalysts for the selective reduction of nitrogen monoxide with propane. Applied Catalysis, 1991, 75(1): L1~L8
    [22] Kintaichi Y, Hamada H, Tabata M, et al. Selective reduction of nitrogen oxides with hydrocarbons over solid acid catalysts in oxygen-rich atmospheres. Catalysis Letters, 1990, 69(2): 239~244
    [23] Bethke K A, Ait D and Kung M C. NO reduction by hydrocarbons in an oxidizing atmosphere over transition metal-zirconium mixed oxides. Catalysis Letters, 1994, 25(1~2): 37~48
    [24] Burch R, Sullivan J A and Wading T C. Mechanistic considerations for the reduction of NO_X over Pt/A1203 and A1203 catalysts under lean-burn conditions. Catalysis Today, 1998, 42(1~2): 13~23
    [25] Captain D K, Roberts K L and Amiridis M D. The selective catalytic reduction of nitric oxide by propylene over Pt/SiO_2. Catalysis Today, 1998, 42(1~2): 93~100
    [26] Centi G and Arena G E. NO reduction by C3H6 and O_2 over supported noble metals Part I. Role of the support on the nature of NO_X ad-species and their relationship with the catalytic behavior. Journal of Molecular Catalysis A: Chemical, 2003, 204:663~671
    [27] Yu R C, Cole S and Howden K. Advanced A/T technology development for CIDI diesel engines. 7th Diesel engine emissions reduction workshop, August 7th, 2000
    [28] Yu S and Michael D A. In situ FIIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts. Catalysis Today, 2004, 96(1~2): 31~41
    [29] Yu S, Karen K, Michael P H and Michael D A. Reactor and in situ FIIR studies of Pt/Ba/Al2O3 and Pd/Ba/Al2O3 NOx storage and reduction (NSR) catalysts. Applied Catalysis B: Environmental, 2007, 71(3~4): 207~215
    [30] James D, Fourre E, Ishii M, et al. Catalytic decomposition/regeneration of Pt/Ba(NO3)2 catalysts: NO_X storage and reduction, Applied Catalysis B: Environment, 2003, 45(2): 147~159.
    [31] Elizundia U, Landa I, et al. FT-IR study of NO storage mechanism over Pt/BaO/Al_2O_3 catalysts. Topics in Catalysis, 2007, 42(1~4): 37~41
    [32] Frola F, Manzoli M, Prinetto F, et al. Pt-Ba/Al_2O_3 NSR Catalysts at Different Ba Loading: Characterization of Morphological, Structural and Surface Properties. Journal of Physical Chemistry C, 2008, 112(33): 12869~12878
    [33] William S E, Charles H F and Szany J. Carbonate Formation and Stability on a Pt/BaO/Al_2O_3 NO Storage/Reduction Catalyst. Journal of Physical Chemistry C, 2008, 112(29): 10952 ~10959
    [34] Danan D and Balland J. Impact of alkali metals on the performance and mechanical properties of NOx adsorber catalysts. SAE, 2002-01-0734
    [35] Huang H Y, Long R Q, Yang R T. The promoting role of noble metals on NOx storage catalyst and mechanistic study of NOx storage under lean-burn conditions. Energy & Fuels, 2001, 15(1):205~213
    [36] Han P H, Lee Y K, Han S M, et al. NOx storage and reduction catalysts for automotive lean-burn engines: effect of parameters and storage materials on NOx conversion. Topics in Catalysis, 2001, 16(1~4): 165~170
    [37] Genti G, Fornasari G, Gobbi C, et al. NOx storage-reduction catalysts based on hydrotalcite: effect of Cu in promoting resistance to deactivation. Catalysis Today, 2002, 73(3~4): 287~296
    [38] Fornasari G, Trifiro F, Vaccari A, et al. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds. Catalysis Today, 2002, 75(1~4): 421~429
    [39] Hodjati S, Vaezzadeh K, Petit C, et al. Absorption/desorption of NOx process on perovskites: performance to remove NOx from a lean exhaust gas. Applied Catalysis B: Environment, 2000, 26(1): 5~16
