用户名: 密码: 验证码:
粉煤灰资源特性与制备Si-Al-O-C-N系材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰是排放量最大的工业废渣,对其进行资源化综合利用对我国经济和环境的可持续发展具有重要的意义。目前粉煤灰的利用相对集中于建筑材料工业,尚有大量粉煤灰未加利用而被填埋或堆放,不仅占用大量可耕地和较高维护费用,且会造成大气和地下水污染,给社会带来严重的经济和环境问题。粉煤灰中通常含有不同类型的球形颗粒,主要有漂珠、微珠(沉珠)和富铁微珠。微珠除作为低附加值用于传统的建筑材料外,还可直接用于制作隔热、耐火、保温材料,或对其进行适当的表面活化或改性处理用于耐磨、屏蔽、滤波及其它功能材料中。粉煤灰微珠的分离提取及其高附加值利用对于转变目前粉煤灰资源的浪费及占有土地、污染环境的局面,缓解资源短缺并建立新的经济增长点,具有十分重要社会和经济意义。本论文在国家自然科学基金“粉煤灰厚壁微珠活化、强化及其应用研究”(项目编号:50472030)的资助下,进行了粉煤灰微珠资源特性及其分离沉降特点的研究,并就粉煤灰微珠制备Si-Al-O-C-N系列微球及复相粉体进行了深入研究。研究工作取得的主要进展如下:
     1.对全国不同地区26家电厂粉煤灰进行了比较全面的化学组成、矿物组成及颗粒组成等资源特性分析,着重研究了粉煤灰中微珠含量及其影响因素,对深化粉煤灰微珠成因的认识,为其大规模的资源化以及深加工利用提供了有价值的基础数据:研究结果表明我国不同地区的粉煤灰化学成分波动很大,烧失量较10年前有很大程度的降低,反映了“十五”计划以来我国粉煤灰资源特性的变化特点。不同电厂的粉煤灰都包括微珠,富铁微珠,不定形颗粒和碳粒,微珠含量与其化学组成、锅炉燃烧温度、粉煤灰的细度有明显的相关性。所调研的超过70%的电厂的粉煤灰中含有60%以上的微珠,微珠含量最高的河南禹州电厂达到96%。数据表明,很多电厂的粉煤灰都具备微珠分离提取的潜力,和微珠深加工利用的良好前景。
     2.对不同密度、不同粒径的微珠与不定形颗粒的分离沉降特点进行了理论分析和实验初步研究,针对其沉降过程中的运动特点初步确定了微珠与不定形颗粒的分离方案:微珠与不定形颗粒的自由沉降实验表明微珠的沉降表现出与理论分析一致的变化趋势;不定形颗粒的沉降末速比同粒径、同密度的微珠的沉降速度小,但这种差别随着粒径的减小和密度的增大而逐渐变得不显著,粒径大于75μm的微珠和不定形颗粒具有比较大的速度差值,这也为它们的分离提供了实验依据。就微珠与不定形颗粒的集合体而言,不同密度、粒径的微珠和不定形颗粒的沉降末速存在很大的重合区间,造成了分选的困难。我们认为对于大多数电厂来说,分离出的小于45μm的粉煤灰就意味着分离出了微珠。对于大于45μm的颗粒中也富含微珠的粉煤灰,可以通过筛分的方法首先实现粉煤灰45μm以上不同粒径颗粒的分离,然后对同一粒径的微珠进行气力分选而实现微珠与不定形颗粒的分离。
     3.基于粉煤灰微珠的形貌特点和化学组成,首次利用粉煤灰微珠和不同碳源成功地制备出SiC/Mullite复合球体、SiC空心(实心)球体、SiC/AlN-多型体复合球体和Sialon球体等Si-Al-O-C-N系列材料:(1)以粉煤灰微珠与炭黑为原料采用微波加热和常规加热方式通过控制温度、反应时间和炭黑用量都可以制备成SiC/Mullite复合球体,其机理是将微珠表层玻璃体转化为SiC而维持内部Mullite不变。研究表明SiC晶粒在粉煤灰微珠表面原位生成,以固相扩散的方式进行。Mullite分解与否是所制备的产物能否维持球形形貌的根本所在,过量炭黑阻隔微珠之间可能发生的粘结,是维持SiC/Mullite球体的关键。同常规加热方式相比,采用微波加热制备SiC/Mullite复合球体具有降低反应温度较高,缩短保温时间,节能降耗等功效。(2)通过简单的筛分制备出炭黑球模板,粉煤灰提供SiO源,通过控制反应温度、粉煤灰用量和保温时间可以制得球壳厚度不同的宏观大孔SiC空心球乃至实心球。所制得的SiC空心球球壳由弯曲缠绕的SiC纳米线构成,线宽度约50~500nm,长度通常为十几微米,属于带有缺陷结构的β-SiC晶体。弯曲的β-SiC纳米线被认为是通过VLS和VS机制生成的,在VLS机制中粉煤灰所含有的Fe起到催化液滴作用。(3)以炭黑球为模板,粉煤灰为原料,通过微波加热碳热还原氮化反应可以制得具有梯度结构的SiC/AlN-多型体复合球体。所制备的SiC/AlN-多型体复合球体具有AlN-多型体的外壳、SiC纳米线过渡层和SiC晶须与花朵状SiC晶体构成的核心。(4)以活性炭为还原剂采用常规加热方法成功制备出了O'-Sialon和β-Sialon球体。活性炭用量高于理论配比,有利于生成更多的氮化产物,且是微珠氮化后能维持其球形形貌的重要因素。以炭黑为还原剂则在制备过程中易产生SiC,且所制备的Sialon部分以晶须的形式出现。
     4.以粉煤灰为原料成功地制备SiC/Al_2O_3、SiC/Mullite/Al_2O_3、SiC/AIN等微米级复相粉体,得出了制备各种复相粉体了最佳工艺,并就粉煤灰的碳热还原氮化过程及各种复相粉体的形成机理进行了分析:研究表明,粉煤灰的碳热还原氮化反应分为5步:石英的相转变,二氧化硅反应生成SiC,Mullite分解,Sialon、15R、AlON等中间产物的生成,中间产物分解出AlN。温度、碳用量、碳源种类、保温时间、气氛等都会不同程度地影响着粉体的相组成。
     5.对粉煤灰微珠制备Si-Al-O-C-N系材料过程中的微珠的结构与物相的演化以及部分元素的迁移规律及赋存状态的进行了研究,深化了粉煤灰微珠制备各种材料反应过程与反应机理的认识:通过粉煤灰微珠制备Si-Al-O-C-N系列球体和粉体的过程的分析,SiC/Mullite球体维持球体的原因在于Mullite的不分解,而Sialon维持球体的原因在于Mullite直接固溶参与反应,而反应过程中物相转变受温度、碳用量、气氛、保温时间等多种因素的影响。对部分元素的迁移规律研究表明,采用微波加热时,随着温度升高,莫来石晶格中Fe的固溶度减少,Fe从球体内部往表面迁移,赋存于Fe_3Si中。常规加热根据反应程度可能以Fe3_Si或单质Fe的方式存在的,Fe在表面张力的作用下凝固时收缩成球形。Ti、Ca和Mg也有往球体表面迁移的趋势,Na、K则随气体流失。
     6.本文对粉煤灰微珠制备Si-Al-O-C-N系列材料的探索表明,经过进一步系统深入的研究,以粉煤灰微珠为原料,通过反应条件的设计与控制,制备出指定组成和性能的复合功能材料有可能实现,显示了粉煤灰微珠制备Si-Al-O-C-N系列材料具有很高的理论研究价值和很好的应用前景。
Fly ash from coal-fired power stations is the largest amount of industrial residue. Comprehensive utilization of fly ash is of great significance to economy and environment.At present,the chief consumer of fly ash is construction materials industry.A relatively large percentage of fly ash is mainly utilized for the manufacture of cement,concrete and other products,the remainder is directly stacking or landfills, which cause not only the unproductive use of land and the associated long-term financial burden of maintenance but also the air pollution and groundwater pollution. In recent years,many researchers have taken fly ash as the main raw materials to prepare high performance ceramic-based materials,such as Sialon powders, SiC/Al_2O_3 composite powders etc.Although fly ash as a low-cost raw materials can reduce the costs of ceramic,large quantity of spherical particles among fly ash——fly ash microspheres were ignored.Microspheres can be used not only as traditional building materials of low value,but also directly for the preparation of thermal insulation,fire resistance materials,or be utilized for high-strength,abrasion resistance,shielding,filtering and other functional materials through proper surface activation or modification.As a consequence,there is a growing interest in looking for avenues where the fly ash can be used of value added products,since it presents a unique nature source of the particulate material for functional materials,which have great significance to realize sustainable development and the value added comprehensive utilization of fly ash.The purpose of this thesis is to investigate the resource characteristics and precipitation process of microspheres from fly ash and its process and mechanism for preparation of Si-Al-O-N-C composite.Moreover,this thesis is financially supported by National Natural Science Found of China under Grant No.50472030.The progresses are as follows:
