用户名: 密码: 验证码:
锰铁渗氮的热力学和动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以丰富的锰矿资源为依托,自五十年代开始,贵州已经在遵义建成中国最大的锰系铁合金生产基地。遵义铁合金有限责任公司已成为全国唯一拥有采矿、选矿、烧结和冶炼一条龙生产工艺的大型铁合金企业,也是我国冶金行业的重点铁合金企业。主要产品有高碳锰铁、中低碳锰铁、金属锰、锰硅合金、硅铁、铬铁等。年设备生产能力22万吨,其中年产中低碳锰铁2.4~ 2.5万吨,年产金属锰0.45~0.50万吨。对锰制品破碎时产生的粒度小于10 mm的中低碳锰铁和金属锰碎粒和粉末进行综合利用和产品升级,研究开发氮化锰铁和氮化锰制品,既有利于满足钢铁生产对锰氮制品的需求,又有利于进一步将资源优势转化为经济优势。同时,通过对中低碳锰铁和金属锰在不同条件下渗氮过程的研究,可进一步掌握锰氮之间的交互作用,以及氮在锰中的扩散行为和主要影响因素。
    在对国内外锰铁氮化及Mn-N系研究状况进行分析的基础上,应用真空电阻炉高温渗氮、X射线衍射、惰气熔融法氧氮分析等实验测试方法,实验研究了粒度、温度、时间等因素对锰铁氮化的影响。通过理论分析和热力学计算,探讨了渗氮过程的相关规律。在合理假定的基础上,提出了金属锰氮化的数学模型。主要获得如下结论。
    在以工业用氮气为主的渗氮气氛中,中低碳锰铁和金属锰在1 123~ 1 223 K范围内高温加热72小时,可同时发生氧化和氮化,生成氧化物MnO和氮化物Mn4N。渗氮试样的粒度愈小,试样的增重率愈高。此外,随渗氮温度的增高,试样的增重率提高,含氧量显著增高。
    工业用气态氮的含氧量较高,氮化的同时不可避免地要发生锰的氧化。在以工业用氮气为主的渗氮气氛中配加20%的氨气,也未能有效消除或抑制锰的氧化。为此,使用工业用氮气作为渗氮气体,应在氮气进入真空渗氮炉之前采用合适的脱氧方法将其脱除。
    通过对锰铁在渗氮过程中可能发生的化学反应进行热力学分析表明,生成锰氧化物的平衡氧分压极低,即使采用高纯氮气作为渗氮气体,也不可能避免锰氧化物在渗氮过程中生成,如果体系的残氧量较高,低价锰氧化物可进一步氧化为高价锰氧化物。
    热力学分析表明,在渗氮气体中添加一定量的氢气,可以有效避免金属锰和铁及其氮化物在渗氮过程中发生氧化,但在845 K以下的升温过程中金属锰仍然可以发生氧化,在729 K以下的降温过程中氮化物Mn4N同样可以发生氧化。
    应用规则溶液模型和有关热力学数据分别推导了锰氮化合物???-Mn4N和
    
    
    ???-Mn4N的标准生成自由能表达式,并对合理性进行了简要分析。
    在以高纯氮气为主,配加少量高纯氢气的渗氮气氛中,通过对不同粒度的JMn97和DJMn-A两种金属锰试样分别在不同的温度和时间范围内进行高温渗氮研究,可得到如下结论。
    渗氮试样的粒度愈小,渗氮速度愈快,试样的增重率愈高。试样的增重率与时间的二分之一次方近似呈直线关系。
    粒度为0.37 mm的金属锰JMn97在1 173 K时高温加热6小时,就可使金属锰全部发生氮化,生成氮化物Mn4N和少量的Mn6N2.58。渗氮时间愈长,生成高价氮化物Mn6N2.58的相量愈多。
    粒度为0.33 mm的金属锰DJMn-A在1 173 K高温加热4小时,金属锰全部发生氮化,生成氮化物Mn4N和微量的Mn6N2.58。在温度较低的1 163 K高温加热4小时,金属锰全部生成氮化物Mn4N。
    试样的粒度较大和高温加热时间比较短的情况下,渗氮试样中均有未发生氮化的金属锰残余。在同样的渗氮条件下,随粒度的增大或加热时间的缩短,金属锰的残余量相应增多。
    检测分析表明渗氮试样中均有一定的氧含量,渗氮试样的含氧量愈低,单位时间的增氮率愈高。氧含量是影响金属锰渗氮的重要因素之一。
    基于原子在晶体中的扩散机理,借鉴氮原子在金属硅粉末中的扩散模型和内扩散控制的未反应核数理模型,通过合理假定,建立了氮在金属锰中的扩散模型。在上述渗氮条件下,各试样的渗氮结果均可较好地用扩散模型反映其相关规律。
    应用扩散模型导出了不同温度时氮原子的有效扩散系数,建立了有效扩散系数与温度间的关系,同时也导出了氮原子的扩散激活能。
Based on rich manganese resource, Zunyi Ferroalloy Company Limited in Guizhou is the most enormous manganese ferroalloy base in our country, and also one of the key ferroalloy corporations in metallurgy industry of China. It is the only one that has been made mining, dressing, sintering, smelting and refining a coordinated process by 50 years building. The equipment capacity of Zunyi Ferroalloy Company Limited is about 220 kilo-ton yearly, and the main products produced by that are manganese-silicon ferroalloy, silicon ferroalloy, chromium ferroalloy, high, medium and low carbon manganese ferroalloys (about 24~25 kilo-ton yearly), metal manganese (about 4.5~5.0 kilo-ton yearly), and so on. There is a considerable amount of powder (less than 10 mm) as a result of manganese ferroalloy breaking to be exploited. Nitriding the powder may be the best one of multipurpose utilization for both meeting the requirements of steelmaking for the nitrided manganese ferroalloy and making the local rich resource into economy prosperity. Meanwhile, it is important to kwon the interaction between nitrogen and manganese, the nitrogen diffusion in solid manganese, and other effect factors by the experimental study of the metal manganese and low and medium carbon manganese ferroalloy nitrided at various conditions.
