用户名: 密码: 验证码:
机械活化辅助合成β-Sialon粉体
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以铝粉、硅粉、三水铝石粉为原料,通过高能球磨对混合原料进行不同时间的机械活化,再分别采用普通氮化和微波氮化两种方法合成β-Sialon粉体,降低了β-Sialon的合成温度。
     机械活化辅助普通氮化合成β-Sialon,机械活化≥10h的试样在1300℃保温5h后反应完毕合成β-Sialon,而未经机械活化的试样在1400℃保温5h后才完全生成β-Sialon,即机械活化辅助普通氮化将β-Sialon的合成温度降低了100℃。
     机械活化辅助微波氮化合成β-Sialon,机械活化≥6h的试样在900℃保温2h后有部分β-Sialon生成;1000℃保温2h后,机械活化20h的试样合成较纯的β-Sialon;未经机械活化的试样于1200℃保温2h后合成β-Sialon反应完毕。和未经机械活化的试样相比,经过机械活化的试样开始生成β-Sialon的温度降低了100℃,完全生成β-Sialon的温度降低了200℃。
     XRD研究表明,机械活化造成混合原料中三水铝石从晶态向无定形态转变,机械活化20h后,混合原料中的三水铝石完全变为无定形态。BET比表面积研究表明,机械活化增加了混合原料的比表面积,机械活化20h后,混合原料的比表面积由最初的2.74m~2/g增至9.56m~2/g。SEM、EDS研究表明,机械细化了混合原料,使铝、硅、三水铝石在亚微米级别上混合均匀。TG-DSC研究表明,机械活化降低了三水铝石的分解温度,加快了混合原料的反应速率;机械活化20h后,混合原料中三水铝石在290℃脱水吸热谷完全消失,从30℃便开始脱水失重;相同的升温速率下,未经机械活化试样的最终增重率为-7.35%,机械活化20h试样的最终增重率为4.35%。这些现象共同作用提高了混合原料的反应活性,加快了氮化速率,使其在较低温度下就开始氮化反应,从而降低了β-Sialon的合成温度。
In this study,a powder mixture of gibbsite,Al and Si for synthesis ofβ-Sialon was ground in a vibration ball mill in air atmosphere for varying periods,and then heated in nitrogen atmosphere in MoSi_2 furnace and microwave furnace respectively.
     The results revealed that mechanical activation at ambient temperature resulted in an enhanced nitridation reactivity of mixed powders at high temperatures.After heating in MoSi_2 furnace,monolithicβ-Sialon was formed at 1300℃from the powders milled for 10 h whereas the synthesis ofβ-Sialon from unmilled mixture completed at 1400℃.
     For samples treated in microwave furnace,the nitridation reaction was also accelerated by mechanical activation.In comparison with powder mixtures without milling,the onset formation temperature ofβ-Sialon was decreased by 100℃and the complete formation temperature by 200℃.For samples milled more than 6 h,β-Sialon began to form at 900℃.For samples milled 20 h,β-Sialon was mainly produced at 1000℃.
     According to the experimental results,mechanical activation turned gibbsite from crystalline to amorphous,reduced the decomposition temperature of gibbsite,increased the surface area which associated with particle-size reduction and raised uniform distribution of Al,O,Si elements in sub-micron range,which contribute to the enhanced reactivity of reactants.
引文
[1]陈祖熊.Sialon的结构、性质与应用.材料导报,1993,7(1):29-32.
    [2]洪彦若,孙加林等.非氧化物复合耐火材料(第一版).北京:冶金工业出版社,2003.
    [3]黄朝晖,孙加林,王金相,洪彦若.1500℃工业条件合成β-Sialon的研究.耐火材料,2001,35(3):125-127,130.
    [4]邱雄迩.Sialon的微波合成及烧结工艺研究[硕士学位论文].湖南:湘潭大学,2006.
    [5]吴其胜.无机材料机械力化学(第一版).北京:化学工业出版社,2008.
    [6]D.Michel,F.Faudot,E.Gaffet,et al,"Stabilized zirconia prepared by mechanical alloying," J.Am.Ceram.Soc.,76(11) 2884-88(1993).