     1.Fly ashes sourced from twenty-six coal-fired power plants were characterized by chemical,mineralogy composition and particle morphology, which is helpful to enrich the database of fly ash resource characteristics and provide valuable basic data for the lager scale resource utilization of fly ash.The results show that the chemical compositions of different fly ashes have a large fluctuation and loss on ignition has decreased to a great degree,which manifest the achievements of electric power reform since tenth five year plan.Fly ashes from different area mainly are composed of four types particles including microspheres, ferrospheres,irregular particles and residual carbon.There is higher than 70%fly ashes contains microspheres content over 60%,which shows that many fly ashes have a potential prospect of microsphere separating and deep process.
     2.Investigation on setting process of microspheres and irregular particles with different size and different density has performed by theoretical analysis and experimental study.And separating plan is preliminary designed based the setting process data of microspheres and irregular particles.The results show that experimental data of setting process of microspheres and irregular particles is according with theoretical analysis results.Irregular particles have a lower setting speed than microspheres with same size and density.And the difference on speed of two particles decreased with size decreasing.There is an obvious difference between microspheres and irregular particles when its size is over 75μm.Moreover,there exists an overlapped area of speed range of microspheres and irregular particles, which caused of the difficulty in separating of them.For many fly ashes,separation of size less than 45μm particles that is means successfully abstained microspheres.When the particle size is more than 45μm,microspheres can be abstained through two steps, first,particles over 45μm abstained by sieve method,then,microsphere and irregular particles separated by pneumatic separation based on their different setting speed.
     3.Based on composition and particle morphology of microspheres, SiC/Muilite composite sphere,SiC hollow(solid) sphere,SiC/AlN-polytype sphere and Sialon sphere are successfully synthesized by carbothermal reduction between microspheres and different carbon source.
     (1) SiC/Mullite composite spheres prepared through carbothermal reduction reaction between fly ash microspheres and carbon black both by microwave heating and conventional heating.The resusts show that the reaction mechanism mainly associates with solid-solid reaction between C(s) and SiO_2(s) on the surface of fly ash microspheres with its spherical shape unchanging when the temperature is between 1100℃-1300℃.When the temperature is higher than 1300℃,SiC is easier orientation growth to whisker through VLS mechanics for the presence of liquid phase.The spherical morphology of prepared product is related to the survivorship of mullite.Excess content of carbon black barrier the adhesion among microspheres, which is necessary to maintain the shape of SiC/Mullite spheres.The microwave reaction synthesis of SiC/Mullite microspheres is superior to the conventional method in lower synthesis temperature and shorter holding time,which will be beneficial for the industry to save energy and time.
     (2) Macroscopic SiC hollow sphere has been synthesized by a microwave heating and carbothermal reduction method with commercial carbon spheres as template and fly ash as silica source.The results show that the SiC hollow spheres have retained the similar size with the original carbon sphere template,and the shell of SiC hollow sphere is composed of a lot of irregular SiC nanowires with 5-20μm in length and 50-500 nm in diameter which belongs to the.single crystallized 3C-SiC with defect.The formation of curving SiC wires should be attribute to the VLS mode and the space preventing function,the Fe catalyst is indispensable reason of it.