    [40] Hodjati S, Petit C, Pitchon V, et al. Absorption/desorption of NOx process on perovskites: impact of SO_2 on the storage capacity of BaSnO3 and strategy to develop thioresistance. Applied Catalysis B: Environment, 2001, 30(3~4): 247~257
    [41]陈加福,孟明,林培琰,等. BaFeO3和BaCeO3钙钛矿型氧化物的储氮性能.催化学报,2003,24 (6):419~422
    [42] Li X, Chen J, Lin P, et al. A study of the NO_X storage catalyst of Ba-Fe-O complex oxide. Catalysis communications, 2004, 5: 25~28
    [43]李新刚,孟明,林培琰,等. NO_x储存催化剂Pt/Ba-Al-O的结构与性能研究.分子催化, 2001,15(3):165~169
    [44]李新刚,孟明,林培琰,等. Pt/Ba-Al-O催化剂储存NO_X的性能和机理研究,化学物理学报,2001,14(4): 501-506
    [45] Li X, Meng M, Lin P, et al. A study on the properties and mechanisms for NO_x storage over Pt/BaAl2O4 -Al_2O_3 catalyst, Topics in Catalysis, 2003, 22(1~2): 111~115
    [46] Hodjati S, Bernhardt P, Petit C, et al. Removal of NO_x: Part I. Sorption/desorption processes on barium aluminate. Applied Catalysis B: Environment, 1998, 19(3~4): 209~219
    [47] Philipp S, Drochner A, Kunert J, et al. Investigation of NO adsorption and NO/O_2 co-adsorption on NO_x storage components by DRIFT spectroscopy. Topics in Catalysis, 2004, 31(1~4):235~238
    [48] Machida M, Uto M, Kurogi D, et al. MnO_x-CeO_2 binary oxides for catalytic NO_x sorption at low temperatures: sorptive removal of NO_x. Chemistry of materials, 2000, 12(10): 3158~3164
    [49] Masato Machida. NO_x-sorbing metal oxides, MnO_x-CeO_2 Oxidative NO adsorption and NO_x-H2 reaction. Catalysis Surveys from Japen, 2002, 2(5): 91~102
    [50] Machida M, Kulogi D and Kijima T. NO_x storage and reduction characteristics of Pd /MnO_x - CeO_2 at low temperature. Catalysis Today, 2003, 84(3~4): 201~207
    [51] Haneda M, Morita T, Nagao Y, et al. CeO_2-ZrO_2 binary oxides for NO_x removal by sorption. Physical Chemistry Chemical Physics, 2001, 3(21): 4696~4700
    [52] Huang H Y, Long R Q and Yang R T. A highly sulfur resistant Pt-Rh/TiO_2/Al_2O_3 storage catalyst for NO_x reduction under lean-rich cycles. Applied Catalysis B: Environment, 2001, 33(2): 127~136
    [53] Eguchi K, Kondo T, Hayashi T, et al. Sorption of nitrogen oxides on MnOy–ZrO_2 and Pt-ZrO_2–Al_2O_3. Applied Catalysis B: Environment, 1998, 16(1): 69~77
    [54] Kikuyama S, Matsukuma I, Kikuchi R, et al. Effect of preparation methods on NO_x removal ability by sorption in Pt-ZrO_2-Al_2O_3. Applied Catalysis A: General, 2001, 219(1~2): 107~116
    [55] Kikuyama S, Matsukuma I, Kikuchi R, et al. A role of components in Pt-ZrO_2/Al_2O_3 as a sorbent for removal of NO and NO_2. Applied Catalysis A: General, 2002, 226(1~2): 23~30
    [56] Amberntsson A, Fridell E and Skoglundh M. Influence of platinum and rhodium composition on the NO_x storage and sulphur tolerance of a barium based NO_x storage catalyst. Applied Catalysis B: Environment, 2003, 46(3): 429~439
    [57] Salasc S, Skoglundh M and Fridell E. A comparison between Pt and Pd in NO_x storage catalysts. Applied Catalysis B: Environment, 2002, 36(2): 145~160
    [58] Matsumoto S, Ikeda Y, Suzuki H, et al. NO_x storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Applied Catalysis B: Environmental, 2000, 25(2~3): 115~124
    [59] Takahashi N, Akihiko S, Ichiro H, et al. Sulfur durability of NO_x storage and reduction catalyst with supports of TiO_2, ZrO_2 and ZrO_2-TiO_2 mixed oxides. Applied Catalysis B: Environmental, 2007, 72(1~2): 187~195