    [7]B.D.Stojanovic,"Mechanochemical synthesis of ceramic powders with perovskite structure," J.Mater.Process.Technol.,143-144,78-81(2003).
    [8]S.Komatsubara,T.Isobe,and M.Senna,"Effect of preliminary mechanical treatment on the microhomogenization during heating of hydrous gels as precursors for lead titanate," J.Am.Ceram.Soc.,77[1]278-82(1994).
    [9]K.Hamada and M.Senna,"Mechanochemical effects on the properties of starting mixtures for PbTiO_3 ceramics by using a novel grinding equipment," J.Mater.Sci.,31(7) 1725-28(1996).
    [10]Y,Oyama,O.Kamigoito,"Solid solubility of some oxides in Si_3N_4," Jpn.J.Appl.Phys.,10(11)1637-1642(1971).
    [11]K.H.Jack,W.I.Wilson,"Ceramics based on the Si-Al-O-N and related systems," J.Nat.Phys.Sci.,238,28-29(1972).
    [12]窦叔菊.赛隆陶瓷.国外耐火材料,1995,20(8):227.
    [13]T.Ekstrom,P.O.Kall,M.Nygren,and P.O.Olson."Dense single-phase β-Sialon ceramics by glass-capsulated hot isostatic pressing." J.Mater.Sci.,24(5) 1853-1861(1989).
    [14]江东亮.精细陶瓷材料(第一版).北京:中国物资出版社,2000.
    [15]王零森.特种陶瓷(第一版).长沙:中南工业大学出版社,1994.
    [16]华南工学院.陶瓷工艺学(第一版).北京:中国建筑工业出版社,1981.
    [17]谢明.原位合成TiN/O'-Sialon复相材料的制备工艺、结构和性能研究[博士学位论文].沈阳:东北大学,2000.
    [18]陈卫武,孙维莹,严东生.Ln-α-Sialon-AlN多型体(Ln=Y,Y=Sm,Sm)复相陶瓷微观结构的研究.无机材料学报,2006,15(3):441-446.
    [19]J.Aucote,S.R.Foster,"Performance of sialon cutting tools when machining nickel-base aerospace alloys," J.Mater.Sci.Technol.,2(2) 700-708(1986).
    [20]D.P.Thompson,"The crystal chemistry of nitrogen ceramics," J.Mater.Sci.Forum,47,21-42(1989).
    [21]方正国,刘解华.Si-Al-O-N系耐火材料.耐火材料,1983,5:57-67.
    [22]K.H.Jack,"The significance and structure and phase equilibria in the development of silicon nitride and sialon ceramics," J.Sci.Ceram.,11,125-142(1981).
    [23]K.H.Jack,J.Mater.Sci.,11,1135-58(1976).
    [24]J.P.Zeng,Y.Miyamoto,O.Yamada,"Combustion synthesis of sialon powders(Si_(6-z)Al_zO_zN_(8-z),z =0.3,0.6)," J.Am.Ceram.Soc.,73(12) 3700(1990).
    [25]S.Majorowski,J.A.Pusyshi,et al,J.Am.Ceram.Soc.Bul.,70(10) 1658(1991).
    [26]石玉敏,赵好,都兴红等.Sialon粉体合成的研究进展.耐火材料,2004,38(1):46-49.
    [27]蔡杰,李文兰,张宝林等.自蔓延高温合成法(SHS)在陶瓷领域的应用.材料导报,1996, 10(5):32.
    [28]张国军,金宗哲,岳雪梅.材料的原位合成技术.材料导报,1997,11(1):1.
    [29]张宝林,罗新宇,庄汉锐.俄罗斯自蔓延燃烧合成技术考察情况报告.硅酸盐通报,1997,(6):68-70,74.
    [30]J.G.Lee,L.B.Cutler,"Sinterable Sialon powder by reaction of clay with carbon and nitrogen,"J.Am.Ceram.Soc.Bull.,58(9) 869-871(1979).
