用户名: 密码: 验证码:
ZnO基薄膜及其阻变式存储器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在众多的新型非挥发性存储器中,阻变式存储器(RRAM)因具有简单的结构、优秀的尺寸可缩小性、较小的编程电流、较低的功耗、较高的读写速度以及与传统的CMOS工艺兼容性好等优点,被认为是下一代非挥发性存储器的有利竞争者之一。本文围绕如何改善基于ZnO半导体材料的RRAM器件的阻变开关性能展开研究,主要内容如下:
     1、用射频磁控溅射在石英衬底上沉积了ZnO薄膜,研究了不同的氧气流量对薄膜晶体结构和光学性能的影响,并在此基础上,研究了不同的ZnO沉积温度对Ag/ZnO/ITO结构RRAM器件性能的影响。结果表明,氧气流量为25SCCM、氩气流量为30SCCM、沉积温度为400℃时,器件具有较好的阻变性能,阻值开关比达到30倍,操作电压在2V以下,操作电流为200μA左右。
     2、在硅衬底上用磁控溅射制备了Ag/ZnO/Zn/Pt结构RRAM器件。首次采用了在金属底电极和ZnO功能层之间沉积Zn缓冲层的方法,提高了ZnO薄膜的结晶质量。系统的研究了不同的ZnO沉积温度、不同的Zn缓冲层厚度以及不同的ZnO退火温度对器件阻变开关性能的影响。结果表明,20nm的Zn缓冲层厚度、400℃的衬底沉积温度和ZnO330℃退火条件下,器件的阻变开关性能较好,阻值开关比达到1×103,相应的阻值转变也较稳定。正向和负向的阂值电压非常集中,都保持在±1V之间。测得低阻态时电阻值不随Ag电极尺寸的变化而改变,因而器件的开关机理是由局域的导电细丝的形成和断裂导致的。
     3、在硅衬底上制备了ZnO掺Ga薄膜的Ag/GZO/ZnO/Pt结构RRAM器件。与本征ZnO基Ag/ZnO/Zn/Pt器件相比,增大了器件的阻值开关比,提高了器件在高低阻态转换过程中的稳定性,说明有效地掺杂可以起到提高阻变存储器性能的作用。系统的研究了GZO薄膜的退火温度、ZnO缓冲层厚度和GZO沉积温度对器件性能的影响。结果表明,ZnO缓冲层厚度为15nm、GZO薄膜的退火温度为330℃、沉积温度为400℃时,器件的阻变开关性能较好,阻值天关比达到1×104,器件的开关阈值电压都保持在±1V之间,高低态阻值的转变也十分稳定。
Among various new non-volatile memories, resistive random access memory (RRAM) regarded as next-generation nonvolatile memory devices in the storage field has been widely investigated due to its simple structure, excellent scalability, low operation current, low power consumption, high speed, and well compatibility with complementary metal oxide semiconductor (CMOS) technology. In this thesis, we focus on improving the switching performance of ZnO-RRAM devices. The main contents are as follows:
     The ZnO thin films were deposited on quartz substrates by radio frequency magnetron sputtering. The effects of sputtering oxygen gas flow on the structure and optical properties of ZnO thin films were investigated. Then the performances of RRAM devices depend on different substrate temperature were also studied. The results reveal that when oxygen flow is25SCCM, argon flow is30SCCM and ZnO thin films grow at400℃, the ZnO-RRAM devices have better switching performance. The ratio of high resistance state to low resistance state is50. The operation voltages and operation currents are very low, which are2V and200μA, respectively.
     The ZnO-RRAM devices were prepared on Si substrates by radio frequency magnetron sputtering. We originally grew a Zn buffer layer between the ZnO thin film and metal bottom electrodes (BE). Through this method, we improved the quality of the ZnO films. Then the performance of ZnO-RRAM devices as a function of ZnO substrate temperature, the thickness of Zn buffer layer, and ZnO annealing temperature were systematically investigated. The results exhibit that the RRAM devices based on ZnO film grown at400℃, the Zn buffer layer at20nm, and the ZnO film annealed at330℃have better performance. The ratio of high resistance state to low resistance state is1X103. The resistive switch became more stable. The threshold voltages of OFF state and ON state were very uniform, which maintained at±1V. Then the effects of top electrode size were studied, we found that the conductive filament formation and rupture controlled by electrochemical redox-reaction are proposed to explain the resistive switching phenomenon.
     The resistive switching properties of GZO-RRAM devices fabricated on Si substrates were systematically studied. By comparing the data with ZnO-RRAM, we found the memory window is bigger and the switch became more stable. It reveals that effective doping can improve the performance of RRAM device. The effects of GZO substrate temperature, the thickness of ZnO buffer layer, and GZO annealing temperature on GZO-RRAM devices were investigated. The results show that the GZO-RRAM devices based on GZO film grown at400℃, the ZnO buffer layer at15run and the GZO film annealed at330℃had better performance. The ratio of high resistance state to low resistance state is1X104. The threshold voltages of OFF state and ON state were maintained at±1V, and resistance switching is very uniform.
引文
[1]Hnatek Eugene R.. Semiconductor memories:A review [J]. Microprocessors,1976, 1(2):85-98.
    [2]姜兴华.半导体集成电路存储器发展综述[J].河北师范大学学报,1999,23(1):33-35.
    [3]Lu Chih-Yuan, Hsieh Kuang-Yeu, Liu Rich.. Future challenges of flash memory technologies [J]. Microelectron. Eng.,2009,86(3):283-286.
    [4]Satoh S., Hemink G. J., Hatakeyama F. et al. Stress induced leakage current of tunnel oxide derived from flash memory read-disturb characteristics [J]. IEEE Transactions on Electron Devices,1998,45(2):482-486.
    [5]Ielmini D., Spinelli A. S., Lacaita A. L. et al. A statistical model for SILC in flash memories [J].IEEE Transactions on Electron Devices,2002,49(11):1955-1961.
    [6]Ielmini D. Reliability issues and modeling of flash and post-flash memory [J].Microelectronic Engineering,2009,86(7-9):1870-1875.