    [60] Mahzoul H, Brihac J F and Gilot P. Experimental and mechanistic study of NO_X adsorption over NO_X trap catalysts. Applied Catalysis B: Environmental, 1999, 20(1): 47~55
    [61] Cant N W and Patterson M J. The storage of nitrogen oxides on alumina-supported barium oxide. Catalysis Today, 2002, 73(3~4): 271~278
    [62] Cant N W and Patterson M. The effect of water and reductants on the release of nitrogen oxides stored on BaO/Al_2O_3. Catalysis Letters, 2003, 85(3-4): 153~157
    [63] Despres J, Loebel M, Krocher O, et al. Storage of NO_2 on BaO/TiO_2 and the influence of NO. Applied Catalysis B: Environmental, 2003, 43(4): 389~395
    [64] Fridell E, Persson H, Westerberg B, et al. The mechanism for NO_X storage. Catalysis Letters, 2000, 66(1~2): 71~74
    [65] Lietti L, Forzatti P, Nova I, et al. NO_X Storage Reduction over Pt-Ba/γ-Al_2O_3 Catalyst. Journal of Catalysis, 2001, 204(1): 175~191
    [66] Nova I, Castoldi L, Lietti L, et al. On the dynamic behavior of“NO_X-storage/reduction”Pt-Ba/Al_2O_3 catalyst. Catalysis Today, 2002, 75(1~4): 431~437
    [67] Parks J E, Wagner G J, Eplng W E, et al. NO_X sorbate catalyst system with sulfur catalyst protection for the aftertreatment of NO_2 diesel exhaust, SAE Paper, 1999, NO. 93557
    [68] Wan C Z, Mital R, Dipchant J. Low temperature regeneration of NO_X adsorber system, Diesel engine exhaust reduction workshop, August 7th, 2001
    [69] Rodrigues F, Juste L, Potvin C, et al. NO_X storage on barium-containing 3-way catalyst in the presence of CO_2. Catalysis Letters, 2001, 72(1~2): 59~64
    [70] Mahzoul H, Limousy L, Brilhac J F, et al. Experimental study of SO_2 adsorption on barium-based NO_X adsorbers. Journal of analytical and Applied pyrolysis, 2000, 56(2): 179~193
    [71] Engstrom P, Amberntsson A, Skoglundh M, et al. Sulphur dioxide interaction with NO_X storage catalyst. Applied Catalysis B: Environmental, 1999, 22(4): 241~248
    [72]李巍.低温氮氧化物储存材料的研究:[硕士学位论文].北京:清华大学环境系,2007
    [73] Caneval i C, Mari C M, Mattoni M, et al. Mechanism of sensing NO in argon by nanocrystalline SnO_2:electron paramagnetic resonance, M?ssbaue and electrical study. Sensors and Actuators B: Chemical, 2004, 100(1~2): 228~235
    [74] Yu J, Tao Y, Liu C, et al. Novel NO Trapping Catalysts Derived from Co-Mg/X-Al (X=Fe, Mn, Zr, La) Hydrotalcite-like Compounds. Environmental science & technology, 2007, 41(4): 1399~1404
    [75] Muncrief R L, Khanna P, Kabin K S, et al. Mechanistic and Kinetic Studies of NO_X Storage and Reduction on Pt/BaO/Al_2O_3. Catalysis Today, 2004, 98 (3): 393~402
    [76] Prinetto F, Ghiotti G, Nova I, et al. FT-IR and TPD Investigation of the NO_x Storage Properties of BaO/Al_2O_3 and Pt-BaO/Al_2O_3 Catalysts. Journal of Physical Chemistry B, 2001, 105 (51): 12732~12745
    [77] Sedlmair Ch, Seshan K, Jentys A, et al. Elementary steps of NO_x adsorption and surface reaction on a commercial storage-reduction catalyst. Journal of Catalysis, 2003, 214 (2): 308~316
    [78] Nova I, Lietti L, Castoldi L, et al. New insights in the NO_x reduction mechanism with H2 over Pt-Ba/γ-Al_2O_3 lean NO_x trap catalysts under near-isothermal conditions. Journal of Catalysis, 2006, 239 (1): 244~254
    [79] Epling W S, Campbell L E, Yezerets A, et al. Overview of the fundamental reactions and degradation mechanisms of NO_x storage/reduction catalysts. Catalysis Review, 2004, 46 (2): 163~245
    [80]吴宇煌.低温等离子体应用于柴油机尾气处理的研究:[硕士学位论文].北京:清华大学电机系,2008