     (3) SiC/AlN-polytype sphere with obviously gradient structure has been synthesized by a microwave heating and carbothermal reduction nitridation with commercial carbon spheres as template and fly ash as silica and aluminum source. SiC/AlN-polytype composite spheres are composed of three layers:the shell (AlN-polytype),the transition layer(SiC nanowires),and the core(SiC whiskers and flower-like SiC crystals).The formation process of SiC/AlN-polytype composite microspheres as follows:First,SiC hollow spheres which is composed of SiC nanowires formed.Then the Al,Al_2O steam decomposed from the Al_2O_3 in nitrogen atmosphere deposit on the surface of SiC hollow spheres to form the outer layer of AlN- polytype.After that,the surface densification result in internal and external gas exchange slowing down,which changing the gas saturation of growth of internal SiC, so that SiC grows along the different directions of the side line which result in the formation of flower-liked SiC crystals.
     (4) Active carbon and microspheres with hollow structure were taken as raw materials to prepareβ-Sialon hollow spheres by carbonthemral reduction nitridation. The results show that carbonthemral reduction of fly ash microspheres begins at 1300℃.Excess content of active carbon and particle size of microspheres are important factors on forming ofβ-Sialon hollow spheres.β-Sialon hollow spheres that obtained with microspheres of particle size greater than 100μm and excess 10% content of active carbon at 1500℃,have some features of rough surface and perfect hollowness.
     4.SiC/Al_2O_3,SiC/Mullite/Al_2O_3 and SiC/AlN composite powder are successfully synthesized by carbothermal reduction between microspheres and carbon black,the optimum technological parameters are determined as follows, temperature,carbon content,carbon source,holding time,atmosphere,etc.The results show the carbothermal reduction nitridation can be divided into five steps:first, phase transition of quartz;conversion of SiO_2 into SiC;decomposition of Mullite; then,formation of intermediate products,such as Sialon,15R,AlON,etc.The last step is intermediate products degrade to AlN.
     5.Finally,we discussed the structural evolution and movement behavior of some elements during the whole process of fly ash microspheres to prepare Si-Al-O-C-N series composite sphere and powder.The results show that the spherical morphology of prepared SiC/Mullite composite spheres is related to the survivorship of mullite.However,Sialon sphere is attributed to the direct take part in the reaction without decomposing.Movement behavior of some elements mostly is affected by temperature,carbon content,atmosphere,holding time,etc.Elements like Fe,Ti,Ca,Mg,always move to the surface of products,but some element is drained away with gas,such as Na and K.
     6.The preliminary investigation on precipitation process of microspheres from fly ash and preparation of Si-Al-O-N-C composite,the prescribed properties and functions of microspheres can be achieved by further careful composition design and process control,and preparation of Si-Al-O-N-C composite with fly ash microspheres have high theoretical research value and wide application prospect.
引文
[1]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京:科学出版社,2002.
    [2]Fermo P,Cariati F,Pozzi,A,et al.The analytical characterization of municipal solid waste incinerator fly ash:methods and preliminary results[J].Fresenius' Journal of Analytical Chemistry,1999,365(8):666-673.
    [3]Cenni R,Janisch B,Spliethoff H,et al.Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material[J].Waste Management,2001,21(1):17-31.
    [4]Ramesh A,Kozinski J A.Investigations of ash topography/morphology and their relationship with heavy metals leachability[J].Environmental Pollution,2001,111(2):255-262.
    [5]Cabrera J G,Woolley G R.Fly ash utilization in civil engineering[J].Fuel and Energy Abstracts,1994,36(3):190.
    [6]Iyer R S,Scott J A.Power station fly ash - a review of value-added utilization outside of the construction industry[J].Resources,Conservation and Recycling,2001,31(3):217-228.
    [7]Reijnders L.Disposal,uses and treatments of combustion ashes:a review[J].Resources,Conservation and Recycling,2005,43(3):313-336.
    [8]Guo R Q,Venugopalan D,Rohatgi P K.Differential thermal analysis to establish the stability of aluminum-fly ash composites during synthesis and reheating[J].Materials Science and Engineering A,1998,241(1-2):184-190.
    [9]Dastidar A G,Amyotte P R.Explosibility boundaries for fly ash/pulverized fuel mixtures[J].Journal of Hazardous Materials,2002,92(2):115-126.
    [10]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,1997.
    [11]何凤山.必须重视粉煤灰综合利用[J].粉煤灰综合利用,2001,(1):47-48.
    [12]杨久俊,黄明,张磊等.粉煤灰微珠分离提取与深加工研究[J].新型建筑材料,2003,(8):14-16.
    [13]王立刚.粉煤灰的环境危害与利用[J].中国矿业,2001,10(4):27-37.
    [14]孙俊民,韩德馨.粉煤灰的形成和特性及其应用前景[J].煤炭转化,1999,22(1):10-14.
    [15]刘巽伯,沈旦申,陈以理等.上海市粉煤灰应用技术手册[M].上海:同济大学出版社,1995.
    [16]钱觉时,王智,吴传明.粉煤灰的矿物组成(中)[J].粉煤灰综合利用,2001,(2):37-41.
    [17]Gupta V K,Jain C K,Ali I,et al.Removal of cadmium and nickel from waste water using bagasse fly ash - a sugar industry waste[J].Water Research,2003,37(16):4038-4044.
    [18]Wang S B,Boyjoo Y,Choueib A,et al.Removal of dyes from aqueous solution using fly ash and red mud[J].Water Research,2005,39(1):129-138.
    [19]Wang S B,Wu H W.Environmental-benign utilization of fly ash as low cost adsorbents:a review[J].Journal of Hazardous Materials,2006,136(3):482-501.
    [20]Sarkar M,Acharya P K.Use of fly ash for the removal of phenol and its analogues from contaminated water[J].Waste Management,2006,26(6):559-570.
    [21]Hequet V,Ricou P,Lecuyer 1,et al.Removal of Cu~(2+) and Zn~(2+) in aqueous solutions by sorption onto mixed fly ash[J].Fuel,2001,80(6):851-856.
    [22]Hsu T C,Yu C C,Yeh C M.Adsorption of Cu~(2+) from water using raw and modified coal fly ashes[J].Fuel,2008,87(7):1355-1359.
    [23]Jala S,Goyal D.Fly ash as a soil ameliorant for improving crop production--a review[J].Bioresource Technology,2006,97(9):1136-1147.
    [24]Kalra N,Joshi H C,Chaudhary A,et al.Impact of fly ash incorporation in soil on germination of crops[J].Bioresource Technology,1997,61(1):39-41.
    [25]Khan M R,Singh W N.Effects of soil application of fly ash on the fusarial wilt of tomato cultivars[J].International Journal of Pest Management,2001,47(4):293-297.