    [31]黄莉萍,徐友仁,唐铮等.以高岭土制备β'-Sialon粉体.硅酸盐学报,1991,19(1):11-18.
    [32]张宏泉,王利荣,张起民等.粘士合成Sialon的研究进展及其添加剂的研究.硅酸盐通报,1998,(4):28-31.
    [33]王黎.Al_2O_3-Si-Al系统中原位合成Sialon的动力学研究[博士学位论文].西安:西安建筑科技大学,2003.
    [34]铃木弘茂.工程陶瓷(第一版).北京:科学出版社,1989.
    [35]坂野久夫.最新精密陶瓷(第一版).上海:同济大学出版,1990.
    [36]潭清华.SiAlON及其复相材料的合成、结构和性能研究[硕士学位论文].武汉:武汉科技大学,2006.
    [37]马彬,SiC基复相陶瓷的抗氧化及抗热震性能研究[硕士学位论文].哈尔滨:哈尔滨工业大学,2006.
    [38]李庭寿,宋阳介,王泽田.炼铁用耐火材料新进展(第一版)。北京:冶金工业出版社,1994.
    [39]隋万美.Sialon/SiC复相材料研究进展.硅酸盐通报,1995,(1):36-40.
    [40]李庭寿.中国钢铁工业用耐火材料的技术发展.耐火材料,2000,34(1):7-12.
    [41]周丽红,王鸿妹.Sialon结合刚玉砖的研制.耐火材料,2001,35(3):161-162.
    [42]隋万美,陈虹.BN对Sialon复相陶瓷性能的影响.材料科学进展,1993,7(4):361-364.
    [43]李亚伟,李楠,王斌耀等.β-赛隆(Sialon)/刚玉复合耐火材料研究.无机材料学报,2000,15(4):612-618.
    [44]钱扬保,王福明,徐利华等.粘土碳热还原氮化二步法制备β-Sialon结合刚玉复相材料.耐火材料,2002,36(2):77-79.
    [45]D.B.Hoggard,H.K.Park,O'-Sialon-zirconia and its refractory application,J.Am.Ceram.Soc.Bull.,67(7) 1163-66(1990).
    [46]仲维斌,李文超,钟香崇.O'-Sialon-ZrO_2质复合材料与钢水中Al_2O_3的反应.耐火材料,1996,30(2):63-68.
    [47]柯昌明,李楠,李文全等.O'-Sialon-ZrO_2-C系材料抗Al_2O_3沉积性能.耐火材料,1998,32(31):125-127.
    [48]J.S.Benjamin,"Mechanical Alloying," Sci.Am.,234(5) 40-48(1976).
    [49]P.S.Gilman,J.S.Benjamin,"Mechanical Alloying," Annu.Rev.Mater.Sci.,13,279-300(1983).
    [50]J.Ding,W.F.Miao,P.G.McCormick,R.Street,"Mechanochemical synthesis of ultrafine Fe powder," Appl.Phys.Lett.,67(25) 3804-06(1995).
    [51]A.K.Giri,"Nanocrystalline materials prepared through crystallization by ball milling," Adv.Mater.,9(2) 163-66(1997).
    [52]R.Nagarajan,B.S.Murty,S.Ranganathan,"Nanocrystals in Ti based systems by mechanical alloying," Chin.J.Mater.Res.,5[Suppl.],215-20(1994).
    [53]S.Ochiai,Y.Hirotsu,"Nanostructures of Al-Au alloy produced by MA and MG," Chin.J.Mater.Res.,5[Suppl.],308-11(1994).
    [54]W.L.Johnson,H.J.Fecht,"Mechanisms of instability in crystalline alloys with respect to vitrification," J.Less-Common Met.,145,63-80(1988).
    [55]G.B.Schaffer,P.G.McCormick,"On the kinetics of mechanical alloying," Metall.Trans.A,23A (4) 1285-90(1992).
    [56]G.B.Schaffer,P.G.McCormick,"Displacement reactions during mechanical alloying," Metall.Trans.A,21A(10) 2789-94(1990).
