用户名: 密码: 验证码:
磁旋转电弧和分散电弧等离子体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电弧等离子体技术广泛应用于机械加工、冶金、化工、材料制备和环境保护等工业领域。由于其自收缩效应,电弧等离子体通常具有能量高度集中、体积小、参数梯度大的特点,而这也限制了电弧等离子体技术在工业中的应用,尤其在大面积的表面处理、薄膜制备和材料制备领域,这些特点对生产效率、产品的均匀性和稳定性都有不利的影响。
     磁旋转电弧可以对工质和弧室比较均匀的加热,提高电弧对工质的传热效率,并且能有效降低电极烧蚀,延长电极工作寿命。本文主要采用实验方法研究同轴电极(棒状阴极和圆筒阳极)等离子体发生器内磁旋转电弧的位形结构及特性、磁旋转电弧产生大面积均匀等离子体的机制、电弧分散的演化过程及分散电弧等离子体的特性,研究轴向进气、电弧电流、轴向磁场、电极材料、电极结构、发生器结构等条件对电弧位形结构、分散电弧等离子体参数的影响,主要研究内容和结果如下:
     随着电弧电流和轴向磁场的增加,电弧演化过程的位形结构依次表现为:螺旋电弧、局部分散的并联电弧伴随着阳极弧根的扩散以及最终完全分散的均匀等离子体。而阴极弧根则随着电弧对阴极的加热程度表现为从单点、多点到环状或在端面完全扩散。具体表现为:
     1)施加轴向磁场后,磁旋转电弧首先表现为典型的具有准稳定性螺旋型位形结构。由于电极对弧根粘滞阻力,螺旋弧柱处于“发展-破裂”的重复过程:随着电弧的旋转运动,电弧螺旋结构会得到发展;之后螺旋电弧会因弧柱对阳极壁面的击穿分流而破裂。电弧电压随之波动,其频率具有一定的稳定性;产生比较稳定的螺旋电弧的条件是较低的磁场、较低的电弧电流和较小的轴向气流。
     2)随着轴向磁场或和电弧电流的增加,收缩的电弧会局部分散。在氩气流量为3Nm3/h、200     3)随着轴向磁场和/或电弧电流的进一步增加,电弧分散面积增大直至充满整个弧室截面。其显著特点是:电弧温度降低,电场强度提高,电弧具有下降的V-I特性;平均电压随轴向磁场的增加而增加。分散电弧等离子体位形呈圆盘状,位于阴极侧面和阴极端面,而阴极侧面为弧柱的主要区域;电弧从阴极向阳极径向发展,轴向厚度先变窄,后变宽,电子温度逐渐降低。轴向磁场和电弧电流的增加以及轴向进气的减小会加快电弧的分散速度,提高电弧的分散程度。
     4)阴极弧根的位形主要与阴极温度相关,同时也与电弧分散程度相关。随着电弧旋转加热阴极,阴极温度逐渐升高,阴极端面的阴极弧根从单个驻留的收缩斑点发展到多个驻留的收缩斑点,斑点数目随轴向磁场上升而增加。其中收缩弧柱的弧根在各斑点旋转移动,而分散电弧则可以具有多阴极弧根。
     论文明确了磁旋转电弧产生大面积均匀稳定等离子体的机制是:轴向磁场驱动电弧高速旋转,与轴向进气的冷气流产生对流使收缩的电弧被分散,产生分散的电弧等离子体。等离子体高速旋转流动使其自身均匀和稳定,且维持扩散的阳极弧根在阳极弧室内角向均匀分布。
     在闭口式发生器中,轴向磁场增加到一定程度,可以造成磁旋转电弧逆阴极自磁场洛仑兹力方向移动,即电弧在轴向上后退。而且轴向磁场越大,电弧的后退距离越大。分析这种后退现象是由电弧旋转运动的加强引起的弧室内的流场改变形成的电弧轴向前后压差造成的;其后退平衡位置由电弧前后气压差以及阴极自磁场对其洛伦兹力共同作用决定。
     在较小电流(50-100A)下,随着电弧电流的增加,阴极弧根的电流密度、弧根半径、阴极表面温度增加;阴极表面电场强度减小。测量得到纯钨电极表面最高温度在3530-3790K之间,弧根附着处阴极表面温度近似呈指数分布:
     (Tmax为弧根中心处最高温度,r为距离阴极弧根中心最高温度处距离,A(I)在48.73-77.32K之间,H(I)在0.56~0.44mm之间)。阴极弧根电流密度和电场强度的分布也与之相关。利用测量的阴极温度分布,计算得到平均电流密度电弧在5.9~6.9×107A/m2,平均电场强度在9.17~7.26×107V/m之间,阴极弧根半径从0.51mm增加到0.68mm。
     在电弧电流50~100A,轴向磁感应强度0.01-0.02T条件下,平端面纯钨阴极附近的等离子体电子温度在16100-22500K之间,阴极电位降在19~23V之间;锥形阴极附近的等离子体电子温度要高于前者,在18000-26000K之间,阴极电位降要小于前者,在16-19V之间。两者的温度都随电弧电流的增加而增加,随轴向磁场的增加而减小;阴极电位降都随着电弧电流和轴向磁场的增加而减小。在形成扩散型阴极弧根时(100A,0.02T),等离子体电子温度显著降低,为1.61×104K;阴极电位降有所升高为20.54V,高于轴向磁场相同时I=50A,80A的收缩弧根的阴极电位降(20.24V,19.5V)。
Arc plasma technology is widely used in industry and industrial processes, such as machining, metallurgy, the chemical industry, material preparation and environmental protection. The arc plasma is a highly-concentrated energy source, with small volume and large gradients of temperature and other parameters, due to its strong constriction. The application of arc plasmas is limited by these characteristics, especially in the areas of surface, film and material preparation. The characteristics have adverse effects on the production efficiency, and the uniformity and stability of the product.