    [7]潘立阳,朱均Flash存储器技术与发展.[J].微电子学,2002,32(1):1-6.
    [8]Kahng D., and Sze S. M.. A floating gate and its application to memory devices [J]. Bell Systems Technical Journal,1967(46):1288-1295.
    [9]Ielmini D., Spinelli A. S., Lacaita A. L.. Recent developments on Flash memory reliability [J]. Microelectron. Eng.,2005,80:321-328.
    [10]Masuoka F., Asano M., Iwahashi H., Komuro T., and Tanaka S.. A new flash E2PPOM cell using triple polysilicon technology [C], IEDM Tech. Dig.,1984:464-467.
    [11]邵虞Memory Semiconductor Expects Another Splendor. [J]. Market Trends, 2007:24-30.
    [12]管伟华.前瞻非挥发性半导体存储器研究,[硕士学位论文],中国科学院微电子研究所,2008.
    [13]Meijer G. I.. Who Wins the Nonvolatile Memory Race? [J]. Science,2008, 319(5870):1625-1626.
    [14]F. Scott James, Carlos A. Paz De Araujo. Ferroelectric Memories [J]. Science,1989, 246(4936):1400-1405.
    [15]Jones Jr R. E., Maniar P. D., Moazzami R., Zurcher P., Witowski J. Z., Lii Y. T., Chu P., Gillespie S. J.. Ferroelectric non-volatile memories for low-voltage, low-power applications [J]. Thin Solid Films,1995,270(1-2):584-588.
    [16]王耘波,李东,郭冬云.The New Nonvolatile Memories, IC与元器件,2004,72-75.
    [17]付承菊,郭冬云.铁电存储器的研究进展[J].微纳电子技术,2006(9):414-418
    [18]Sousa R. C., Prejbeanu I. L.. Non-volatile magnetic random access memories (MRAM) [J]. Comptes Rendus Physique,2005,6(9):1013-1021.
    [19]Eerenstein W., Mathur N. D., Scott J. F.. Multiferroic and magnetoelectric materials [J]. Nature,2006,442(7104):759-765.
    [20]叶林秀,李佳谋,徐明丰.磁阻式随机存储器技术的发展—现状与未来[J].物理月刊,2004(26):607-619.
    [21]Buttiker M.. Coherent and sequential tunneling in series barrers [J]. IBM J. Research & Development,1988(32):63-75.
    [22]Sun H. B., Liu C. Y, Xu W., Zhao J. Z., Zheng N. N., Zhang T.. Using Magnetic RAM to Build Low-Power and Soft Error-Resilient L1 Cache [J]. IEEE Transactions on Very Large Scale Integration (Vlsi) Systems,2012,20(1):19-28.
    [23]吴晓薇,郭子政.磁阻随机存取存储器(MRAM)的原理与研究进展[J].Information Recording Materials,2009,10(2):52-56.
    [24]Zhu Jian-Gang, Zheng Youfeng, Prinz Gary A.. Ultrahigh density vertical magnetoresistive random access memory (invited) [J]. J. Appl. Phys.,2000, 87(9):6668-6673
    [25]Tehrani S., Engel B., Slaughter J. M., Chen E., DeHerrera M., Durlam M., Naji P., Whig R., Janesky J., and Calder J.. Recent developments in magnetic tunnel junction MRAM [J]. IEEE Trans. Magn.,2000,36(5):2752-2757.
    [26]Ovshinsky Stanford R.. Reversible Electrical Switching Phenomena in Disordered Structures [J]. Phys. Rev. Lett.,1968,21(20):1450-1453.
    [27]Feinleib J., Deneufville J., Moss S. C., Ovshinsky S.. R. RAPID REVERSIBLE LIGHT-INDUCED CRYSTALLIZATION OF AMORPHOUS SEMICONDUCTORS [J]. Appl. Phys. Lett.,1971,18(6):254-257.
    [28]Lacaita A. L.. Phase change memories:State-of-the-art, challenges and perspectives [J]. Solid-State Electronics,2006,50(1):24-31.
    [29]刘波,宋志棠,封松林.相变型半导体存储器研究进展[J].前沿进展,2005,34(4):279-286.
    [30]Stefan Lai, Lowrey Tyler.. OUM-A 180nm Non-volatile memory Cell Element Technology for Stand Alone and Embedded Applications, IEEE IEDM Tech. Dig., 2001:803-806.
    [31]Simpson R. E., Krbal M., Fons P., Kolobov A. V, Tominaga J., Uruga T. and Tanida H.. Toward the ultimate limit of phase change in Ge2Sb2Tes [J]. Nano lett.,2010, 10(2):414-419.
    [32]Bez R.. Chalcogenide PCM:a memory technology for next decade [C], IEDM Tech. Dig.,2009:89-92.
    [33]Kang S., Cho W. Y, Cho B. H. et al. A 0.1-μm 1.8-V 256-Mb Phase-Change Random Access Memory (PRAM) With 66-MHz Synchronous Burst-Read Operation [J]. Solid-State Circuits,2007,42(1):210-218.
    [34]Simmons J. G. R., Verderber R.. New Conduction and Reversible Memory Phenomena in Thin Insulating Films [J]. Proc. R. Soc. Lond. A. Math. Phys. Sci.,1967, 301(1464):77-102.
    [35]Sawa Akihito.. Resistive switching in transition metal oxides [J]. Mater. Today, 2008, 11(6):28-36.
    [36]Waser Rainer, Regina Dittmann, Georgi Staikov, Kristof Szot.. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Adv. Mater.,2009,21(25-26):2632-2663.
    [37]Liu S. Q., Wu N. J., Ignatiev A.. Electric-pulse-induced reversible resistance change effect in magnetoresistive films [J]. Appl. Phys. Lett.,2000,76(19):2749-2751.
    [38]Hickmott T. W.. Low-Frequency Negative Resistance in Thin Anodic Oxide Films [J]. J. Appl. Phys.,1962,33(9):2669-2682.