    Based on the researches in domestic and aboard on both the manganese ferroalloy nitriding and manganese- nitrogen system, the influence of time, temperature, and grain size on the solid metal manganese nitriding was studied by means of vacuum resistance furnace, X ray diffraction technique and LECO TC-436 Oxygen/Nitrogen Determinator. Several relationships on nitriding have been discussed by means of thermodynamics computation. Based on reasonable assumption, a mathematic model was set up for metal manganese nitriding. The conclusions are shown as follows:
    (1) Metal manganese and low and medium carbon manganese ferroalloy can be both nitrided and oxidized in industrial scale nitrogen atmosphere at 1 123~1 223 K for 72 hrs with the product Mn4N and MnO respectively. The finer the powder size is, the more amount nitrogen pick-ups. Moreover, with the nitriding temperature rising, the sample pick-ups increases correspondingly, and so the oxygen content.
    (2) It is unavoidable that manganese will be oxidized in the nitriding atmosphere because there is considerable oxygen content in the industrial scale nitrogen. Even added as much as 20% ammonia in the nitrogen, the manganese can’t be prevented from
    
    
    oxidized effectively. Therefore, it is necessary that the nitrogen as nitriding atmosphere be deoxidized before entering the vacuum resistance furnace by a suitable processing.
    (3) Based on the thermodynamic computation for the chemical reactions during manganese ferroalloy nitrided, it is shown that the oxygen pressure needed for manganese oxidized is especially minute, therefore, it is unavoidable that manganese will be oxidized in the nitriding atmosphere furnished even by ultrahigh purified nitrogen. Moreover, the low valence manganese oxide can be further turn into high valence oxide, if the remaining oxygen in the nitriding system is enough much.
    (4) Besides the temperature elevating below 845 K for Mn and lowering from 729 K for Mn4N, it is known that the hydrogen added into nitriding atmosphere can effectively inhibit the manganese, iron, and the nitrides oxidized by thermodynamics analysis.
    (5) The standard Gibbs energy expressions of formation for both ???-Mn4N and ??-Mn4N are deduced respectively based on the relative thermodynamic data and the regular solution model. Moreover, a precise discuss has made on the equations for reliability and reasonability.