     The magnetically rotating arc plasma can heat the working medium and the chamber uniformly and increase the heat transfer rate, and the electrode erosion can be reduced and the electrode lifetime increased. This article considers the configuration and characteristics, and the mechanism and evolution of the magnetically rotating arc, and the characteristics of the dispersed arc plasma in an arc plasma generator with coaxial electrodes (rod-like cathode and cylindrical anode). The effect on the magnetically rotating arc and the dispersed arc plasma of the axial gas flow, arc current, axial magnetic field (AMF), electrode material and the configuration of the electrode and the generator is also studied. The main results are as follows:
     As arc current and AMF increasing, the evolution of the arc configuration shows: a spiral arc, partly dispersed parallel arcs with diffusive anode arc root and fully uniform dispersed arc plasma successively. The modes of the cathode arc root are single spot, multiple spots and annulus or fully diffuse on the cathode end face successively as the heat to the cathode by the arc increasing. Specific content as follows:
     1) The magnetically rotating arc has a spiral structure that is quasi-stable with respect to the AMF. The arc column is in a process of repeated "development and fracture" due to the viscous resistance of the electrodes:the spiral structure would develop with the arc rotating. And then the spiral arc can be destroyed due to breakdown between the arc column and the anode. The arc voltage fluctuates with an approximately-constant frequency. Relatively-low values of the AMF, arc current and axial gas flow promote stability of the spiral arc.
     2) The constricted arc becomes partly dispersed with a diffuse anode arc root for increasing AMF and arc current. The multiple-anode arc roots and parallel dual-arcs occur for200     3) The arc disperses until it fills the whole cross-section of the chamber when the AMF and arc current are increased. The temperature of the arc plasma decreases, while the electric field intensity increases. The arc plasma has a decreasing volt-ampere characteristic. The average voltage increases with the AMF. The configuration of the dispersed arc plasma is disc-like, and mainly located at the side and the end-face of the cathode. The thickness of the arc plasma initially decreases and then increases, and the electron temperature decreases, from the cathode to the anode. The speed and level of the arc dispersion improve with arc current and AMF increasing and the axial gas flow decreasing.
     4) The configuration of the cathode arc root is mainly relative to the cathode temperature and the dispersion of the arc. The rotating arc keeps heating the cathode and the cathode temperature increases gradually. The configuration of the cathode arc root develops form a single fixed spot to multiple fixed spots. The number of the spots increases with AMF increase. The cathode arc root of the constrictive arc column moves between the spots while the dispersed arc plasma may have multiple cathode arc roots.
     The experimental results confirm that the dispersion of the magnetically rotating arc is a consequence of the high-speed rotation of the arc due to the AMF, and convection driven by the cold axial gas flow. The plasma is uniform and stable due to its high-speed rotation, and the diffuse anode arc root has a uniform distribution in the azimuthal direction.
     In the closed generator, the arc may move counter to the Lorentz force induced by the cathode self-magnetic field, means the arc draws back in the axial direction. The greater the AMF, the larger the distance of the arc counter-motion. The mechanism of this phenomenon is thought to be the difference between the pressures in front of and behind the arc in the axial direction, induced by the change of the flow field inside the chamber due to the increased rotation of the arc. The location of the arc is mainly determined by the balance between the pressure difference and the Lorentz force induced by the cathode self-magnetic field.
     The current density, radius of the cathode arc root and the cathode surface temperature increase and the electric field intensity decreases with increasing arc current (50-100A). The maximum temperature of the cathode surface is in the range3530-3790K. The cathode surface temperature has an approximately exponential distribution:(Tmax:the maximum temperature of the centre of the cathode arc root, r:the distance to the centre of the cathode arc root A(1):48.73-77.32K,H(Ⅰ):0.56-0.44mm). The current density and the electric field intensity have similar distributions. The average current density is5.9-6.9×107A/m2and the average electric field intensity is9.17-7.26×107V/m, depending on the distribution of the cathode surface temperature. The radius of the cathode arc root increases from0.51mm to0.68mm.
     In the range50-100A arc current and0.01-0.02T AMF, the electron temperature of the plasma near the flat end of a pure tungsten cathode is in the range16100-22500K and the range of the cathode fall voltage is19-23V. The range of the electron temperature of the plasma near the conical end of a pure tungsten cathode is larger, in the range18000-26000K and the cathode fall voltage decreases to16-19V. In both cases, the electron temperature increases with arc current and decreases with increasing AMF, and the cathode fall voltage decreases with increasing arc current and AMF. In particular, the electron temperature decreases significantly to16100K for the diffuse cathode arc root (100A,0.02T). The cathode fall voltage for the diffuse cathode arc root (20.54V) for I-100A, B=0.02T is greater than that for I=50,80A for the same AMF (20.24V,19.5V).