    [26]Furr A K,Parkinson T F,Gutenmann W H,et al.Elemental content of vegetables,grains and forages field grown on fly ash amended soils[J].Jounal of Agriculture and Food Chemistry,1978,26(2):357-359.
    [27]Adriano D C,Weber J T.Influence of fly ash on soil physical properties and tuff grass establishment[J].Journal of Environmental Quality,2001,30(2):596-601.
    [28]Abdel-latif M A.Recovery of vanadium and nickel from petroleum fly ash[J].Minerals Engineering,2002,15(11):955-961.
    [29lAmer A M.Processing of Egyptian boiler ash for extraction of vanadium and nickel[J].Waste Management,2002,22(5):515-520.
    [30]Camerani M C,Steenari B,Sharma R,et al.Cd speciation in biomass fly ash particles after size separation by centrifugal SPLITT[J].Fuel,2002,81(13):1739-1753.
    [31]牛福生,刘兴德,倪文.粉煤灰在建筑材料中的资源化利用现状[J].再生资源研究,2005,(2):36-39.
    [32]van Jaarsveld J G S,van Deventer J S J,Lukey G C.The characterisation of source materials in fly ash-based geopolymers[J].Materials Letters,2003,57(7):1272-1280.
    [33]Swanepoel J C,Strydom C A.Utilisation of fly ash in a geopolymeric material[J].Applied Geochemistry,2002,17(8):1143-1148.
    [34]Andini S,Cioffi R,Colangelo F,et al.Coal fly ash as raw material for the manufacture of geopolymer-based products[J].Waste Management,2008,28(2):416-423.
    [35]苏玉柱,杨静,马鸿文等.利用粉煤灰制备高强矿物聚合材料的实验研究[J].现代地质, 2006,20(2):354-360.
    [36]Molina A,Poole C.A comparative study using two methods to produce zeolites from fly ash[J].Minerals Engineering,2004,17(2):167-173.
    [37]Querol X,Moreno N,Umana J C,et al.Synthesis of zeolites from coal fly ash:an overview[J].International Journal of Coal Geology,2002,50(1-4):413-423.
    [38]Juan R,Hernandez S,Andres J M,et al.Synthesis of granular zeolitic materials with high cation exchange capacity from agglomerated coal fly ash[J].Fuel,2007,86(12-13):1811-1821.
    [39]Murayama N,Yamamoto H,Shibata J.Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction[J].International Journal of Mineral Processing,2002,64(1):1-17.
    [40]吴德意,孔海南,赵统刚等.合成条件对粉煤灰合成沸石过程中沸石生成和品质的影响[J].无机材料学报,2005,20(5):1153-1158.
    [41]赵统刚,吴德意,陈建刚等.粉煤灰合成沸石同步脱氨除磷特性研究[J].环境科学,2006,27(4):696-700.
    [42]Gabler Jr R C,Stoll R L.Extraction of leachable metals and recovery of alumina from utility coal ash[J].Resouces and Conservation,1982,9:131-142.
    [43]Matjie R H,Bunt J R,van Heerden J H P.Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal[J].Minerals Engineering,2005,18(3):299-310.
    [44]李来时,翟玉春,秦晋国等.以粉煤灰为原料制备高纯氧化铝[J].化工学报,2006,57(9):2189-2193.
    [45]丁宏娅,马鸿文,王蕾等.利用粉煤灰制备氢氧化铝的实验[J].现代地质,2006,20(3):405-408.
    [46]张晓云,马鸿文,王军玲.利用高铝粉煤灰制备氧化铝的实验研究[J].中国非金属矿工业导刊,2005,(4):27-30.
    [47]Choi H S,Roh J S,Suhr.D S,et al.Synthesis of β-Sialon powder from fly ash[J].Yoop Hakhoechi,1996,33(8):871-876.
    [48]Gilbert J E,Mosset A.Preparation of β-Sialon from fly ashes[J].Materials Research Bulletin,1998,33(1):117-123.
    [49]Kudyba-Jansen A A,Hintzen H T,Metselaar R.Ca-α/β-Sialon ceramics synthesized from fly ash-preparation,characterization and properties[J].Materials Research Bulletin,2001,36(7-8):1215-1230.
    [50]Kamiya,M,Sasai R,Itoh H.Preparation of Sialon-based materials from coal fly ash using carbothermal reduction and nitridation method[J].Ceramic Transactions,2006,193:1-8.
    [51]Sopicka-Lizer M,Pawlik T.Influence of process parameters on the phase composition of SIAION ceramics from polish fly ash[J].Key Engineering Materials,2004,264-268(2):1005-1008.
    [52]Potgieter-Vermaak S S,Potgieter J H,Kruger R A,et al.A characterisation of the surface properties of an ultra fine fly ash(UFFA) used in the polymer industry[J].Fuel,2005,84(18):2295-2300.
    [53]Wu Gaohui,Gu Jian,Zhao Xiao.Preparation and dynamic mechanical properties of polyurethane-modified epoxy composites filled with functionalized fly ash particulates[J].Journal of Applied Polymer Science,2007,105(3):1118-1126.
    [54]张云怀,曾政权,唐思进.铝酸酯活化粉煤灰微珠及其在聚氯乙烯塑料中的应用[J].粉煤灰综合利用,1995,(4):34-36.
    [55]方海林,袁淑军.粉煤灰微珠改性尼龙6的研究[J].粉煤灰综合利用,1997,(2):44-45.
    [56]沈志刚,王明珠,麻树林等.空心微珠改性硬质聚氯乙烯复合材料的应用研究[J].中国塑料,2002,16(5):55-57.
    [57]杜玉成,刘燕琴,黄坤良.空心微珠复合材料在橡胶中的应用研究[J].非金属矿,2001,22(6):33-34.
    [58]熊党生.粉煤灰填充聚氯乙烯复合材料的摩擦学特性研究[J].摩擦学学报,2003,23(2):154-157.
    [59]古绪鹏,冷玲波.粉煤灰复合硫酸亚铁固体酸的制备及其催化合成柠檬酸三丁醋[J].精细石油化工进展,2006,7(4):9-12.
    [60]古绪鹏,冷玲波.粉煤灰复合固体酸催化剂合成乳酸正丁醋的研究[J].精细化工中间体,2006,36(3):59-61.