    [39]Pyun Myeongbum, Hyejung Choi, Ju-Bong Park, Dongsoo Lee, Musarrat Hasan, Rui Dong, Seung-Jae Jung, Joonmyoung Lee, Dong-Jun Seong, Jaesik Yoon, Hyunsang Hwang. Electrical and reliability characteristics of copper-doped carbon (CuC) based resistive switching devices for nonvolatile memory applications [J]. Appl. Phys. Lett., 2008,93(21):212907.
    [40]Jo S. H., Kim K.-H. and Lu W.. High-density crossbar arrays based on a Si memristive system [J]. Nano lett,2009,9(2):870-874.
    [41]Jo S. H. and Lu W.. CMOS compatible nanoscale nonvolatile resistance switching memory [J]. Nano lett.,2008,8(2):392-397.
    [42]Ouyang Jianyong, Chu Chih-Wei, Szmanda Charles R., Ma Liping, Yang Yang. Programmable polymer thin film and non-volatile memory device [J]. Nat Mater,2004, 3(12):918-922.
    [43]Tseng Ricky J., Huang Jiaxing, Ouyang Jianyong, Kaner Richard B., Yang Yang. Polyaniline Nanofiber/Gold Nanoparticle Nonvolatile Memory [J]. Nano Lett.,2005, 5(6):1077-1080.
    [44]Yeow Hwee Teo E., Zhang Chunfu, Lim Siew Lay, Kang En-Tang, Chan Daniel, Zhu Chunxiang. An Organic-Based Diode-Memory Device With Rectifying Property for Crossbar Memory Array Applications [J]. Electron Device Letters, IEEE,2009, 30(5):487-489.
    [45]Billen J., Steudel S., Muller R., Genoe J., Heremans P.. A comprehensive model for bipolar electrical switching of CuTCNQ memories [J]. Appl. Phys. Lett.,2007, 91(26):263507.
    [46]Potember R. S., Poehler T. O., Cowan D. O.. Electrical switching and memory phenomena in Cu-TCNQ thin films [J]. Appl. Phys. Lett.,1979,34(6):405-407.
    [47]Oyamada Takahito, Haruo Tanaka, Kazumi Matsushige, Hiroyuki Sasabe, Chihaya Adachi. Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition [J]. Appl. Phys. Lett.,2003,83(6):1252-1254.
    [48]Ma L. P., Liu J., Yang Y. Organic electrical bistable devices and rewritable memory cells [J]. Appl. Phys. Lett.,2002,80(16):2997-2999.
    [49]Reddy V. S., Karak S., Dhar A.. Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shell nanoparticles [J]. Appl. Phys. Lett,2009,94(17):173304.
    [50]Sakamoto T., Sunamura H., Kawaura H., Hasegawa T., Nakayama T., Aono M.. Nanometer-scale switches using copper sulfide [J]. Appl. Phys. Lett.,2003, 82(18):3032-3034.
    [51]Symanczyk R., Bruchhaus R., Dittrich R., Kund M.. Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells [J]. Electron Device Letters, IEEE, 2009,30(8):876-878.
    [52]Kozicki M. N., Balakrishnan M., Gopalan C., Ratnakumar C., Mitkova M.. Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes [C]. Non-Volatile Memory Technology Symposium,2005:83-89.
    [53]Wang Z., Griffin P. B., Mcvittie J., Wong S., Mcintyre P. C., Nishi Y. Resistive Switching Mechanism in ZnxCd1-xS Nonvolatile Memory Devices [J]. Electron Device Letters, IEEE,2007,28(1):14-16.
    [54]Park J. W., Kim D. Y, Lee J. K.. Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications [J]. Journal of Vacuum Science & Technology A, 2005,23(5):1309-1313.
    [55]Sungho Kim, Choi Yang-Kyu.. A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM [J]. Electron Devices, IEEE Transactions on,2009,56(12):3049-3054.
    [56]Zheng K., Sun X. W., Zhao J. L., Wang Y, Yu H. Y, Demir H. V, Teo K. L.. An Indium-Free Transparent Resistive Switching Random Access Memory [J]. Electron Device Letters, IEEE,2011,32(6):797-799.
    [57]Kinoshita K., Tamura T., Aoki M., Sugiyama Y, Tanaka H.. Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide [J]. Appl. Phys. Lett.,2006,89(10):103509.
    [58]Tsunoda K., Fukuzumi Y, Jameson J. R., Wang Z., Griffin P. B., Nishi Y. Bipolar resistive switching in polycrystalline TiO2 films [J]. Appl. Phys. Lett.,2007, 90(11):113501.
    [59]Wu X., Zhou P., Li J., Chen L. Y, Lv H. B., Lin Y Y, Tang T. A.. Reproducible unipolar resistance switching in stoichiometric ZrO2 films [J]. Appl. Phys. Lett.,2007, 90(18):183507.
    [60]Park Gyeong-Su, Li Xiang-Shu, Kim Dong-Chirl, Jung Ran-Ju, Lee Myoung-Jae, Seo Sunae. Observation of electric-field induced Ni filament channels in polycrystalline NiOx film [JJ.Appl. Phys. Lett.,2007,91(22):222103.
    [61]Yoshida Chikako, Kohji Tsunoda, Hideyuki Noshiro, Yoshihiro Sugiyama. High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application [J]. Appl. Phys. Lett.,2007,91(22):223510.
    [62]Liu Qi, Guan Weihua, Long Shibing, Jia Rui, Liu Ming, Chen Junning. Resistive switching memory effect of ZrO2 films with Zr+implanted [J]. Appl. Phys. Lett.,2008, 92(1):012117.
    [63]Son J. Y, Shin Y H.. Direct observation of conducting filaments on resistive switching of NiO thin films [J]. Appl. Phys. Lett.,2008,92(22):222106.
    [64]Kinoshita K., Tsunoda K., Sato Y, Noshiro H., Yagaki S., Aoki M., Sugiyama Y. Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance [J]. Appl. Phys. Lett.,2008, 93(3):033506.