引文
[1]过增元,赵文华.1980.电弧与热等离子体.北京:科学出版社
    [2]陈熙.1993.高温电力气体的传热与流动.北京:科学出版社
    [3]G. Gross, B. Grycz, and K. Miklossy.1980.等离子体技术,过增元,傅维标译.北京:科学出版社
    [4]C. R. Jones and M. T. C. Fang.1980. The physics of high-power arcs. Rep. Prog. Phys, Vol. 43:1415-1465
    [5]茹科夫,科罗捷耶夫,乌柳可夫.1981.赵文华,周力行译.北京:科学出版社
    [6]D. R. Macrae.1989. Plasma arc process systems, reactors, and applications. Plasma Chem. Plasma Process., Vol.9:S85-S118
    [7]M. Kelkar and J. Heberlein.2000. Physics of and arc in cross flow. J. Phys. D:Appl. Phys., Vol.33:2172-2182
    [8]C. Fanara and L. Vilarinho.2004. Electrical characterization of atmospheric pressure arc plasmas. Eur. Phys. J. D, Vol.28:241-251
    [9]D. Bernardi, V. Colombo, E. Ghedini, A. Mentrelli and T. Trombetti.2005.3-D Numerical analysis of powder injection in inductively coupled plasma torches. IEEE Trans. Plasma Sci., Vol.33:424-425
    [10]D. Bernardi, V. Colombo, E. Ghedini and A. Mentrelli.2003. Three dimensional effects in the modeling of ICPTs-Part I:Fluid dynamics and electromagnetics; Part Ⅱ:Induction coil and torch geometry. Eur. Phys. J. D, Vol.25:271-285
    [11]D. Bernardi, V. Colombo, E. Ghedini and A. Mentrelli.2003. Three dimensional modeling of inductively coupled plasma torches. Eur. Phys. J. D, Vol.22:119-125
    [12]S. Xue, P. Proulx and M. I. Boulos.2003. Effect of the coil angle in an inductively coupled plasma torch:a novel two-dimensional model. Plasma Chem. Plasma Process., Vol.23: 245-263
    [13]P. Fauchais and A. Vardelle.1997. Thermal plasmas. IEEE Trans. Plasma Sci. Vol.25: 1258-1280
    [14]E. Pfender.1999. Thermal plasma technology:where do we stand and where are we going?. Plasma Chem. Plasma Process., Vol.19:1-31
    [15]P. Fauchais and A. Vardelle.2000. Pending problems in thermal plasmas and actual development. Plasma Phys. Control Fusion, Vol.42:B365-B383
    [16]U. Kogelschatz.2004. Atmospheric-pressure plasma technology. Plasma Phys. Control Fusiion,Vol.46:B63-B75
    [17]H. G. Fan and R. Kovacevic.2004. A unified model of transport phenomena in gas metal arc welding including electrode, arc plasma and molten pool. J.Phys. D:Appl. Phys., Vol.37:2531-2544
    [18]W. Bach and A. Gruchow.1992. Plasma cutting in atmosphere and under water. Pure and Appl. Chem., Vol.64:665-670
    [19]V. A. Nemchinsky.1998. Plasma flow in a nozzle during plasma arc cutting. J. Phys. D:Appl. Phys., Vol.31:3102-3107
    [20]M. Jankovic and J. Mostaghimi.1995. A new nozzle design for dc plasma spray guns. Plasma Chem. And Plasma Process., Vol.15:607-628
    [21]朱应波,宋东亮,曾昭生.1997.直流电弧炉炼钢技术.北京:冶金工业出版社
    [22]A. Mclean.2006. The science and technology of steelmaking-measurements, models and manufacturing. Metall and Mater. Trans. B, Vol.37B:319-332
    [23]F. H. Wang, Z. J. Jin and Z. S. Zhu.2006. Fluid flow modeling of arc plasma and bath circulation in DC electric arc furnace. J. Iron and Steel Res. Int.., Vol.31:7-13
    [24]田原宇,黄伟,鲍为仁,谢克昌.2002.煤等离子体热解制乙炔工艺的工程探讨.现代化工,Vo1.22:7-10
    [25]钟国舫.1994.大功率直流等离子体喷射金刚石石膜大面积高速沉积工艺研究:[硕士学位论文].北京:北京科技大学
    [26]陈旭宏,赵立合,吕反修.1999.直流等离子体喷射镀膜设备的传热数学模拟.北京科技大学学报,Vo1.21:67-71
    [27]P. Ronsheim, A. Mazza and A. N. Christensen.1980. Thermal plasma syntheses of transition metal nitrides and alloys. Plasma Chem. And Plasma Process., Vol.1:135-147
    [28]A. Inoue, B. G Kim, K. Nosaki, T. Yamaguchi and T. Masumoto.1992. Production of ultrafine aluminum nitride particles by plasma-alloy reaction and their microstructure and morphology. J. Appl. Phys., Vol.71:4025-4029
    [29]Z. P.Lu and E. Pfender.1990. DC plasma synthesis of aluminum nitride ceramic powders. Mater. Res. Soc. Symp., Vol.180:857-860
    [30]S. M. Oh and D. W. Park.1998. Preparation of AIN fine powder by thermal plasma processing. Thin Solid Films, Vol.316:189-194
    [31]Q. Y. Han, J. Heberlein and E. Pfender.1993. Feasibility study of thermal plasma destruction of toxic wastes in a counter-flow liquid injection plasma reactor. J. Mater. Synth. Process., Vol.1:25-32