    [57]B.J.M.Aikin,T.H.Courtney,"The kinetics of composite particle formation during mechanical alloying," Metall.Trans.A,24A(3) 647-57(1993).
    [58]Z.G.Yang,L.Shaw,"Synthesis of nanocrystalline SiC at ambient temperature through high energy reaction milling," Nanostruct.Mater,7(8) 873-86(1996).
    [59]H.J.Fecht,"Synthesis and properties of nanocrystalline metals and alloy prepared by mechanical attrition," Nanostruct.Mater.,1(2) 125-30(1992).
    [60]M.Volante,B.Fubini,E.Giamello,V.Bolis,"Reactivity induced by grinding in silicon nitride,"J.Mater Sci.,8(9) 1076-78(1989).
    [61]I.J.Lin,S.Nadiv,"Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment(mechanochemical reactions)," Mater.Sci.Eng.,39,193-209(1979).
    [62]P.Y.Butyagin,"Mechanochemical reactions of solids with gases," React.Solids,1(4) 45-59(1986).
    [63]H.J.Fecht,E.Hellstern,Z.Fu,W.L.Johnson,"Nanocrystalline metal prepared by high-energy ball milling," Metall.Trans.A,21A(9) 2333-37(1990).
    [64]D.Berlincourt,"Current development in piezoelectric applications of ferroelectrics," Ferroelectr.,10(1) 111-19(1976).
    [65]P.P.Phule,S.H.Risbud,"Review:low-temperature synthesis and processing of electronic materials in the BaO-TiO_2 system," J.Mater.Sci.,25(2) 1169-83(1990).
    [66]H.Imai,T.Tagawa,"Oxidative coupling of methane over amorphous lanthanum aluminum oxides," J.Chem.Soc.,Chem.Commun.,106(2) 394-400(1987).
    [67]Y.Matsuo,H.Sasaki,"Formation of lead zirconate-lead titanate solid solutions," J.Am.Ceram.Soc.,48(6) 289-91(1965).
    [68]Q.Zhang,F.Saito,"Mechanochemical synthesis of lanthanum aluminate by grinding lanthanum oxide with transition alumina," J.Am.Ceram.Soc.,83(2) 439-41(2000).
    [69]F.F.Lang,"Sinterability of agglomerated powders," J.Am.Ceram.Soc.,67(2) 83-90(1984).
    [70]J.Xue,J.Wang,D.Wan,"Nanosized barium titanate powder by mechanical activation," J.Am.Ceram.Soc.,83(1) 232-34(2000).
    [71]J.Xue,D.Wan,S.Lee,John Wang."Mechanochemical synthesis of lead zirconate titanate from mixed oxides," J.Am.Ceram.Soc.,82(7) 1687-92(1999).
    [72]S.J.Schneider,R.S.Roth,J.L.Waring,"Solid-state reactions involving oxides of trivalent cations," J.Res.Natl.Bur.Stand.,Sect.A.,65A,345-54(1961 ).
    [73]M.L.Keith,R.Roy,"Structural relations among double oxides of trivalent elements," Am.Mineral.,39,1-23(1954).
    [74]刘高杰,安耿,杨刘晓等.高能机械化学法制备超微氮化钼粉体.粉末冶金材料科学与工程,2007,12(3):175-178.
    [75]L.Takacs,"Multiple combusion induced by ball milling," Appl.Phys.Lett.,69(3) 436-38(1996).
    [76]N.N.Thadhani,"Shock-induced and shock-assisted solid-state chemical reaction in powder mixtures," J.Appl.Phys.,76(4) 2129-38(1994).
    [77]T.G.Shen,C.C.Koch,T.L.McCormick,R.J.Nemanich,"The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling," J.Mater.Res.,10(1)139-48(1995).
    [78]M.L.Trudeau,R.Schulz,R.Dussault,A.V.Neste,"Structural changes during high-energy milling of iron-based amorphous alloys:is high-energy ball milling equivalent to a thermal process?"Phys.Rev.Lett.,64(1) 99-102(1990).