    [65]Chanwoo Park, Sang Ho Jeon, Seung Chul Chae, Seungwu Han, Bae Ho Park, Sunae Seo, Dong-Wook Kim. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures [J]. Appl. Phys. Lett.,2008, 93(4):042102.
    [66]Lee C. B., Kang B. S., Benayad A., Lee M. J., Ahn S. E., Kim K. H., Stefanovich G., Park Y, Yoo I. K.. Effects of metal electrodes on the resistive memory switching property of NiO thin films [J]. Appl. Phys. Lett.,2008,93(4):042115.
    [67]Guan Weihua, Liu Ming, Long Shibing, Liu Qi, Wang Wei. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt [J]. Appl. Phys. Lett.,2008,93(22):223506.
    [68]Phark S. H., Jung R., Chang Y J., Noh T. W., Kim D. W.. Interfacial reactions and resistive switching behaviors of metal/NiO/metal structures [J]. Appl. Phys. Lett.,2009, 94(2):022906.
    [69]Zhou P., Yin M., Wan H. J., Lu H. B., Tang T. A., Lin Y Y. Role of TaON interface for CuxO resistive switching memory based on a combined model [J]. Appl. Phys. Lett., 2009,94(5):053510.
    [70]Ielmini D., Cagli C., Nardi F.. Resistance transition in metal oxides induced by electronic threshold switching [J]. Appl. Phys. Lett.,2009,94(6):063511.
    [71]Schindler C., Staikov G., Waser R.. Electrode kinetics of Cu-SiO2-based resistive switching cells:Overcoming the voltage-time dilemma of electrochemical metallization memories [J]. Appl. Phys. Lett.,2009,94(7):072109.
    [72]Lv Hangbing, Wang Ming, Wan Haijun, Song Yali, Luo Wenjing, Zhou Peng, Tang Tingao, Lin Yinyin, Huang R., Song S., Wu J. G, Wu H. M., Chi M. H.. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode [J]. Appl. Phys. Lett.,2009,94(21):213502.
    [73]Liu Ming, Abid Z., Wang Wei, He Xiaoli, Liu Qi, Guan Weihua. Multilevel resistive switching with ionic and metallic filaments [J]. Appl. Phys. Lett.,2009, 94(23):233106.
    [74]Yang Lin, Kuegele Carsten, Szot Krzyszto, Ruediger Andreas, Waser Rainer. The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy [J]. Appl. Phys. Lett.,2009, 95(1):013109.
    [75]Chang Wen-Yuan, Cheng Kai-Jung, Tsai Jui-Ming, Chen Hung-Jen, Chen Frederick, Tsai Ming-Jinn, Wu Tai-Bor. Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals [J]. Appl. Phys. Lett., 2009,95(4):042104.
    [76]Wang Sheng-Yu, Lee Dai-Ying, Tseng Tseung-Yuen, Lin Chih-Yang. Effects of Ti top electrode thickness on the resistive switching behaviors of rf-sputtered ZrO2 memory films [J]. Appl. Phys. Lett.,2009,95(11):112904.
    [77]Bogle Kashinath A., Bachhav Mukesh N., Deo Meenal S., Valanoor Nagarajan, Ogale Satishchandra B.. Enhanced nonvolatile resistive switching in dilutely cobalt doped TiO2 [J]. Appl. Phys. Lett.,2009,95(20):203502.
    [78]Kinoshtia Kentaro, Takumi Okutani, Hayato Tanaka, Toshio Hinoki, Kenji Yazawa, Koutoku Ohmi, Satoru Kishida. Opposite bias polarity dependence of resistive switching in n-type Ga-doped-ZnO and p-type NiO thin films [J]. Appl. Phys. Lett., 2010,96(14):143505.
    [79]Jo Jay Hyun, Lee Shin Buhm, Lee Jonathan Hanjin, Chang Seo Hyoung, Chae Seung Chul, Jung Chang Uk. Effects of electrode polarity on filament ruptures during unipolar resistance switchings [J]. Current Applied Physics,2010,10(3):817-820.
    [80]Miranda E., Martin-Martinez J., O'connor E., Hughes G, Casey P., Cherkaoui K., Monaghan S., Long R., O'connell D., Hurley P. K. Effects of the electrical stress on the conduction characteristics of metal gate/MgO/InP stacks [J]. Microelectronics Reliability,2009,49(9-11):1052-1055.
    [81]Kim Kyung Min, Kim Gun Hwan, Song Seul Ji, Seok Jun Yeong, Lee Min Hwan, Yoon Jeong Ho, Hwang Cheol Seong. Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures [J]. Nanotechnology,2010,21(30).
    [82]Meng Yang, Zhang Pei-Jian, Liu Zi-Yu, Liao Zhao-Liang, Pan Xin-Yu, Liang Xue-Jin, Zhao Hong-Wu, Chen Dong-Min. Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches [J]. Chinese Physics B,2010,19(3):037304.
    [83]Chang Wen-Yuan, Ho Yi-Tang, Hsu Tzu-Cheng, Chen Frederick, Tsai Ming-Jinn, Wu Tai-Bor. Influence of Crystalline Constituent on Resistive Switching Properties of TiO2 Memory Films [J]. Electrochemical and Solid State Letters,2009, 12(4):H135一H137.
    [84]Kinoshita K.,Okutani T.,Tanaka H.,Hinoki T.,Agura H.,Yazawa K.,Ohmi K., Kishida S..'Flexible and transparent ReRAM with GZO-memory-layer and GZO-electrodes on large PEN sheet[C].Memory Workshop(IMW),2010 IEEE International.2010:1.3.
    [85]Kim Sungho,Yarimaga Oktay,Choi Sung-Jin,Choi Yang-Kyu.Highly durable and flexible memory based on resistance switching[J]. Solid-State Electronics,2010, 54(4):392-396.
    [86]Yu Lee-Eun,Kim Sungho,Ryu Min-Ki,Choi Sang-Yool,Choi Yang-Kyu. Structure Effects on Resistive Switching of Al/TiOx/Al Devices for RRAM Applications [J].Electron Device Letters,IEEE,2008,29(4):331-333.