    [32]J. Heberlein and A. B. Murphy.2008. Thermal plasma waste treatment. J. Phys. D:Appl. Phys., Vol.41:053001
    [33]A. B. Murphy and T. Mcallister.2001. Modeling of the physics chemistry of thermal plasma waste destruction. Phys. Plasma, Vol.8:2565-2571
    [34]S. David and S. Richard.1990. Structure and dynamic of a magnetron DC arc plasma. Appl. Spectre Vol.44:76-83
    [35]S. David and S. Richard.1990. A magnetron DC arc plasma for aerosol analysis. Appl. Spectro. Vol.44:83-90
    [36]Weidong Xia, Lincun Li, Yuhan Zhao, Qiang Ma, Baihe Du, Quan Chen and Liang Cheng. 2006. Dynamics of large-scale magnetically rotating arc plasmas. Vol.88:211501
    [37]L. C. Li, W. D. Xia, H. L. Zhou, Z. P. Zhou and B. Bai.2008. Experimental observation and numerical analysis of arc plasmas diffused by magnetism. Vol.47:75-81
    [38]Heling Zhou, Lincun Li, Liang Cheng, Zhipeng Zhou, Bing Bai and Weidong Xia.2008. ICCD imaging of coexisting arc roots and arc column in a large-area dispersed arc-plasma source. IEEE Trans. On Plasma Sci., Vol.36:1084-1085
    [39]Lincun Li, Quan Chen, Heling Zhou and Weidong Xia.2008. Image of a large-scale magnetically rotating arc. IEEE Trans. On Plasma Sci., Vol.36:1080-1081
    [40]Heling Zhou, Zhipeng Zhou, Lincun Li, Liang Cheng, Bing Bai and Weidong Xia.2008. Investigation of a novel large area dispersed arc plasma source with time-resolved ICCD imaging. IEEE Trans. On Plasma Sci., Vol.36:1082-1083
    [41]Baeva M. and Uhrlandt D..2011. Non-equilibrium simulation of the spatial and temporal behavior of a magnetically rotating arc in argon. Plasma Source Sci. Tech., Vol.20:1-10
    [42]Lowke, J.J., R. Morrow, and J. Haidar.1997. A simplified unified theory of arcs and their electrodes. Journal of Physics D-Applied Physics,30(14):p.2033-2042.
    [43]Bing Bai, Jun Zha, Xiaoning Zhang, Cheng Wang and Weidong Xia.2012. Simulation of Magnetically Dispersed Arc Plasma. Plasma Science & Technology,14(2):p.118-121.
    [44]白冰,查俊,张晓宁,陈塘,王城,夏维东.2012.磁分散电弧等离子体位形的阴极形状效应,核聚变与等离子体,Vol.32:301-306
    [45]Anders S. and Anders A..1991. On modes of arc cathode operation. IEEE Trans. On Plasma Sci., Vol.19:20-24
    [46]Lichtenberg. S, Nandelstadt. D, Dabringhausen. L, Redwitz. M, Luhmann. J and Mentel. J.. 2002. Observation of different modes of cathodic arc attachment to HID electrodes in a model lamp. J. Phys. D:Appl. Phys., Vol.35:1648-1656
    [47]Weidong Xia, Heling Zhou, Zhipeng Zhou and Bing Bai.2008. Evolution of cathodic arc roots in a large-scale magnetically rotating arc plasma. IEEE Trans. On Plasma Sci., Vol.36:1048-1049
    [48]X. Zhou and J. Heberlein.1994. Theoretical study of factors influencing arc erosion of cathode. IEEE Trans. On Components, Pachaging and Manufacturing Tech. Vol.17:107-112
    [49]X. Zhou and J. Heberlein.1994. Analysis of the arc-cathode interaction of free-burning arcs. Plasma Source Sci. Tech., Vol.3:564-574
    [50]M. S. Benilov.2008. Understanding and modeling plasma-electrode interaction in high-pressure arc discharges:a review. J. Phys. D:Appl. Phys., Vol.41:30pp
    [51]M. S. Benilov and M. D. Cunha.2002. Heating of refractory cathodes by high-pressure arc plasmas:I. J. Phys. D:Appl. Phys., Vol.35:1736-1750
    [52]Finkelnburg W. and Maecker H..1956. Electric arcs and thermal plasma handbuch. Der Physik, Vol.22:254
    [53]Busz G and Finkelnburg W..1954. Thermische lichtbogen hoher temperature and niedriger brennspannung. Z. Phys., Vol.139:212
    [54]Benilve M. S. and Marotta A..1995. J. Phys. D:Appl. Phys. Vol.28:1869-82
    [55]J. Haidar and A. J. D. Farmer.1992. A method for the measurement of the cathode surface temperature for a high-current free-burning arc. Rev. Sci. Instrum., Vol.64:542-547