    [61]李贺香,马鸿文,王芳等.利用粉煤灰制备多孔氧化硅的实验[J].现代地质,2006,20(3):399-404.
    [62]王蕾,马鸿文,聂轶苗等.利用粉煤灰制备高比面积二氧化硅的实验研究[J].硅酸盐通报,2006,25(2):3-7.
    [63]赵毅,赵英.从粉煤灰中分离稼的实验研究[J].华北电力技术,1998,(1):35-37.
    [64]Peng F,Liang K,Hu A,et al.Nono-crystal glass-ceramics obtained by crystallization of vitrified coal fly ash[J].Fuel 2004,83(14-15):1973-1977.
    [65]Shao H,Liang K,Zhou F,et al.Characterization of cordierite-based glass-ceramics produced from fly ash[J].Journal of Non-Crystalline Solids,2004,337(2):157-160.
    [66]Cheng T W.Effect of additional materials on the properties of glass ceramic produced from incinerator fly ashes[J].Chemosphere,2004,56(2):127-131.
    [67]Cheng T W,Ueng T H,Chen Y S,et al.Production of glass ceramic from incinerator fly ash[J].Ceramics International,2002,28(7):779-783.
    [68]Sheng J,Huang B X,Zhang J,et al.Production of glass from coal fly ash[J].Fuel,2003,82(2):181-185.
    [69]Leroy C,Ferro M C,Monteiro R C C,et al.Production of glass-ceramics from coal ashes[J].Joumal of the European Ceramics Society,2001,21(2):195-202.
    [70]郑林义.高强粉煤灰微晶玻璃[J].粉煤灰综合利用,2006,(2):45-46.
    [71]江勤,陆雷,董巍等.复合废渣微晶玻璃的实验研究[J].中国矿业,2006,15(4):42-45.
    [72]陈震宙,陈天明,郑启祥.粉煤灰形成莫来石条件的研究[J].福州大学学报(自然科学版),1994,22(5):93-96.
    [73]孙俊民,程照斌,李玉琼等.利用粉煤灰与工业氧化铝合成莫来石的研究[J].中国矿业大学学报,1999,25(3):247-250.
    [74]李贺香,马鸿文.高铝粉煤灰中莫来石及硅酸盐玻璃相的热分解过程[J].硅酸盐通报,2006,25(4):1-5
    [75]魏尊莉,李金洪,邢净.NaF对高铝粉煤灰合成刚玉-莫来石材料的影响[J].岩石矿物学杂志,2007,26(3):184-190.
    [76]魏尊莉,李金洪,邢净.Na_2O对高铝粉煤灰合成莫来石的影响[J].矿物岩石地球化学通报,2007,2(26):176-180.
    [77]魏尊莉,李金洪,李益.添加Li_2O对高铝粉煤灰合成刚玉-莫来石材料的影响[J].粉煤灰综合利用,2007,(2):7-9.
    [78]邢净,李金洪,张凯.粉煤灰用于制备莫来石-SiC材料的实验研究[J].中国非金属矿工业导刊,2007,(1):43-45.
    [79]Park Y M,Yang T Y,Yoon S Y,et al.Mullite whiskers derived from coal fly ash[J].Material Science and Engineering:A,2007,454-455:518-522.
    [80]任祥军,张学斌,刘杏芹等.粉煤灰基多孔陶瓷膜的制备研究[J].材料科学与工程学报,2006,24(4):484-488.
    [81]陈冀宁.利用粉煤灰生产泡沫陶瓷[J].粉煤灰,1998,(4):40.
    [82]Shuqiang D,Yuping Z,Dongliang J.In-situ reaction bonding of porous SiC ceramics[J].Materials Characterization,2008,59(2):140-143.
    [83]Arenillas A,Smith K M,Drage T C,et al.CO_2 capture using some fly ash-derived carbon materials[J].Fuel,2005,84(17):2204-2210.
    [84]Davini P.Investigation of the SO_2 adsorption properties of Ca(OH)_2-fly ash systems[J].Fuel,1996,75(6):713-716.
    [85]王艳磊,李坚,冀宏等.粉煤灰改性及制作NO_x复合吸附剂的探讨[J].煤炭学报,2007,32(4):437-440.
    [86]沈志刚,李策镭,王明珠等.粉煤灰空心微珠及其应用[M].北京:国防工业山版社,2008.
    [87]黄万饮.不烧漂珠隔热耐火制品的研制[J].耐火材料,1996,30(4):215-216.
    [88]徐风广.利用粉煤灰中的漂珠研制绝热制品[J].中国非金属矿工业导刊,2002,(4):18-20.
    [89]李国吕,王萍.利用漂珠研制复合保温材料[J].矿产保护与利用,1996,(3):50-51
    [90]郭丽梅.漂珠复合保温材料的研制[J].新型建筑材料,2005,(12):21-23
    [91]Rohatgi P K,Guo R Q,Iksan H,et al.Pressure infiltration technique for synthesis of aluminum-fly ash particulate composite[J].Materials Science and Engineering A,1998,244(1):22-30.
    [92]Rohatgi P K,Guo R Q,Huang P,et al.Friction and abrasion resistance of cast aluminum alloy-fly ash composites[J].Metallurgical and Materials Transactions A,1997,28(1):245-250.
    [93]Wu G H,Dou Z Y,Jiang L T,et al.Damping properties of aluminum matrix-fly ash composites[J].Materials Letters,2006,60(24):2945-2948.
    [94]Dou Z,Wu G,Huang X,et al.Electromagnetic shielding effectiveness of aluminum alloy-fly ash composites[J].Composites Part A,2007,38(1):186-191.
    [95]Feng Y,Zhen H,Zhu Z,et al.Electromagnetic shielding effectiveness of closed-cell aluminum alloy foams[J].Chinese Journal of Nonferrousb Metals,2004,14(1):33-36.
    [96]罗洪杰,姚广春,刘宜汉等.粉煤灰增黏制备泡沫铝材料的研究[J].东北大学学报(自然科学版),2005,26(3):274-277.
    [97]蒋爱蓉,孙玉福,杨久俊等.粉煤灰微珠增强铝基复合材料的研究[J].铸造,2008,57(7):671-673.
    [98]Shkla S,Seal S,Akesson J,et al.Study of mechanism of electroless copper coating of fly ash cenosphere particles[J].Applied Surface Science,2001,181(1-2):35-50.