    (6) The both JMn97 and DJMn-A metal manganese samples with different grain size are nitrided in ultrahigh purified nitrogen at various temperature and time in which a small amount ultrahigh purified hydrogen is added. The conclusions are shown as follows:
    The finer the powder size is, the faster the nitriding speed, the more amount nitrogen pick-ups. More
引文
[1] 江权. 锰的存在及应用[J]. 中国锰业,2001,19(3):36-38.
    [2] 饭田修一等编,张质贤等译. 物理学常用数表[M]. 北京:科学技术出版社,1979.
    [3] 刘腾飞. 我国锰矿资源开发利用现状及勘查对策[J]. 中国锰业,1997,15(1):50-56.
    [4] 林琦,汪国栋. 我国锰矿资源的论证[J]. 中国锰业,1995,13(2):8-12.
    [5] 宋雄. 面向21世纪的锰矿资源勘查[J]. 中国锰业,1994,12(5):3-8.
    [6] 李建明,谭柱中. 大力发展湖南电解金属锰深加工产业[J]. 中国锰业,2000,18(4):11-13.
    [7] 游川北. 化学二氧化锰工艺研究[J]. 中国锰业,2001,19(3):11-14.
    [8] 丁楷如,余逊贤等. 锰矿开发和加工技术[M]. 长沙:湖南科学技术出版社,1992.
    [9] 杨红. 电池工业中应用的锰化合物[J]. 中国锰业,1997,15(3):49-51.
    [10] 谭柱中. 世界锰矿石深加工技术的发展[J]. 中国锰业,1997,15(4):30-34.
    [11] 张惠棠. 锰系铁合金的现状和发展趋势[J]. 中国锰业,1996,14(4):12-16.
    [12] 朱晓帆,蒋文举. 软锰矿脱除烟气中SO2的研究及进展[J]. 中国锰业,2001,19(2):10-12.
    [13] 谢凌虚. 某海域大洋锰结核类型特征与物质组成研究[J]. 中国锰业,1996,14(4):17-20.
    [14] 邱电云,费学锦,马莹. 大洋多金属结核开发对环境的影响[J]. 中国锰业,1997,15(2):46-49.
    [15] 沈裕军,钟祥,贺泽全等. 锰在大洋多金属结核开发中的特殊地位[J]. 中国锰业,1998,16(3):56-59.
    [16] 毛拥军,沈裕军. 大洋富钴结壳中有价金属的火法富集研究[J]. 中国锰业,2000,18(3):31-33.
    [17] 李浩然,冯雅丽. 微生物催化还原浸出大洋结核中锰的研究[J]. 中国锰业,2001,19(4):4-7.
    [18] 陈仁福. 我国锰矿的开采现状与发展途径[J]. 中国锰业,1992,10(2-3):77-80.
    [19] 孙家富. 我国富锰矿资源现状及锰业发展对策[J]. 中国锰业,1994,12(6):3-5.
    [20] 李绪福. 贫、劣、废锰矿资源的开发利用新方法[J]. 中国锰业,1994. 12(1):8-12.
    [21] 王天凤. 我国锰矿资源浅析[J]. 中国锰业,1990,8(5):8-11.
    [22] 周柳霞. 我国锰矿山的开采现状及问题与建议[J]. 中国锰业, 2000, 18(1): 4-7.
    [23] 熊万锋. 遵义锰矿区锰资源综合评价[J]. 中国锰业, 2001, 19(1): 32-34.
    [24] 丁宽荣. 贵州锰矿工业利用的探讨[J]. 中国锰业. 1992,10(2-3):40-43.
    [25] 陈继斌. 遵义锰矿高铁贫锰重选尾矿石的还原焙烧-氨浸法处理[J]. 中国锰业. 1995,13(1):38-43.
    [26] 龙廷椿. 贵州团溪锰矿磁选配矿烧结含硫量控制的探讨[J]. 中国锰业. 1997,15(2):28-31.