    [56]J. Haidar and A. J. D. Farmer.1995. Surface temperature measurements for tungsten-based cathodes of high-current free-burning arcs. J. Phys. D:Appl. Phys., Vol.28:2089-2094
    [57]J. Haidar and A. J. D. Farmer.1994. Large effect of cathode shape on plasma temperature in high-current free-burning arcs. J. Phys. D:Appl. Phys., Vol.27:556-560
    [58]Luhmann J., Lichtenberg S., Langenscheidt O., Benilov M. S. and Mentel. J..2002. Determination of HID electrode falls in a model lamp Ⅱ:Langmuir-probe measurements. J. Phys. D:Appl. Phys., Vol.35:1631-1638
    [59]Nandelstadt D., Redwitz M., Dabringhausen L., Luhmann J., Lichtenberg. S and Mentel. J. 2002. Determination of HID electrode falls in a model lamp Ⅲ:Results and comparison with theory. J. Phys. D:Appl. Phys., Vol.35:1639-1647
    [60]V. I. Demidov, S. V. Ratynskaia and K. Rypdal.2001. Electric probes for plasmas:The link between theory and instrument. Review of Sci. Instruments, Vol.73:3409-3439
    [61]Schmitz H. and Riemann K. U..2001. J. Phys. D:Appl. Phys., Vol.34:1193-1202
    [62]Rakhovsky V. I..1976. IEEE Trans. Plasma Sci. Vol.4:81-101
    [63]Daalder J. E..1978. phD Thesis. Eindhoven University of Technology
    [64]Hantzsche and Juttner.1985. IEEE Trans. Plasma Sci. Vol.13:230-234
    [65]Drouet M. G. and Gruber S.1976. IEEE Trans. Plasma Sci. Vol.95:105-112
    [66]A. Guntherschulze.1922. ibid. Vol.11
    [67]J. D. Cobing and C. J. Gallagher.1948. Current density of the arc cathode spot. Phys. Rev., Vol.74:1524-1530
    [68]I. H. Hutchinson.1987. A fluid theory of ion collection by probes in strong magnetic fields with plasma flow. Phys. Fluids, Vol.30:3777-3781
    [69]Kyu-Sun Chung.1990. A kinetic theory of ion collection by probe in flowing unmagnetized plasma. J. Appl. Phys., Vol.69:3451-3454
    [70]K. Honthker, H. J. Belitz, W. Bieger and H. Amemiya.1990. A new method to determine ion temperatures in magnetized plasmas by means of an electrical probe. Rev. Sci. Instrum., Vol.61:114-120
    [71]F. G Baksht and A. B. Rybakov.1997. A theory of probes in high-pressure strongly-ionized plasmas. Tech. Phys. Vol.42:1385-1389
    [72]P. C. Stangeby.1988. Comments on "A fluid theory of ion collection by probes in strong magnetic fields with plasma flow". Phys. Fluids, Vol.31:2726-2727
    [73]E. Leveroni and E. Pfender.1989. Electric probe diagnostics in thermal plasmas:Double probe theory and experimental results. Rev. Sci. Instrum., Vol.60:3744-3749
    [74]K-S Chung and I. H. Hutchunson.1988. Kinetic theory of ion collection by probing objects in flowing strongly magnetized plasmas. Phys. Rev. A, Vol.38:4722-4731
    [75]F. G. Baksht, N. K. Mitrofanov, A. B. Rybakov and S. M. Sholnik.1998. Probe diagnostics of strongly ionized inert-gas plasmas at atmospheric pressure. Tech. Phys., Vol.43:660-663
    [76]S. V. Ratynskaia, V. I. Demidov and K. Rypdal.2000. Probe measurement of electron temperature and density in strongly magnetized plasma. Rev. of Sci. Insttrum., Vol.71: 3382-3384
    [77]Bon-Woong Koo and Noah Hershkowitz.1999. Langmuir probe in low temperature, magnetized plasma:Theory and experimental verification. J. Appl. Phys., Vol.86:1213-1220
    [78]杨津基.1983.气体放电.北京:科学出版社
    [79]茹科夫.1981.热等离子体实用动力学.北京:科学出版社
    [80]杜百合,黎林村,马强,陈全,赵宇含,夏维东.2005.磁驱动旋转电弧运动图像及弧电压脉动的实验研究.核技术,Vo1.28:745-750
    [81]A. M. Essiptchouk, L. I. Sharakhovsky and A. Marotta.2000. A new formula for the rotational velocity of magnetically driven arcs. J. Phys. D:Appl. Phys., Vol.33:2591-2597
    [82]Kukekov G A..1941. Investigations of direct current arc in magnetic field. J. Tekhn. Phys., Vol.11:972-978
    [83]Szente R. N., Munz R. J. and Drouet M. C.. 1988. Arc velocity and cathode erosion rate in a magnetically driven arc burning in nitrogen. J. Phys. D:Appl. Phys., Vol.21:909-913
    [84]Roman W, C. and Myers T. W..1967. Experimental investigation of an electric arc in transverse aerodynamic and magnetic fields. AIAA J. Vol.5:2011-2017