    [99]葛凯勇,王群,毛倩瑾等.空心微珠表面改性及其吸波特性[J].功能材料与器件学报,2003,9(1):67-70
    [100]刘家琴,吴玉程,薛茹君.空心微珠表面化学镀Ni-Co-P合金[J].物理化学学报,2006,22(2):239-243
    [101]徐坚,熊惟皓,曾爱香等.Ni-Co-P合金包覆空心微珠粉体的制备[J].宁航材料工艺,2004,34(5):49-52
    [102]曾爱香,何小川,陈东初.空心微珠表面化学镀Ni-P合金镀层的研究[J].长沙理工大学学报(自然科学版),2004,1(3/4):92-96
    [103]徐坚,熊惟皓,曾爱香等.空心微珠表面化学镀Ni-Co-P合金镀层研究[J].材料保护,2004,37(4):16-17.
    [104]毛倩瑾,丁彩霞.空心微珠表面金属化及其电磁防护性能研究[J].北京工业大学学报,2003,29(1):108-112
    [105]Jia Z Y,Wang Q,Zhou M L,et al.Microwave absorbing properties of Ni-Co coating of fly-ash hollow microspheres[J].Journal of Functional Materials,2006,37(1):143-145.
    [106]王宇,张骁勇,毛丽等.空心玻璃微珠化学镀银的研究[J].材料科学与工程学报,2004,22(5):753-756.
    [107]徐政,俞晓正,蔡楚江等.空心微珠表面磁控溅射和化学镀膜的特性比较[J].过程工程学报,2006,(2):183-187
    [108]唐耿平,程海峰,赵建峰等.空心微珠表面改性及其吸波特性[J].材料工程,2005,49(6):11-12.
    [109]曾爱香.空心微珠复合吸波材料的研究[D].武汉:华中科技大学,2004.
    [110]Aixiang Zeng,Weihao Xiong,Jian Xu.Electroless Ni-P coating of cenospheres using silver nitrate activator[J].Surface and Coatings Technology,2005,197(2-3):142-147.
    [111]钱觉时,施惠生.粉煤灰的分选技术[J].粉煤灰综合利用,2004,(2):29-32.
    [112]师吕绪.材料与可持续发展[J].自然杂志,1998,20(2):63.
    [113]江东亮,李龙土,欧阳世翕等.中国材料工程大典无机非金属材料工程(上)[M].北京:化学工业出版社,2006.
    [114]Askay I A,Dabbs D M,Sarikaya,M.Mullite for structural,electronic,and optical applications[J].Journal of the American Ceramic Society,1991,74(10):2343-2358.
    [115]Oyama Y,Kamigaito O.Solid solubility of some oxides in Si_3N_4[J].The Japan Society of Applied Physics,1971,(10):1637-1642.
    [116]Jack K H.Review-Sialons and related nitrogen ceramics[J].Journal of Materials Science,1976,11(6):1135-1158.
    [117]Ekstr(o|¨)m T.Hardness of dense Si_3N_4-based ceramics[J].Journal of Refractory Metals and Hard Materials,1993,(4):77-95.
    [118]Jack K H.Sialon hardmetal materials[J].Science of Hard Materials,1986,(75):363-376.
    [119]Demir A,Thompson D P.High-performance SiC-fibre reinforced β-Sialon CMCs prepared from heat-treated Nicalon fibres[J].Journal of the European Ceramic Society,2001,21(5):639-647.
    [120]Zhang C,Jiang D,Li Q,et al.Dendification and microstructure of β-Sialon/nano-size SiC composites[J].Journal of Materials Science and Technology,1997,13(4):339-341.
    [121]Huang X,Hwang J Y,Mustuddy B C.Properties of mullite synthesized from fly ash and alumina mixture[J].International Ceramic Review,1995,44(2):65-71.
    [122]李金洪.高铝粉煤灰制备莫来石陶瓷的性能及烧结反应机理[D].北京:中国地质大学,2007.
    [123]陈江峰,邵龙义,于利锋.准格尔电厂高铝粉煤灰直接制备M50莫来石的实验研究[J].矿物岩石,2008,(1):17-20.
    [124]陈江峰,邵龙义,魏思民.利用高铝粉煤灰合成莫米石的实验研究[J].矿物学报,2008,28(2):191-195.
    [125]Wang H J,Wang Y L,Jin Z H.SiC powders prepared from fly ash[J].Journal of Materials Processing Technology,2001,117(1-2):52-55.
    [126]马小娥,李有国,何恩等.利用粉煤灰生产SiC陶瓷原料[J].中国陶瓷工业,2004,11(4):22-24.
    [127]Raju C B,Verma S.Novel synthesis and processing of ceramics institute of materials[N].London,1994:265
    [128]Hintzen H T,Exalto D.Synthesis of Beta-Sialon powder from fly ash[J].Klei/Glas/Keramiek,1996,9(17):7.
    [129]Scheilin G P,Timoschchuk T A.Preparation of β-Sialon from thermal-plant fly ash[J].Inorganic Materials,2000,36(9):891-894.
    [130]Qiu Q,Hlavacek V,Prochazka S.Carbonitridation of fly ash:Synthesis of Sialon-based materials[J].Industrial and Engineering Chemistry Research,2005,44(8):2469-2476.
    [131]鲁晓勇,张德,蔡水洲.粉煤灰合成Sialon粉体研究[J].耐火材料,2005,39(4):259-265.
    [132]李金洪,马鸿文,吴秀文.利用高铝粉煤灰合成β-Sialon粉体的实验研究[J].岩石矿物学杂志,2006,24(6):643-647.
    [133]Yao Y,Xu L H,Qiu J.Preparation of Sialon from solid wastes by colloidal process[J].Key Engineering Materials,2007,336-338 III:1927-1929.
    [134]Huang Z H,Tang X H,Liu Y G,et al.Preparation of Sialon using fly ash with high content of Al_2O_3[J].Key Engineering Materials,2007,336-338 II:933-934.
    [135]Sloss L L,Smith I M,Adams D M B.Pulverized coal ash-requirements for utilization[M].London:lEA Coal Research,1996.
    [136]Fisher G L,Prentice B A,Siberman D,et al.Physical and morphological studies of size classified coal fly ash[J].Environmental Science and Technology,1987,12(4):447-451.