    
    [27] 潘其经,周永生. 我国锰矿选矿的回顾与展望[J]. 中国锰业. 2000. 18(4):1-10.
    [28] 赵跃萍,张金柱. 钢液中脱氧产物形成液态熔渣的理论分析[J]. 钢铁研究,1996,(2): 11-15.
    [29] 周进华主编. 铁合金生产技术[M],北京:科学出版社,1991.
    [30] 禹长清,张武. 共沉淀法制备超细锰锌铁氧体前驱体粉末[J]. 中国锰业, 2000, 18(3): 37-38.
    [31] 许定胜,方勇. 锰锌铁氧体中Fe2O3、Mn3O4和ZnO的匹配[J]. 中国锰业, 2000, 18(1): 44-45.
    [32] 许定胜,胡邦成. 高纯氧化铁中杂质元素对锰锌铁氧体性能的影响[J]. 中国锰业, 1996, 14(4): 28-30.
    [33] 李建明. 我国锰系材料发展概况[J]. 中国锰业, 1999, 17(4): 1-3.
    [34] 张澄,丁楷如. 发展化工锰产品是提高锰业经济效益的重要途径[J]. 中国锰业,1988,(3):17-22
    [35] 赵跃萍,李水娥,张金柱. 综合利用锰矿资源冶炼锰系铁合金的探讨[J]. 中国锰业,2002,20(10):24-26.
    [36] 陆友琪,邹立智,赵洪志等编. 铁合金合金添加剂手册[M]. 北京:冶金工业出版社,1990.
    [37] 蒋太钱. 我国电解二氧化锰工业的发展[J]. 中国锰业, 1990, 8(2): 13-16.
    [38] 杨新国. 我国硫酸锰的发展近况及前景[J]. 中国锰业, 1990, 8(2): 17-21.
    [39] 李万锡. 发挥资源优势开发松桃锰业[J]. 中国锰业, 1990, 8(2): 8-9.
    [40] 蒋汉祥,刘廷军,戴清香. 制取氮化锰工艺和技术[J]. 重庆大学学报,2001,24(4):102-105.
    [41] 梁连科. 氮化铁合金的研制及其有关问题[J]. 铁合金,1998,29(4):15-17.
    [42] 迦太基-菲舍 R. 等著,中国机械工程学会热处理专业学会译,渗氮和氮碳共渗[M],北京:机械工业出版社,1989.
    [43] 冯珊,张树格. 高氮钢[J]. 机械工程材料,1993,17(6):1.
    [44] 加西克 M. N.等著,张烽等译. 铁合金生产的理论和工艺[M]. 北京:冶金工业出版社,1994.
    [45] Kostina M V, Bannykh O A and Blinov V M. Nitrogen alloyed steels[J]. Metal Science and Heat Treatment, 2000, 42(11-12): 459-462.
    [46] 吴季恂等译. 钢的氮化文集[M]. 北京:机械工业出版社,1975.
    [47] Hansen M and Anderko K. Constitution of Binary Alloys [M]. New York: McGraw Hill, 1958.
    [48] Gokcen N A. The Mn – N System [J]. Bulletin of Alloy Phase Diagrams, 1990, 11(1): 33-42.
    [49] 张显鹏主编. 铁合金辞典[M]. 沈阳:辽宁科学技术出版社,1996.
    [50] 赵跃萍,张金柱,徐楚韶. Mn-N相图和金属锰氮化[J]. 铁合金, 2001,32(5): 1-6.
    [51] Poulalion A and Botte R. Nitrogen addition in steelmaking using nitriding ferroalloys. Foct J and Hendry A. Int Conf on High Nitrogen steels-HNS88 [C]. London: 1 Carlton House Terrace, 1989: 49-52.
    [52] 崔先云. 回转法可控气氛生产氮化锰铁的实践[J]. 铁合金,2001,32(1):12-16.