    [85]Sharakhovsky L. I..1971. Experimental investigation of an electric arc motion in annular ventilated gap under the action of electromagnetic force. J. Eng. Phys., Vol.20:306-313
    [86]白冰.耦合阴极的磁分散电弧等离子体的数值模拟研究.博士毕业论文.合肥:中国科学技术大学
    [87]Jean-Luc Dorier, Malko Gindrat, and Christoph Hollenstein,et al.2001. Time-Resolved imaging of anodic arc root behavior during fluctuatons of a DC plasma spraying torch. IEEE Trans. On Plasma Sci., Vol.29:494-501
    [88]H. Minoo, A. Arsaoui and A. Bouvier.1995. An analysis of the cathode region of a vortex-stabilized arc plasma generator. J. Phys. D:Appl. Phys., Vol.28:1630-1648
    [89]N. S. Desaulniers and J. L. Meunier.1995. A study of magnetically rotating arc stability using fluctuations in voltage, velocity and emission line intensity. J. Phys. D:Appl. Phys., Vol.28: 2505-2513
    [90]黎林村.2008.磁分散电弧等离子体的实验研究和数值模拟.合肥:中国科学技术大学
    [91]Valerian Nemchinsky.2003. Current density at the refractory cathode of a high-current high-pressure arc (two modes of cathode spot attachment). J. Phys. D:Appl. Phys., Vol.36: 3007-3013
    [92]A. Bergner, M. Westermeier, C. Ruhrmann, P. Awakowicz and J. Mentel.2011. Temperature measurements at thoriated tungsten electrodes in a mode lamp and their interpretation by numerical simulation. J. Phys. D:Appl. Phys., Vol.44:15pp
    [93]Nottingham and B. Wayne.1956. Thermionic emission
    [94]I. Langmuir and H. M. Mott-Smith.1923. Gen. Electr. Rev., Vol.26:731
    [95]H. M. Mott-Smith and I. Langmuir.1926. Phys. Rev., Vol.28:727
    [96]项志遴.1982.高温等离子体诊断技术.上海:上海科学技术出版社
    [97]郑少白.1994.等离子体-材料相互作用:等离子体诊断第一卷:放电参量和化学.电子工业出版社
    [98]L. G. H. Huxley and R. W. Crompton.1974. The diffusion and drift of electrons in gases. Wiley, New York
    [99]E. W. McDaniel.1964. Collision phenomena in ionized gases. Wiley, New York
    [100]D. R. Bates.1962. Atomic and Molecular Processes. Academic, New York
    [101]Y. Itikawa.1974. At. Data Nucl. Data Tables, Vol.14
    [102]L. M. Biberman, V. S. Vorobev and I. T. Yakubov.1987. Kinetics of nonequilibrium low-temperature plasmas. Consultants Bureau, New York
    [103]E. L. Duman and B. M. Smirnov.1974. High Temp., Vol.12:431
    [104]L. D. Tsendin.1982. Sov. J. Plasma Phys., Vol.8
    [105]Y. M. Kagan and V. I. Perel'.1964. Sov. Phys. Usp., Vol.6:767
    [106]F. F. Chen.1965. In Plasma Diagnostic Techniques. Academic, New York
    [107]J. D. Swift and M. J. R. Schwar.1970. Electric probes for plasma diagnostics. Iliffe Books,
    [108]London P. L. Chung, L. Talbot and K. J. Touryan.1975. Electric probes in stationary and flowing plasma. Springer, Berlin
    [109]V. M. Zakharova, Y. M. Kagan, K. S. Mustafin and V. I. Perel'.1960. Sov. Phys. Tech. Phys., Vol.5:411
    [110]C. H. Su and R. E. Kiel.1966. J. Appl. Phys., Vol.37:4907
    [111]I.A. Vasil'eva.1974. High Temp., Vol.12:26
    [112]J. P. Raizer.1991. Gas discharge physics. Springer, Berlin
    [113]V. Rozhansky and L. Tsendin.2001. Transport phenomena in partially ionized plasma. Gordon and Breach, New York
    [114]Srivastava A. K..2007. Characterization of atmospheric pressure glow discharge in helium using Langmuir probe. Emission Spec. and Discharge Resistivity. IEEE Trans. On Plasma Sci., Vol.35:1135-1141
    [115]Sanders N. A. and Pfender E..1984. Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs. J. Appl. Phys., Vol.55:714-722
    [116]Yang G, Pfender E..2006. Experimental investigations of the anode boundary layer in high intensity arcs with cross flow. J. Phys. D:Appl. Phys., Vol.39:2764-2774
    [117]Tanaka M. and Ushio M..1999 Observations of the anode boundary layer free-burning argon arcs. J. Phys. D:Appl. Phys., Vol.32:906-912
    [118]Benilov M. S..1999. Analysis of ionization non-equilibrium in the near-cathode region of atmosphere-pressure arcs. J. Phys. D:Appl. Phys., Vol.32:257-262
    [119]F. G. Bakit and A. B. Rybakov.1997 Zh. Tekh. Fiz. Vol.67