    [137]Ramsden A R,Shibaoka M.Characterization and analysis of individual fly ash particles from coal-fired power station by a combination of optical microscopy,electron microscopy and quantitative microprobe analysis[J].Atmospheric Environment,1982,16(9):2191-2198.
    [138]梁天仁.粉煤灰的显微结构及形成机理[J].硅酸盐通报,1984,(5):23-29.
    [139]孙俊民,韩德馨,姚强等.燃煤飞灰的显微颗粒类型与显微结构特征[J].电子显微学报,2001,20(2):140-147.
    [140]王运泉,张建平,郑燕君.粉煤灰的组分特征及其系统分类[J].环境科学研究,1998,11(6):1-4.
    [141]Gier(e|') R,Carleton L E,Lumpkin G R.Micro- and nanochemistry of fly ash from a coal-fired power plant[J].American Mineralogist,2003,88(11-12):1853-1865.
    [142]Chert Y Z,Shah N,Huggins F,et al.Transmission Electron Microscopy Investigation of Ultrafine Coal Fly Ash Particles[J].Environmental Science and Technology,2005,39(4):1144-1151.
    [143]袁春林,张金明,段玖祥.我国火电厂粉煤灰的化学成分特征[J].电力环境保护,1998,4(1):9-14.
    [144]李红军,毛晋.电力工业结构现状、调整措施及其政策建议[J].国际电力,2000,4(4):4-9.
    [145]Biggs D L,Bruns J J.Transmitted and reflected visible light microscopy of two bituminous flyashes[J].Material Research Society Symposium Proceedings,1985:21-30.
    [146]Rohatgi R K,Huang P,Guo R,et al.Morphology and selected properties of fly ash[C].Proceedings Fifth International Conference,Milwaukee,Wisconsin,USA,April 21-25,1995,459-478.
    [147]Matsunaga T,Kim J K,Hardcastle S,et al.Crystallinity and selected properties of fly ash particles[J].Materials Science and Engineering A,2002,325(1-2):333-343.
    [148]Huffman G P,Huggins F E,Dunmyre G R.Investigation of the high temperature behavior of coal ash in reducing and oxidizing atmospheres[J].Fuel,1991,60(7):585-597.
    [149]Aunsholt,Knud E H.Process for the separation of coal particles from fly ash by flotation:United States Patent,4,426,282[P].1982-2-11[1984-1-17].
    [150]边炳鑫.粉煤灰微珠湿法分选工艺[J].中国矿业,2000,19(4):22-24.
    [15l]石峰.我国粉煤灰分选技术的现状及发展前景的探讨[J].粉煤灰,2004,16(3):41-42.
    [152]张长森,程俊华,吴其胜等.粉体技术及设备[M].上海:华东理工大学出版社,2007.
    [153]李宽宏,谢嵘春.非球形混合颗粒的沉降特征长度[J].化工学报,1989,(2):191-195.第四章
    [154]Caruso F,Caruso R A,M(o|¨)hwald H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating[J].Science,1998,282(5391):1111-1114.
    [155]Kim J Y,Yoon S B,Yu J S.Fabrication of nanocapsules with Au particles trapped inside carbon and silica nanoporous shells[J].Chemical Communications,2003,(6):790-791.
    [156]Ibarz G,Daehne L,Donath E.Smart micro-and nanocontainers for storage,transport,and release[J].Advanced Materials,2001,13(17):1324-1327.
    [157]Bourlinos A,Boukos N,Petridis D.Exchange resins in shape fabrication of hollow inorganic and carbonaceous inorganic composite spheres[J].Advanced Materials,2002,14(1):21-24.
    [158]Kidambi S,Dai J,Jin L,et al.Selective hydrogenation by Pd nanoparticles embedded in polyelectrolyte multilayers[J].Journal of the American Chemical Society,2004,126(9):2658-2659.
    [159]贺军辉,陈洪敏,张林.无机微/纳空心球[J].化学进展,2007,19(10):1488-1494.
    [160]严春关,罗贻静,赵晓鹏.无机材料纳米空心球的制备方法研究进展[J].功能材料,2006,37(3):345-350.
    [161]王德举,唐颐,董安钢.粉煤灰空心微珠沸石化制备复合空心球[J].化学学报,2003, 61(9):1425-1429.
    [162]张云怀,刘仁龙,张丙怀.以粉煤灰微珠为载体的TiO_2结构和光催化性能的研究[J].精细化工中间体,2002,32(4):38-40.
    [163]宋成芳.漂珠为载体TiO_2/SiO_2膜的制备及性能研究[J].环境科学与技术,2006,29(8):14-16.
    [164]Ledoux M J,Crouzet C,Huu C P,et al.High-Yield Butane to Maleic Anhydride Direct Oxidation on Vanadyl Pyrophosphate Supported on Heat-Conductive Materials:β-SiC,Si_3N_4,and BN[J].Journal of Catalysis,2001,203(2):495-508.
    [165]Keller N,Huu C P,Roy S,et al.Influence of the preparation conditions on the synthesis of high surface area SiC for use as a heterogeneous catalyst support[J].Journal of Materials Science,1999,34(13):3189-3202.
    [166]刘韩星,欧阳世翕著.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006.
    [167]Chen C Y,Lin C I,Chen S H.Kinetics of synthesis of silicon carbide by carbothermal reduction of silicon dioxide[J].British Ceramic Transactions,2000,99(2):57-62.
    [168]Gundiah G,Madhav G V,Govindaraj A,et al.Synthesis and characterization of silicon carbide,silicon oxynitride and silicon nitride nanowires[J].Journal of Materials Chemistry,2002,12(5):1606-1611.
    [169]Borowiak-Palen E,Ruemmeli M H,Gemming T,et al.Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution[J].Journal of Applied Physics,2005,97(5):1-3.
    [170]Meng G W,Zhang L D,Mo C M,et al.Synthesis of “A β-SiC nanorod within a SiO_2nanorod” one dimensional composite nanostructures[J].Solid State Communications,1998,106(4):215-219.
    [171]Zhang Y,Shi E W,Chen Z Z,et al.Large-scale fabrication of silicon carbide hollow spheres[J].Journal of Materials Chemistry,2006,16(42):4141-4145.
    [172]Bourlinos A,Boukos N,Petridis D.Exchange resins in shape fabrication of hollow inorganic and carbonaceous inorganic composite spheres[J].Advanced Materials,2002,14(1):21-24.