    [87]Li Yingtao,Long Shibing,zhang Manhong,Liu Qi,Shao Lubing,Zhang Sen, Wang Yan, Zuo Qingyun,Liu Su, Liu Ming. Resistive Switching Properries of Au/ZrO2/Ag Structure for Low-Voltage Nonvolatile Memory Applicatioas[J].Electron Device Letters,IEEE,2010,31(2):117-119.
    [88]Liu Qi,Long Shibing,Wang Wei,Zuo Qingyun,Zhang Sen,Chen Junning,Liu Ming.Improvement of Resistive Switching Properries in ZrO2-Based ReRAM With Implanted Ti Ions[J].Electron Device Letters,IEEE,2009,30(12):1335-1337.
    [89]Lin Chih-Yang,Wu Chung-Yi,Wu Chen-Yu,Tseng Tseung-Yuen,Hu Chenming. Modified resistive switching behavior Of ZrO2 memory films based on the interface layer formed by using Ti top electrode[J].J.Appl.Phys.,2007,102(9):094101.
    [90]Do Young Ho,June Sik Kwak,Jin Pyo Hong,Kyooho Jung,Hyunsik Im.Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films[J].J.Appl.Phys.,2008,104(11):114512.
    [91]Liu Qi,Guan Weihua,Long Shibing,Liu Ming,Zhang Sen,Wang Qin,Chen Junning.Resistalice switching of Au-implanted-ZrO2 film for nonvolatile memory application[J].J.Appl.Phys.,2008,104(11):114514.
    [92]Jeollg Doo Seok,Schroeder Herben,Breuer Uwe,Waser Rainer.Characterjstic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere [J].J.Appl.Phys.,2008,104(12):123716.
    [93]Sun B.,Liu Y X.,Liu L. F.,Xu N.,Wang Y.,Liu X.Y.,Han R.Q.,Kang J.F. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices[J].J. Appl.Phys.,2009,105(6):061630.
    [94]Zuo Qingyun,Long Shibing,Liu Qi,Zhang Sen,Wang Qin,Li Yingtao,Wang Yan, Liu Ming.Self-rectifying efiect in gold nanocrystal-embedded zirconium oxide resistive memory[J].J.Appl.Phys.,2009,106(7):073724.
    [95]Zhu W,Chen T.P.,Liu Z.,Yang M.,Liu Y,Fung S..Resistive switching in aluminum/anodized aluminum film structure without forming process[J].J.APPl.Phys., 2009,106(9):093706.
    [96]Yang Y. C., Pan F., Zeng F., Liu M.. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory:From carrier trapping/detrapping to electrochemical metallization [J]. J. Appl. Phys.,2009, 106(12):123705.
    [97]Kim Kyung Min, Choi Byung Joon, Song Seul Ji, Kim Gun Hwan, Hwang Cheol Seong. Filamentary Resistive Switching Localized at Cathode Interface in NiO Thin Films [J]. J. Electrochem. Soc.,2009,156(12):G213-G216.
    [98]Verbakel Frank, Stefan C. J. Meskers, Rene A. J. Janssen. Surface modification of zinc oxide nanoparticles influences the electronic memory effects in ZnO-polystyrene diodes [J]. Journal of Physical Chemistry C,2007, 111(28):10150-10153.
    [99]Lee Myoung-Jae, Han Seungwu, Jeon Sang Ho, Park Bae Ho, Kang Bo Soo, Ahn Seung-Eon, Kim Ki Hwan, Lee Chang Bum, Kim Chang Jung, Yoo In-Kyeong, Seo David H., Li Xiang-Shu, Park Jong-Bong, Lee Jung-Hyun, Park Youngsoo. Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory [J]. Nano Lett.,2009,9(4):1476-1481.
    [100]Guan Weihua, Long Shibing, Liu Qi, Liu Ming, Wang Wei. Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2 [J]. Electron Device Letters, IEEE,2008, 29(5):434-437.
    [101]Hu P., Li X. Y., Lu J. Q., Yang M., Lv Q. B., Li S. W. Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films [J]. Phys. Lett. A,2011, 375(18):1898-1902.
    [102]Do Young Ho, Kwak June Sik, Bae Yoon Cheol, Jung Kyooho, Im Hyunsik, Hong Jin Pyo. Oxygen ion drifted bipolar resistive switching behaviors in TiO2-Al electrode interfaces [J]. Thin Solid Films,2010,518(15):4408-4411.
    [103]Jeong Doo Seok, Schroeder Herbert, Waser Rainer. Mechanism for bipolar switching in a Pt/TiO2/Pt resistive switching cell [J]. Physical Review B,2009, 79(19):195317.
    [104]Chang S. H., Lee J. S., Chae S. C., Lee S. B., Liu C., Kahng B., Kim D. W., Noh T. W. Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film [J]. Phys. Rev. Lett.,2009,102(2):026801.
    [105]Kwak June Sik, Do Young Ho, Bae Yoon Cheol, Im Hyunsik, Hong Jin Pyo. Reproducible unipolar resistive switching behaviors in the metal-deficient CoOx thin film [J]. Thin Solid Films,2010,518(22):6437-6440.
    [106]Zhou P., Shen H., Li J., Chen L. Y, Gao C., Lin Y, Tang T. A. Resistance switching study of stoichiometric ZrO2 films for non-volatile memory application [J]. Thin Solid Films,2010,518(20):5652-5655.
    [107]Tang M. H., Zeng Z. Q., Li J. C., Wang Z. P., Xu X. L., Wang G. Y., Zhang L. B., Yang S. B., Xiao Y. G., Jiang B.. Resistive switching behavior of La-doped ZnO films for nonvolatile memory applications [J]. Solid-State Electronics,2011,63(1):100-104.
    [108]Huby N., Tallarida G, Kutrzeba M., Ferrari S., Guziewicz E., Wachnicki L., Godlewski M.. New selector based on zinc oxide grown by low temperature atomic layer deposition for vertically stacked non-volatile memory devices [J]. Microelectron. Eng.,2008,85(12):2442-2444.