    [120]F. G Bakit and A. B. Rybakov.1997. Tech. Phys., Vol.42:1385
    [121]Fanara C.2005. Sweeping electrode probes in a atmospheric pressure arc plasma-Part Ⅰ: General observations and characteristic curves. IEEE Trans. On Plasma Sci., Vol.33: 1072-1081
    [122]M. Redwitz, O. Langenscheidt and J. Mentel.2005. Spectroscopic investigation of the plasma boundary layer in front of HID-electrodes. J. Phys. D:Appl. Phys., Vol.38: 3143-3154
    [123]E. Leveroni and E. Pfender.1989. Electric probe diagnostics in thermal plasmas:Double probe theory and experimental results. Rev. Sci. Instrum., Vol.60:3744-3749
    [124]F. G. Baksht, N. K. Mitrofanov, A. B. Rybakov and S. M. Shkol'nik.1998. Probe diagnostics of strongly ionized inert-gas plasmas at atmospheric pressure. Tech. Phys., Vol.43:660-663
    [125]Dabringhausen L., Nandelstadt D., Luhmann J. and Mentel J..2002. Determination of HID electrode falls in a model lamp I:Pyrometric measurements. J. Phys. D:Appl. Phys., Vol.35: 1621-1630
    [126]Bauer A. and Schulz P..1954. Z. f. Phys. Vol.139:197-211
    [127]Busz-Peukert G and Finkelnburg W..1955. Z. f. Phys. Vol.140:540-546
    [128]Finkelnburg W. and Maecker H..1956. Elektrische Bogen und thermische plasmen. Berlin: Springer
    [129]Mitrofanov N. K. and Shkol'nik S. M..1997. Proc.23rd Int. Conf. on Phen. In Ionized Gases, Vol.2:134-135
    [130]焦凝云,查俊,白冰,张晓宁,夏维东.2012.大尺度磁分散电弧等离子体的探针诊断.核聚变与等离子体物理.Vo1.32:317-322
    [131]焦凝云.2012.大尺度磁分散电弧等离子体的探针诊断.硕士学位论文.合肥:中国科学技术大学
    [132]Guile A. E. and Secker. P. E..1958. Arc movement in a magnetic field. J. Appl. Phys., Vol.29:
    [133]Zhu, P.Y., J.J. Lowke, and R. Morrow.1992. A Unified Theory of Free Burning Arcs, Cathode Sheaths and Cathodes. Journal of Physics D-Applied Physics,25(8):p.1221-1230.
    [134]Lowke, J.J., R. Morrow, and J. Haidar.1997. A simplified unified theory of arcs and their electrodes. Journal of Physics D-Applied Physics,30(14):p.2033-2042
    [135]Morrow, R. and J.J. Lowke,1993. A One-Dimensional Theory for the Electrode Sheaths of Electric-Arcs. Journal of Physics D-Applied Physics,26(4):p.634-642
    [136]Lowke, J.J. and M. Tanaka.2006. LTE-diffusion approximation'for arc calculations. Journal of Physics D-Applied Physics,39(16):p.3634-3643
    [137]Lowke, J.J., J.H. Parker, and C.A. Hall.1976. Effect of Absorbing Boundaries on Distribution Function for Electrons in a Uniform Electric-Field in a Gas. Bulletin of the American Physical Society,21(2):p.172-172
    [138]K. C. Hsu, K. Etemadi and E. Pfender.1983. Study of the free-burning high-intensity argon arc. J. Appl. Phys., Vol.54:1293-1301
    [139]M. S. Benilov and M. D. Cunha.2003. Heating of refractory cathode bu high-pressure arc plasmas:Ⅱ. J. Phys. D:Appl. Phys., Vol.36:603-614
    [140]J. J. Gonzalez, F. Cayla, P. Freton and P. Teulet.2009. Two-dimensional self-consistent modeling of the arc/cathode interaction. J. Phys. D:Appl. Phys., Vol.42:14pp
    [141]Sayce I. G.1971. Extractive Metallurgy and Refining. London:The Institution of Mining and Metallurgy
    [142]John R.R. and Bade W.L..1961. Am. Rocket Soc. J., Vol.31:4-17
    [143]Humphreys J. F. and Lawton J..1972. Trans. ASME, J. Heat Transfer, Paper 72-HT-41
    [144]Kukekov G A..1941. Investigations of direct current arc in magnetic field. J. Tekhn. Phys., Vol.11:229-34
    [145]Kukekov G A..1941. Investigations of direct current arc in magnetic field. J. Tekhn. Phys., Vol.11:972-978
    [146]Alferov V. I., Vitovskaya O. N., Ustinov Yu S. and Shcherbakov G I..1971. Teplofiz. Vysokikh Temp., Vol.9:395-400
    [147]Fey M. G and Hirayama C.1970.160th Natn. Mtg Am. Chem. Soc. Chicago, pp 1-13
    [148]Dethlefsen R.1968. USAF Aerospace Research Laboratories, Report ARL 68-0112
    [149]John R. R.and Bade W. L..1961. Am. Rocket Soc. J., Vol.31:4-17