    [79]L.L.Shaw,Z.Yang,R.Ren,"Mechanically enhanced reactivity of silicon for the formation of silicon nitride composites," J.Am.Ceram.Soc.,81(3) 760-64(1998).
    [80]王岱峰,李文兰,庄汉锐.高热导率AIN陶瓷研究进展.材料导报,1998,12(1):29-31.
    [81]G.A.Slack,T.F.Mcnelly,"AlN single crystals," J.Cryst.Growth.,42,560-563(1977).
    [82]H.Schuls,K.H.Thieman,"Synthesis of high purity AlN powder," Solid State Commu.,23,815-817(1997).
    [83]李沐山.氮化铝粉末的制取方法.硅酸盐通报.1989,8(3):42-48.
    [84]李鹏亮,席生岐,周敬恩.氮气气氛高能球磨Al_2O_3相变研究.稀有金属材料与工程,2006,35(10):1669-1672.
    [85]刘新宽,马明亮,周敬恩.高能球磨对碳热还原合成氮化铝的作用.兵器材料科学与工程,1999,(22):3.
    [86]J.D.Kenneth,MacKenzie,D.V.Barneveld,"Carbothermal synthesis of β-sialon from mechanochemically activated precursors," J.Eur.Ceram.Soc.,26(1-2) 209-215(2006).
    [87]P.Tessier,H.D.Alamdaril,R.Dubuc,S.Boily,"Nanocrystalline β-sialon by reactive sintering of a SiO2-AlN mixture subjected to high-energy ball milling," J.Alloys Compd.,391(1-2) 225-227(2005).
    [88]马明亮.机械合金化诱发固态燃烧还原反应及其原位合成纳米复合材料的研究[博士学位论文].西安:西安交通大学,1999.
    [89]梅本富,吴炳尧.开发新型合金材料的新工艺-机械合金化法.材料科学与工程,1992,10(4):1-4.
    [90]C.Suryanarayana,"Mechanical alloying and milling," J.Prog.Mater.Sci.,46(1-2) 1-184(2001).
    [91]E.Ivanov,C.Suryanarayana,"Materials and process design through mechanochemical routes," J.Mater.Synth.Process.,8(3-4) 235-244(2000).
    [92]C.Suryanarayana,E.Ivarovb,V.V.Boldyiev,"The science and technology of mechanical alloying," J.Mater.Sci.Eng.,A304-306,151-158(2001).
    [93]马明亮,董增样,魏健宁等.高能球磨在材料制备领域的工业化应用.热加工工艺,2006,35(6):66-69.
    [94]曹林洪,蒋明学.氮化反应合成β-Sialon材料的工艺研究.耐火材料,2002,36(6):333-335.
    [95]J.Liao,M.Senna,"Mechanochemical dehydration and amorphization of hydroxides of Ca,Mg and Al on grinding with and without SiO_2," Solid State Ionics,66(3-4) 313-19(1993).
    [96]侯新梅.铝、硅、碳还原剂对合成矾土基β-Sialon的作用及机理探讨[硕士学位论文].郑州:郑州大学,2004.
    [97]刘建华,张桂彩,钟立峰.Si_3N_4粉连续生产用氮化炉.耐火材料,1995,29(6):341-343.
    [98]J.Peric,R.Krstulovic,M.Vucak,"Investigation of dehydroxylation of gibbsite into boehmite by DSC Analysis," J.Therm.Anal.,46 1339-47(1996).
    [99]C.C.Yong,J.Wang,"Mechanical-activation-triggered gibbsite-to-boehmite transition and activation-derived alumina powders," J.Am.Ceram.Soc.,84(6) 1225-30(2001).
    [100]T.Hatakeyama,Z.Liu,Thermal analysis curves of minerals.Handbook of thermal analysis.Wiley,New York,275(1998).
    [101]V.J.Ingram-Jones,R.C.T.Slade,T.W.Davis,et al,"Dehydroxylation sequences of gibbsite and boehmite:study of differences between soak and flash calcination and of particle-size effects," J.Mater.Chem.,6(1) 73-79(1996).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700