    [109]Lamperti A., Spiga S., Lu H. L., Wiemer C., Perego M., Cianci E., Alia M., Fanciulli M.. Study of the interfaces in resistive switching MID thin films deposited by both ALD and e-beam coupled with different electrodes (Si, Ni, Pt, W, TiN) [J]. Microelectron. Eng.,2008,85(12):2425-2429.
    [110]Liu Kou-Chen, Tzeng Wen-Hsien, Chang Kow-Ming, Chan Yi-Chun, Kuo Chun-Chih, Cheng Chun-Wen. The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device [J]. Microelectronics Reliability,2010,50(5):670-673.
    [111]Liu X. J., Li X. M., Wang Q., Yu W. D., Yang R., Cao X., Gao X. D., Chen L. D.. Improved resistive switching properties in Ti/TiOx/La0.7Ca0.3MnO3/Pt stacked structures [J]. Solid State Commun.,2010,150(1-2):137-141.
    [112]Shibuya Keisuke, Dittmann Regina, Mi Shaobo, Waser Rainer. Impact of Defect Distribution on Resistive Switching Characteristics of Sr2TiO4 Thin Films [J]. Adv. Mater.,2010,22(3):1-4.
    [113]Chen X., Wu N. J., Strozier J., Ignatiev A.. Direct resistance profile for an electrical pulse induced resistance change device [J]. Appl. Phys. Lett.,2005, 87(23):233506.
    [114]Xing Z. W., Wu N. J., Ignatiev A.. Resistance switching in Fe-doped P0.7Ca0.3MnO3 thin films [J]. Phys. Lett. A,2009,373(3):376-378.
    [115]Tsui S., Xue Y. Y., Das N., Wang Y. Q., Chu C. W. Interfacial resistive oxide switch induced by reversible modification of defect structures [J]. Physical Review B., 2009,80(16):165415.
    [116]Lau H. K., Leung C. W., Hu W. H., Chan P. K. L.. Interfacial defects in resistive switching devices probed by thermal analysis [J]. J. Appl. Phys.,2009,106(1):014504.
    [117]Das N., Tsui S., Xue Y. Y., Wang Y. Q., Chu C. W.. Electric-field-induced submicrosecond resistive switching [J]. Physical Review B,2008,78(23):235418.
    [118]Son Junwoo, Stemmer Susanne. Resistive switching and resonant tunneling in epitaxial perovskite tunnel barriers [J]. Physical Review B,2009,80(3):035105.
    [119]Liu Xinjun, Biju Kuyyadi P., Bourim El Mostafa, Park Sangsu, Lee Wootae, Shin Jungho, Hwang Hyunsang. Low programming voltage resistive switching in reactive metal/polycrystalline Pr0.7Ca0.3MnO3 devices [J]. Solid State Commun.,2010, 150(45-46):2231-2235.
    [120]Janousch M., Meijer G.□I., Staub U., Delley B., Karg S. □F., Andreasson B. □P.. Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory [J]. Adv. Mater.,2007,19(17):2232-2235.
    [121]Sim Hyunjun, Choi Hyejung, Lee Dongsoo, Chang Man, Choi Dooho, Son Yunik, Lee Eun-Hong, Kim Wonjoo, Park Yoondong, Yoo In-Kyeong, Hwang Hyunsang. Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application [C].Electron Devices Meeting,2005. IEDM Tech. Dig., IEEE International.2005:758-761
    [122]Hosoi Y, Tamai Y, Ohnishi T., Ishihara K., Shibuya T., Inoue Y, Yamazaki S., Nakano T., Ohnishi S., Awaya N., Inoue H., Shima H., Akinaga H., Takagi H., Akoh H., Tokura Y. High Speed Unipolar Switching Resistance RAM (RRAM) Technology [C]. IEDM Tech. Dig.,2006:793-796.
    [123]Tsunoda K., Kinoshita K., Noshiro H., Yamazaki Y., Iizuka T., Ito Y., Takahashi A., Okano A., Sato Y, Fukano T., Aoki M., Sugiyama Y. Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V [C]. IEDM Tech. Dig.,2007:767-770.
    [124]Yoon Jaesik, Choi Hyejung, Lee Dongsoo, Park Ju-Bong, Lee Joonmyoung, Seong Dong-Jun, Ju Yongkyu, Chang Man, Jung Seungjae, Hwang Hyunsang. Excellent Switching Uniformity of Cu-Doped MoOx/GdOx Bilayer for Nonvolatile Memory Applications [J]. Electron Device Lett., IEEE,2009,30(5):457-459.
    [125]Yang Yu Chao, Pan Feng, Liu Qi, Liu Ming, Zeng Fei. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application [J]. Nano Lett.,2009,9(4):1636-1643.
    [126]Seo S., Lee M. J., Seo D. H., Jeoung E. J., Suh D. S., Joung Y S., Yoo I. K., Hwang I. R., Kim S. H., Byun I. S., Kim J. S., Choi J. S., Park B. H.. Reproducible resistance switching in polycrystalline NiO films [J]. Appl. Phys. Lett.,2004, 85(23):5655-5657.
    [127]Lee C. B., Kang B. S., Lee M. J., Ahn S. E., Stefanovich G, Xianyu W. X., Kim K. H., Hur J. H., Yin H. X., Park Y, Yoo I. K., Park J. B., Park B. H.. Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films [J]. Appl. Phys. Lett.,2007,91(8):082104.
    [128]Tzu-Ning Fang, Kaza S., Haddad S., Chen An, Wu Yi-Ching, Lan Zhida, Avanzino S., Liao Dongxiang, Gopalan C., Choi Seungmoo, Mahdavi S., Buynoski,M. Lin Y, Marrian C., Bill C., Vanbuskirk M., Taguchi M. Erase Mechanism for Copper Oxide Resistive Switching Memory Cells with Nickel Electrode [C]. IEDM Tech. Dig., 2006:543-546.