    [150]A. E. Guile and A. H. Hitchcock.1973. The effect of rotating arc velocity on copper cathode erosion. J. Phys. D:Appl. Phys., Vol.7:597-606
    [151]A. E. Guile and A. H. Hitchcock.1981. Effect of transverse magnetic-field on erosion rate of cathodes of rotating arcs
    [152]R. N. Szente, R. J. Munz and M. G Drouet.1989. Plasma Chem. Plasma Process., Vol.9: 121-132
    [153]R. N. Szente, R. J. Munz and M. G. Drouet.1992. Plasma Chem. Plasma Process., Vol.12: 327-343
    [154]R. N. Szente, R. J. Munz and M. G Drouet.1992. Pure Appl. Chem., Vol.64:657-663
    [155]R. N. Szente.1989. Erosion of plasma torch electrodes. Ph.D. Thesis. McGill University, Montreal, Canada
    [156]J. L. Meunier, S. Vacquie and R. J. Munz.1991. Spectroscopic study of a magnetically rotating arc between copper electrodes in contaminated argon. Plasma Chem. And Plasma Process., Vol.12:1-16
    [157]贾昌申,殷咸青.1994.西安交通大学学报.Vo1.28:7’
    [158]罗键,贾涛,殷咸青.1999.金属学报.Vo1.35:330
    [159]贾昌申,罗键,贾涛.1999.航空工艺技术.Vo1.3:26
    [160]罗键,贾昌申,王雅生,薛锦,吴毅雄.2001.外加纵向磁场GTAW焊接机理I.电弧特性.金属学报.Vo1.37:212-216
    [161]罗键,贾昌申,王雅生,薛锦,吴毅雄.2001.外加纵向磁场GTAW焊接机理II.电弧 模型.金属学报.Vo1.37:217-220
    [162]张九海,王其隆,韦伟平.1990.小电流TIG焊电弧磁控特性的研究.焊接学报,Vol.11:43-49
    [163]Hartmann T., Gunther K., Lichtenberg S., et, al..2002. Observation of an extremely constricted cathodic arc attachment to electrodes of high intensity discharge lamps. J. Phys. D:Appl. Phys., Vol.35:1657-1667
    [164]Blais A., Proulx P. and Boulos M. I..2003. Three-dimensional numerical modeling of a magnetically deflected dc transferred arc in argon. J. Phys. D:Appl. Phys., Vol.36:488-496
    [165]Menart J. and Lin L..1999. Numerical study of a free-burning argon arc with copper contamination from the anode. Plasma Chenm. Plasma Process., Vol.19:153-170
    [166]Bini R., Monno M. and Boulos M..2006. Numerical and experimental study of transferred arcs in argon. J. Phys. D:Appl. Phys., Vol.39:3253-3266
    [167]L. N. Latyev, V. Ya Chekhovskoi, E. N. Shestakov.1970, Monochromatic emissivity of tungsten in the temperature range 1200-2600K and in the wavelength range 0.4-4 u m. High Tern. High Press., Vol.2:175-181
    [168]承欢,江剑平编.1986,阴极电子学,西北电讯工程学院出版社
    [169]A. E. Guile, et al..1971, IEE Reviews, Vol.118:1131
    [170]J. Haidar and A. J. D. Farmer.1992, Temperature measurements for high-current free-burning arcs in nitrogen. J Phys. D:Appl. Phys., Vol.26:1224-1229
    [171]David L. Murphree and Richard P. Carter.1975, Visual observations on the high-current transition from the constricted to the diffuse MPD arc mode. J Appl. Phys., Vol.46: 1834-1836
    [172]V. M. Adams.1963, The influence of gas streams and magnetic fields on electric discharges, Part II. The shape of an arc rotating round and anular gap. Tech. Note, No. Aero 2915, Brit. R.A.E.
    [173]J. Lawton.1971, Arc motion in magnetic fields in presence of gas flow. J. Phys. D:Appl. Phys., Vol.4:1946-1958
    [174]H. Minoo, A. Arsaoui and A. Bouvier.1995. An analysis of the cathode region of a vortex stabilized arc plasma generator. J. Phys. D:Appl. Phys., Vol.28:1630-1648
    [175]Finkelnburg W. and Maecker H..1956. Electric Arcs and Thermal Plasma. Handbuch der Physik, Vol.22 (Berlin:Springer) p 254
    [176]Hsu K. C.1982. A self-consitent model for the high intensity free-burning argon arc. Ph.D. Thesis, University of Minnesota
    [177]Busz G. and Finkelnburg W..1954. Thermische Lichtbogen hoher Temperatur und niedriger. Brennspannung Z. Phys., Vol.139:212
    [178]H. N. Olsen.1959. Thermal and Electrical Properties of an Argon Plasma. The Physics of Fluids, Vol.2:614-623
    [179]M. D. Li, W. W. Deng, Y. S. Fan, J. Y. Yang and X. L. Liu.2004. Study on arc movement in hollow electrode plasma generators with impressed double magnetic fields. Plasma Chem. Plasma Process., Vol.24:73-84
    [180]王城,陈塘,查俊,白冰,夏维东.2013,轴向磁场对焊接电弧作用的数值模拟研究.高电压技术,Vol.7:1649-1654

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700