    [173]Shen G Z,Chen D,Tang K B,et al.Silicon carbide hollow nanospheres,nanowires and coaxial nanowires[J].Chemical Physics Letters,2003,375(1-2):177-184.
    [174]Wang H,Yu J S,Li X D,et al.Inorganic polymer-derived hollow SiC and filled SiCN sphere assemblies from a 3DOM carbon template[J].Chemical Communications,2004,20:2352-2353.
    [175]朱钰方,方莹,刘亚云等.利用具有核壳结构的SiO_2@PPy粒子制备SiC空心球[J].高等学校化学学报,2006,27(1):23-25.
    [176]Li P,Xu L Q,Qian Y T.Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires[J].Crystal Growth and Design,2008,8(7):2431-2436.
    [177]Tosheva L,Parmentier J,Saadallah S,et al.Carbon and SiC Macroscopic Beads from Ion-Exchange Resin Templates[J].Journal of the American Chemical Society,2004,126(42):13624-12625.
    [178]Wu X Y,Jin G Q,Guan L X,et al.Preparation and characterization of core-shell structured α-Fe_2O_3/SiC spheres[J].Materials Science and Engineering,2006,433:190-194.
    [179]郝雅娟,靳国强,郭向云.碳热还原制备不同形貌的碳化硅纳米线[J].无机化学学报,2006,22(10):1833-1837.
    [180]陈友存,王启宝.SiC品须VLS生长机理及生长动力学研究[J].化学物理学报,1998,11(3):256-260.
    [181]Chrysanthou A,Grieveson P,Jha A.Formation of silicon carbide whiskers and their microstructure[J].Journal of Materials Science,1991,26(13):3463-3476.
    [182]陈建军.碳化硅纳米线的制备、性能与机理研究[D].杭州:浙江人学,2008.
    [183]张跃飞,韩晓东,郑坤等.弯曲生长SiC纳米线的TEM表征[J].电子显微学报,2006,25(8):44-45.
    [184]杨久俊.无机材料科学[M].郑州:河南科学技术出版社,1998.
    [185]Jiang G J,Zhuang H R,Zhang J,et al.Morphologies and growth mechanisms of aluminum nitride whiskers by SHS method - Part 2[J].Journal of Materials Science,2000,35(1):63-69.【186】周伟民.一维碳化硅纳米材料的制备与性能的基础研究[D].上海:上海交通大学,2007.
    [187]Rohmfeld S,Hundhausen M,Ley L.Raman scattering in polycrystalline 3C- SiC:Influence of stacking faults[J].Physical Review B,1998,58(15):9858-9862.
    [188涉文博,徐沾,丘泰等.AIN-SiC复合超细粉制备技术的研究进展[J].材料导报,2002,16(3):30-33.
    [189]Mitomo M,Tsutsumi M,Kishi Y.Preparation of a composite powder of the system SiC,AIN[J].Journal of Materials Science Letters,1988,7(11):1151-1153.
    [190]黄莉萍,黄熊璋,符锡仁等.氮化铝粉末的制备[J].硅酸盐学报,1986,14(3):332-338.
    [191]张海军,刘古杰,钟香崇.煤矸石还原氮化合成O'-Sialon及热力!学研究[J].无机材料学报,2004,19(5):1129-1137.
    [192]李喜宝,柯吕明,李楠.原位生成O'-Sialon品须增强铝碳耐火材料[J].耐火材料,2006,40(6):415-418.
    [193]Chakalader A C D,Gupta S D,Lin E C Y,et al.AI203-SiC composite from aluminosilicate precursors[J].Journal of American Ceramics Society,1992,75(8):2283-2285
    [194]Yu J K,Hiragushi K.Synthesis of AI_2O_(3-)SiC composite from pyrophyllite and clay and its application in carbon containing refractories[J].Taikabutsu Overseas,1999,19(2):11-17.
    [195]Zhu Qiang,Yu Jingkun.Synthesis of SiC-Al_2O_3 refractory composite powder[J].Journal of Chinese Ceramic Society,2008,36(1):40-43.
    [196]丁书强,曾宇平,江东亮.原位反应结合碳化硅多孔陶瓷的制备与性能[J].无机材料学报,2006,21(6):1397-1403.
    [197]石明,鲁燕萍,刘征.AlN-SiC复合微波衰减材料的衰减性能[J].真空电子技术,2007,(4):14-16
    [198]李亚伟,李楠,李文忠等.碳热还原粘土合成Al_2O_3/SiC复相陶瓷粉末[J].中国陶瓷,2000,36(3):13-16.
    [199]Han B Q,Li N.Preparation of β-SiC/Al_2O_3 composite from kaolinite gangue by carbothermal reduction[J].Ceramics International,2005,31(2):227-231.
    [200]翁履谦.碳热法合成AlN热力学及动力学[J].硅酸盐通报,1993,(5):29-31.
    [201]Ish-Shalom M.Formation of aluminum oxynitride by carbothermal reduction of aluminum oxide in nitrogen[J].Journal Materials Science Letters,1982,1(4):147-149.
    [202]Lee J G,Cutler I B.Sinterable Sialon powder by reaction of clay with carbon and nitrogen[J].American Ceramics Society Bulletin,1979,58(9):869-871.
    [203]陈美怡,李自德.方石英转变及其在熔模铸造中的意义[J].铸造,1993,(4):9-13.
    [204]梁英教,车荫昌,刘晓霞等.无机物热力学数据手册[M].沈阳:东北大学出版社,1994.
    [205]Schneider H,Schreuer J,Hildmann B.Structure and properties of mullite-A review[J].Journal of the European Ceramic Society,2008,28(2):329-344.
    [206]Fischer R X,Schm(u|¨)cker M,Angerer P,et al.Crystal structures of Na and K aluminate mullites[J].American Mineralogist,2001,86(11-12):1513-1518.
    [207]李素平.Fe_2O_3和TiO_2等杂质在矾土基Sialon转型过程中的变化及作用[D].郑州:郑州大学,2004.
    [208]王海娟.煤矸石合成β-Sialon复相材料的研究[D].北京:北京科技大学,2007.
    [209]Mukerji J,Biswas S K.Effect of iron,titanium,and hafnium on second-stage nitriding of silicon[J].Journal of the American Ceramic Society,1981,64(9):549-552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700