    [53] 张金柱,徐楚韶,刘利,赵跃萍. 低碳锰铁FeMn84C0.4氮化的实验研究[J]. 中国锰业, 2000,
    
    
    18(2): 30-33
    [54] 张金柱,徐楚韶,赵跃萍,刘利. 锰铁渗氮的热力学探讨 [J]. 中国稀土学报, 2000,18( 冶金过程物理化学专辑 ): 129-132
    [55] Leif Hunsbedt and Sverre E Olsen. Nitriding of ferromanganese. Iron and Steel Society/AIME. 51st Electric Furnace Conference Proceedings[C]. Warrendale: Commonwealth, 1993: 129-136.
    [56] Gokcen N A. Solubility of nitrogen in liquid manganese [J]. Trans TMS-AIME, 1961, 221: 200-201.
    [57] Baratashvili I B, Fedotov V P, Samarin A M and et al. The solubility of nitrogen in liquid manganese [J]. Dokl Akad Nauk SSSR, 1961, 139: 1354-1355.
    [58] Kor G J W. The solubility of nitrogen in liquid manganese [J]. Metall Trans, 1978, 9B(1): 97-99
    [59] Kim E J, You B D and Pak J J. Nitrogen solubility in liquid manganese and ferromanganese alloys [J]. Metallurgical and Materials Transactions, 2001, 32B(4): 659-668.
    [60] Qiu C and Guillermet A F. Predicative Approach to the Entropy of Manganese Nitrides and Calculation of the Mn-N Phase Diagram [J]. Z Metallkd, 1993, 84(1), 11-22.
    [61] Beer S Z. Solubility of nitrogen in molten iron manganese alloys [J]. Trans TMS-AIME, 1961, 221: 2-8.
    [62] Perepelkin V P. The solubility of nitrogen in melts of standard metallic manganese [J]. Izv Vysshikh Uchebn Zavedenii Chern Metall, 1966, 9(3): 88-93.
    [63] Grigorenko G M, Pomarin Y M, Lakomsky V I, and et al. Effect of temperature on the solubility of nitrogen in iron-manganese melts [J]. Izvest Akad Nauk SSSR Metall, 1974, (6): 11-15.
    [64] Kudielka H and Grabke H J. Investigation of the Manganese-Nitrogen Phase Diagram by X-ray Diffraction at High Temperatures [J], Z Metallkd, 1975, 66(6), 469-471.
    [65] Schenck V H, Frohberg M G and Kranz W. The solubility of nitrogen in iron-manganese alloys at 1000℃ and pressures up to 65 atmospheres[J]. Archiv fur das Eisenhuttenwesen, 1963, 34(11): 825-830.
    [66] Schenck V H, Frohberg M G and Reinders F. The solubility of nitrogen in iron alloys in the temperature range 7000~12000C [J]. Stahl und Eisen, 1963, 83(2): 93-99.
    [67] Rabinovich A V, Nemogai V E, Tarasev M I, and et al. Thermodynamics of the interaction of nitrogen with solid manganese [J]. Metall Koksokhim Rasp Mezhved Nauk-Tekn So. 1975, 44: 68-72.
    [68] Pompe R. Investigation of the Phase Diagram of Manganese-Nitrogen in the range 10-25 at.% Nitrogen by Thermoanalytical Methods[J], Scand J Metall, 1979, 8(2), 51-54.
    [69] Pompe R. A Thermodynamic Analysis of the Solubility of Nitrogen Gas in Manganese in the Range 13-25at%N [J], J Less-Common Metals, 1979, 65, 237-252.
    
    [70] Pompe R. A Thermo-Analytical Investigation of Low Manganese Nitride Phases [J], Thermchimica Acta, 1979, 132, 127-138.
    [71] Ettmayer P, Vendl A, Horvath E, and et al. About the system chromium-manganese-nitrogen [J], Monatsh Chem, 1978, 109(6): 1277-1285.
    [72] Lihl V F, Ettmayer P and Kutzelnigg A. The System Manganese-Nitrogen [J], Z Metallkd, 1962, 53(11): 715-719.
    [73] Takei W J, Shirane G and Frazer B C. Magnetic structure of Mn4N [J]. Phys Rev, 1960, 119(1): 122-126.
    [74] Takei W J, Heikes R R and Shirane G. Magnetic structure of Mn4N-type compounds [J]. Phys Rev, 1962, 125(6): 1893-1897.