    [129]Sim Hyunjun, Choi Hyejung, Lee Dongsoo, Chang Man, Choi Dooho, Son Yunik, Lee Eun-Hong, Kim Wonjoo, Park Yoondong, Yoo In-Kyeong, Hwang Hyunsang. Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi-bit nonvolatile memory application [C]. IEDM Tech. Dig.,2005:758-761.
    [130]Zhuangl W. W., Pan W., Ulrich B. D., Lee J. J., Stecker L., Burmaster A., Evans D. R., Hsul S. T., Tajiri M., Shimaoka A., Inoue K., Naka T., Awaya N., Sakiyama K., Wang Y., Liu S. Q., Wu N. J. and Ignatiev A.. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM) [C]. TEDM Tech. Dig., 2002:193-196.
    [131]Guo H. X., Gao L. G., Xia Y. D., Jiang K., Xu B., Liu Z.G., Yin J.. The growth of metallic nanofilaments in resistive switching memory devices based on solid electrolytes [J]. Appl. Phys. Lett.,2009,94(15):153504.
    [132]Dietrich S., Angerbauer M., Ivanov M., Gogl D., Hoenigschmid H., Kund M., Liaw C., Markert M., Symanczyk R., Altimime L., Bournat S., Mueller G. A Nonvolatile 2-Mbit CBRAM Memory Core Featuring Advanced Read and Program Control [J]. Solid-State Circuits, IEEE Journal of,2007,42(4):839-845.
    [133]Seo Jung Won, Park Jae-Woo, Lim Keong Su, Yang Ji-Hwan, Kang Sang Jung. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching [J]. Appl. Phys. Lett.,2008,93(22):223505.
    [134]Won Seo Jung, Park Jae-Woo, Lim Keong Su, Kang Sang Jung, Hong Yun Ho, Yang Ji Hwan, Fang Liang, Sung Gun Yong, Kim Han-Ki. Transparent flexible resistive random access memory fabricated at room temperature [J]. Appl. Phys. Lett.,2009, 95(13):133508.
    [1]Chang Wen-Yuan, Lai Yen-Chao, Wu Tai-Bor, Wang Sea-Fue, Chen Frederick, Tsai Ming-Jinn. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications [J]. Appl. Phys. Lett.,2008,92(2):022110.
    [2]Hu P., Li X. Y, Lu J. Q., Yang M., Lv Q. B., Li S. W.. Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films [J]. Phys. Lett. A,2011, 375(18):1898-1902.
    [3]Kukreja L. M., Das A. K., Misra P.. Studies on nonvolatile resistance memory switching in ZnO thin films [J]. Bull. Mater. Sci.,2009,32(3):247-252.
    [4]Chang S. H., Lee J. S., Chae S. C., Lee S. B., Liu C., Kahng B., Kim D. W., Noh T. W. Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film [J]. Phys. Rev. Lett.,2009,102(2).
    [5]Zhou P., Shen H., Li J., Chen L. Y., Gao C., Lin Y, Tang T. A.. Resistance switching study of stoichiometric ZrO(2) films for non-volatile memory application [J]. Thin Solid Films,2010,518(20):5652-5655.
    [6]Chang Wen-Yuan, Ho Yi-Tang, Hsu Tzu-Cheng, Chen Frederick, Tsai Ming-Jinn, Wu Tai-Bor. Influence of Crystalline Constituent on Resistive Switching Properties of TiO(2) Memory Films [J]. Electrochemical and Solid State Letters,2009, 12(4):H135-H137.
    [7]Ozgur U., Alivov Ya I., Liu C., Teke A., Reshchikov M. A., Dogan S., Avrutin V., Cho S. J., Morkoc H.. A comprehensive review of ZnO materials and devices [J]. J. Appl. Phys.,2005,98(4):041301.
    [8]Seo Jung Won, Park Jae-Woo, Lim Keong Su, Yang Ji-Hwan, Kang Sang Jung. Transparent resistive random access memory and its characteristics for nonvolatile resistive switching [J]. Appl. Phys. Lett.,2008,93(22):223505.
    [9]Yoshida Chikako, Kohji Tsunoda, Hideyuki Noshiro, Yoshihiro Sugiyama. High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application [J]. Appl. Phys. Lett.,2007,91(22):223510.
    [10]Choi Ji-Hyuk, Das Sachindra Nath, Myoung Jae-Min. Controllable resistance switching behavior of NiO/SiO2 double layers for nonvolatile memory applications [J]. Appl. Phys. Lett.,2009,95(6):062105.
    [11]Won Seo Jung, Park Jae-Woo, Lim Keong Su, Kang Sang Jung, Hong Yun Ho, Yang Ji Hwan, Fang Liang, Sung Gun Yong, Kim Han-Ki. Transparent flexible resistive random access memory fabricated at room temperature [J]. Appl. Phys. Lett.,2009, 95(13):133508.
    [12]Phark S. H., Jung R., Chang Y. J., Noh T. W., Kim D. W. Interfacial reactions and resistive switching behaviors of metal/NiO/metal structures [J]. Appl. Phys. Lett.,2009, 94(2):022906.
    [13]Guan Weihua, Long Shibing, Liu Qi, Liu Ming, Wang Wei. Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2 [J]. Electron Device Letters, IEEE,2008, 29(5):434-437.
    [14]Yang Y. C., Pan F., Zeng F., Liu M.. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory:From carrier trapping/detrapping to electrochemical metallization [J]. J. Appl. Phys.,2009, 106(12):123705.
    [15]Yang Yu Chao, Pan Feng, Zeng Fei. Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories:active region and influence of Joule heating [J]. New Journal of Physics,12 (2010) 023008.
    [16]Weiser K., Murray A. Lampert and Peter Mark. Current Injection in Solids.Academic Press, New York,1970. xiv,354 pp.. Electrical Science series [J]. Science,1970,170(3961):966-967.
    [1]Sun B.,Liu Y X.,Liu L.F.,Xu N.,Wang Y.,Liu X.Y.,Han R.Q.,Kang J.F.. Highly uniform resistive switching characteristics of TiN/ZrO2/Pt memory devices[J].J. Appl.Phys.,2009,105(6):061630.