    [81] Tang X F, Li Y G, Huang X, et al. MnO_X-CeO_2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Applied Catalysis B: Environment, 2006, 62(3-4): 265~273
    [82] Wang X and Xie Y C. Total oxidation of CH4ON iron-promoted tin oxide: novel and thermally stable catalysis. Reaction kinetics and catalysis letters, 2001, 72 (2): 229~237
    [83] Stobbe E R, Boer B A and Geus J W. The reduction and oxidation behaviour of manganese oxides. Catalysis Today, 1999, 47(1~4): 161~167
    [84] Ramesh K, Chen L, Chen F, et al. Re-investigating the CO oxidation mechanism over unsupported MnO, Mn_2O_3 and MnO_2 catalysts. Catalysis Today, 2008, 131(1~4): 477~482
    [85] Park P W, Kung H H, Kim D W, et al. Characterization of SnO_2/Al_2O_3 Lean NO Catalysts. Journal of Catalysis, 1999, 184(2): 440~454
    [86] Saitoh T, Bocquet A E, Mizokawa T, et al. Electronic-Structure of La1-X SrXMnO_3 Studied by Photoemission and X-Ray-Absorption Spectroscopy. Physical Review B: Solid states, 1995, 51(20):13942~13951
    [87] Galakhov V R, Demeter M, Bartkowski S, et al. Mn 3s Exchange Splitting in Mixed- Valence Manganites. Physical Review B: Solid states, 2002, 65(11): 113102~113105
    [88]唐幸福.锰-铈固溶体催化剂上甲醛完全氧化反应的研究:[博士学位论文].大连:中国科学院大连化学物理研究所,2006
    [89] Bensalem A, Bozon F, Delamar M, et al. Preparation and Characterization of Highly Dispersed Silica-supported Ceria. Applied Catalysis A: General, 1995, 121(1): 81~93
    [90] Hamoudi S, Larachi F, Adnot A, et al. Characterization of Spent MnO_2/CeO_2 Wet Oxidation Catalyst by TPO-MS, XPS, and S-SIMS. Journal of Catalysis, 1999, 185(2): 333~344
    [91] Holgado J P, Munuera G, Espinós J P, et al. XPS Study of Oxidation Processes of CeO_x Defective Layers. Applied Surface Science, 2000, 158(1~2): 164~171
    [92] Larachi F, Pierre J, Adnot A, et al. Ce 3d XPS Study of Composite CeXMn1-XO_2- y Wet Oxidation Catalysts. Applied Surface Science, 2002, 195(1~4): 236~250
    [93] Shannon R D and Prewitt C T. Effective Ionic Radii in Oxides and Fluorides. Acta Crystallogr B, 1969, 25(1~3): 925~946
    [94]唐幸福.完全氧化甲烷和NH3低温选择性还原NO催化剂的研究.博士后研究报告,2008
    [95] Richter M, Trunschke A, Bentrup U, et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnO_X/NaY composit catalyts. Journal of Catalysis, 2002, 206(1): 98~113
    [96] Hadjiianov K and Kn?zinger H. Species formed after NO adsorption and NO+O_2 co-adsorption on TiO_2: an spetroscopic study. Physical Chemistry Chemical Physics, 2002, 2: 2803~2806
    [97] Hadjiianov K, Saussey J, Freysz JL, et al. FT-IR study of NO+O_2 co-adsorption on-ZSM-5: re-assigignment of the 2133 cm-1 band to NO+ species. Catalysis Letters, 1998, 52(1~2): 103~108
    [98] Larrubia M A, Ramis G and Basca G. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe_2O_3-TiO_2 SCR catalysts. Applied Catalysis B: Environment, 2001, 30(1~2): 101~110
    [99] Ramis G, Yi Li, Busca G, et al. Adsorption, Activation, and Oxidation of Ammonia over SCR Catalysts. Journal of Catalysis, 1995, 157(2): 523~535
    [100] Qi G, Yang R T and Chang R. MnO_X-CeO_2 mixed oxides prepared by co-precipitation for selective at low temperatures catalytic reduction of NO with NH3. Applied Catalysis B: Environment, 2004, 51(2): 93~106
    [101]唐晓龙.低温选择性催化还原NO_X技术及反应机理研究:[博士学位论文].北京:清华大学环境系,2006
    [102] Yu J J, Jiang Z, Zhu L, et al. Adsorption/Desorption Studies of NO_X on Well-Mixed Oxides Derived from Co-Mg/Al Hydrotalcite-like Compounds. Journal of Physical Chemistry B, 2006, 110(9): 4291~4300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700