    [75] Jacobs H and Stuve C. High-temperature synthesis of the η- phase (Mn3N2) in the Mn-N system [J]. J Less-Common Metals, 1984, 96, 323-329.
    [76] Frisk K. A thermodynamic evaluation of the Cr-N, Fe-N, Mo-N and Cr-Mo-N systems [J]. CALPHAD, 1991, 15(1): 79-106
    [77] Guillermet A F and Frisk K. Thermodynamic properties of Ni nitrides and phase stability in the Ni-N system [J]. Int J Thermophys, 1991, 12(2), 417-431.
    [78] Guillermet A F and Jonsson S. Predictive approach to thermodynamic properties of Co-N nitrides and phase stability in the Co-N system [J]. Z Metallkd, 1992, 83(1), 21-31.
    [79] Juza R, Puff H and Wagenknecht F. The system manganese-nitrogen [J]. Z Elektrochemistry. 1957, 61: 804-809.
    [80] Brisi C. The system manganese-nitrogen[J]. Metallurgia Ital, 1955, 47: 405-408.
    [81] Elliott R P. Constitution of Binary Alloys, First Supplement [M], McGraw Hill, New York: 1965, 604-605.
    [82] Hillert M and Staffansson L I. The regular solution model for stoichiometric phases and ionic melts [J]. Acta Chem Scand, 1970, 24: 3618-3626
    [83] Hillert M and Jarl M. A regular-solution model for interstitial solutions in hcp metals [J]. Acta Metall, 1977, 25(1), 1-9.
    [84] Jarl M. A calculation of the equilibrium between γ-Mn and the hexagonal ζ phase in the Mn-N system [J]. Metall Trans, 1979, 10A(4): 511-512.
    [85] Mah A D. The Heats of Combustion and Formation of Two Manganese Nitrides Mn5N2 and Mn4N [J], J Am Chem Soc, 1958, 80, 2954-2955.
    [86] Grimvall G and Rosen J. Vibrational entropy of polyatomic solids: metal carbides, metal borides, and alkali halides [J]. Int J Thermophys, 1983, 4(2), 139-147.
    [87] Rosen J and Grimvall G. Anharmonic lattice vibrations in simple metals [J]. Phys Rev B, 1983,
    
    
    27(12), 7199-7208.
    [88] Guillermet A F and Grimvall G. Cohesive properties and vibrational entropy of 3d transition-metal compounds: MX (NaCl) compounds (X=C, N, O, S), complex carbides, and nitrides [J]. Physical Review B, 1989, 40(15), 10582-10593.
    [89] Guillermet A F and Huang W. Thermodynamic analysis of stable and metastable carbides in the Mn-V-C system and predicted phase diagram [J]. Int J Thermophys, 1991, 12(6), 1077-1102.
    [90] Haglund J, Grimvall G, Jarborg T and et al. Band structure and cohesive properties of 3d- transition carbides and nitrides with the NaCl-type structure [J]. Physical Review B, 1991, 43(18), 14400-14408.
    [91] Guillermet A F and Grimvall G. Cohesive properties and vibrational entropy of 3d transition metal carbides [J]. J Phys Chem Solids, 1992, 53(1), 105-125.
    [92] Guillermet A F and Grimvall G. Homology of interatomic forces and Debye temperatures in transition metals [J]. Physical Review B, 1989, 40(3), 1521-1527.
    [93] Guillermet A F and Grimvall G. Correlations for bonding properties and vibrational entropy in 3d-transition metal compounds, with application to the CALPHAD treatment of a metastable Cr-C phase [J]. Z Metallkd, 1990, 81(7), 521-524.
    [94] Guillermet A F. Predictive approach to thermodynamic properties of the metastable Cr3C carbide [J]. Int J Thermophys, 1991, 12(5), 919-936.
    [95] Guillermet A F and Jonsson S. Thermodynamic analysis of the Fe-Co-N system and predictive approach to the phase diagram[J]. Z Metallkd, 1992, 83(3), 165-175.
    [96] Guillermet A F and Hong D. Thermodynamic analysis of the Fe-N system using the compound-energy model with predictions of the vibrational entropy [J]. Z Metallkd, 1994, 85(3), 154-163.
    [97] Du H. A reevaluation of the Fe-N and Fe-C-N systems [J]. J Phase Equilibria, 1993, 14(6), 682-693.
    [98] Juza R. Nitrides of metals of the first transition series[J]. Advan Inorg Chem Radiochem. 1966. 9: 88-131.
    [99] Mamporyia G S. Manganese-nitrogen phase diagram [J]. Soobshch Akad Nauk gruz SSR. 1967. 45(3): 663-667.
    [100] Okamto H. Comment on Mn-N [J]. J Phase Equilibria, 1994, 15(4): 451-452.
    [101] Kubaschewski O and Alcock C B. Metallurgical Thermochemistry [M]. New York: Pergamon Press, 1979.
    [102] 梁英教,车荫昌. 无机物热力学数据手册[M]. 沈阳:东北大学出版社,1993.
    [103] 胡传炘. 表面热处理技术手册[M].北京:北京工业大学出版社,1997.
    [104] Massalski T B, Okamoto H, Subramanian P R and et al. Binary Alloy Phase Diagrams[M]. 2nd
    
    
    edition, Ohio: Materials Park. 1990.
    [105] 魏寿昆. 冶金过程热力学[M]. 上海:上海科学技术出版社. 1980.
    [106] 杜清枝,杨继舜. 物理化学 [M]. 重庆:重庆大学出版社. 1997.
    [107] 黄希祜. 钢铁冶金原理(修订版)[M]. 北京:冶金工业出版社. 1990.
    [108] Hillert M and Jarl M. A thermodynamic analysis of the iron-nitrogen system [J]. Metall Trans, 1975, 6A(3): 553-559.
    [109] Decristofaro N and Kaplow R. Interstitial atom configurations in stable and metastable Fe-N and Fe- C solid solutions [J]. Metall Trans, 1977, 8A(1): 35-44.
    [110] 魏庆成. 冶金热力学[M]. 重庆:重庆大学出版社. 1998. 262-265.
    [111] 梁英教. 物理化学(修订版)[M]. 北京:冶金工业出版社. 1989.
    [112] Goune M, Belmonte T, Redjaimia A and et al. Thermodynamic and structural studies on nitrided Fe-1.62%Mn and Fe-0.56%V alloys [J]. Materials Science and Engineering, 2003, A351: 23-30.
    [113] 王常珍. 冶金物理化学研究方法[M]. 北京:冶金工业出版社. 1982.
    [114] 徐祖耀,李麟. 材料热力学[M]. 北京:科学出版社. 2001.
    [115] 李文超. 冶金与材料物理化学[M]. 北京. 冶金工业出版社. 2001.
    [116] Chang F W, Liou T H and Tsai F M. The nitridation kinetics of silicon powder compacts [J]. Thermochimica Acta, 2000, 354: 71-80.
    [117] 李清斌,王晓春编译. 合金中的扩散性相变与合金热力学[M]. 沈阳:辽宁科学技术出版社. 1984.
    [118] 孙振岩,刘春明. 合金的扩散与相变[M]. 沈阳:东北大学出版社. 2002.
    [119] Somers M A J and Mittemeijer E J. Layer-growth kinetics on gaseous nitriding of pure iron: Evaluation of diffusion coefficients for nitrogen in iron nitrides [J]. Metall Trans, 1995, 26A(1): 57-74.
    [120] Torchane L, Bilger P, Dulcy J and et al. Control of iron nitride layers growth kinetics in the binary Fe-N system [J]. Metall Trans, 1996, 27A(7): 1823-1835.
    [121] Agren J. Computer simulations of diffusional reactions in complex steels [J]. ISIJ International, 1992, 32(3):291-296.
    [122] Andersson J O and Agren J. Models for numerical treatment of multicomponent diffusion in simple phases [J]. J Appl Phys, 1992, 72(4): 1350-1355.
    [123] Rozendaal H C F, Mittemeijer E J, Colijn P F and et al. The development of nitrogen concentration profiles on nitriding iron [J]. Metall Trans, 1983, 14A(3): 395-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700