    [2]Lee Seunghyup,Kim Heejin,Yun Dong-Jin,Rhee Shi-Woo,Yong Kijung.Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices[J].Appl.Phys.Lett.,2009,95(26):262113.
    [3]Symanczyk R.,Bruchhaus R.,Dittrich R.,Kund M..Investigation of the Reliability Behavior of Conductive-Bridging Memory Cells[J].Electron Device Letters,IEEE, 2009,30(8):876-878.
    [4]刘琦,高速、高密度、低功耗的阻变非挥发性存储器研究[博士学位论文],安徽大学,2010.4.
    [5]Sawa Akihito.Resistive switching in transition metal oxides[J].Mater.Today;2008, 11(6):28-36.
    [6]Chae Seung Chul,Lee Jae Sung,Kim Sejin,Lee Shin Buhm,Chang Seo Hyoung, Liu Chunli,Kahng Byungnam,Shin Hyunjung,Kim Dong-Wook,Chang Uk Jung,Seo Sunae,Lee Myoung-Jae,Noh Tae Won.Random Circuit Breaker Network Model for Unipolar Resistance Switching[J].Adv.Mater.,2008,20(6):1154-1159.
    [7]Xia Yidong,He Weiye,Chen Liang,Meng xiangkang,Liu Zhiguo.Field-induced resistive switching based on space-charge-limited current[J].Appl.Phys.Lett.,2007, 90(2):022907.
    [8]Sim Hyunjun,Choi Hyejung,Lee Dongsoo,Chang Man,Choi Dooho,Son Yunik, Lee Eun-Hong,Kim Wonjoo,Park Yoondong,Yoo In-Kyeong,Hwang Hyunsang. Excellent resistance switching characteristics of Pt/SrTiO3 schottky junction for multi_bit nonvolatile memory application[C].IEDM Tech.Dig,2005:758.761.
    [9]Choi B.J.,Jeong D.S.,Kim S.K.,Rohde C.,Choi S.,Oh J.H.,Kim H.J.,Hwang C. S.,Szot K.,Waser R.,Reichenberg B.,Tiedke S..Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition[J].J.Appl.Phys.,2005, 98(3):033715.
    [10]Hirose Yooichi,Hirose Haruo.Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3-films[J].J.Appl.Phys.,1976, 47(6):2767-2772.
    [11]Son J.Y,Shin Y H..Direct observation of conducting filaments on resistive switching of NiO thin films[J].Appl.Phys.Lett.,2008,92(22):222106.
    [12]Chang Wen-Yuan,Lai Yen-Chao,Wu Tai-Bor,Wang Sea-Fue,Chen Frederick,Tsai Ming-Jinn.Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications[J].Appl.Phys.Lett.,2008,92(2):022110.
    [13]Park Chanwoo, Jeon Sang Ho, Chae Seung Chul, Han Seungwu, Park Bae Ho, Seo Sunae, Kim Dong-Wook. Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures [J]. Appl. Phys. Lett.,2008,93(4):042102.
    [14]Jeong Doo Seok, Schroeder Herbert, Breuer Uwe, Waser Rainer. Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere [J]. J. Appl. Phys.,2008,104(12):123716.
    [15]Yang Y. C., Pan F., Zeng F., Liu M.. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory:From carrier trapping/detrapping to electrochemical metallization [J]. J. Appl. Phys.,2009, 106(12):123705.
    [16]Yang Yu Chao, Pan Feng, Liu Qi, Liu Ming, Zeng Fei. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application [J]. Nano Lett.,2009,9(4):1636-1643.
    [17]Waser Rainer, Dittmann Regina, Staikov Georgi, Szot Kristof. Redox-Based Resistive Switching Memories-Nanoionic Mechanisms, Prospects, and Challenges [J]. Adv. Mater.,2009,21(25-26):2632-2663.
    [18]Maniv S., Westwood W. D., Colombini E.. Pressure and angle of incidence effects in reactive planar magnetron sputtered ZnO layers [J]. Journal of Vacuum Science and Technology,1982,20(2):162-170.
    [19]Lu J. G, Ye Z. Z., Zeng Y. J., Zhu L. P., Wang L., Yuan J., Zhao B. H., Liang Q. L. Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions [J]. J. Appl. Phys.,2006,100(7):073714.
    [20]Guan Weihua, Long Shibing, Liu Qi, Liu Ming, Wang Wei. Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2 [J]. Electron Device Letters, IEEE,2008, 29(5):434-437.
    [21]Guo H. X., Gao L. G, Xia Y. D., Jiang K., Xu B., Liu Z. G, Yin J.. The growth of metallic nanofilaments in resistive switching memory devices based on solid electrolytes [J]. Appl. Phys. Lett.,2009,94(15):153504.
    [1]Suzuki Akio, Nakamura Masataka, Michihata Ryota, Aoki Takanaori, Matsushita Tatsuhiko, Okuda Masahiro. Ultrathin Al-doped transparent conducting zinc oxide films fabricated by pulsed laser deposition [J]. Thin Solid Films,2008,517(4):1478-1481.
    [2]Han Won Suk, Kim Young Yi, Kong Bo Hyun, Cho Hyung Koun. Ultraviolet light emitting diode with n-ZnO:Ga/i-ZnO/p-GaN:Mg heterojunction [J]. Thin Solid Films, 2009,517(17):5106-5109.
    [3]Gu Zheng-Bin, Lu Ming-Hui, Wang Jing, Wu Di, Zhang Shan-Tao, Meng Xiang-Kang, Zhu Yong-Yuan, Zhu Shi-Ning, Chen Yan-Feng, Pan Xiao-Qing. Structure, optical, and magnetic properties of sputtered manganese and nitrogen-codoped ZnO films [J]. Appl. Phys. Lett.,2006,88(8):082111.
    [4]Hou D. L., Ye X. J., Meng H. J., Zhou H. J., Li X. L., Zhen C. M., Tang G D.. Magnetic properties of n-type Cu-doped ZnO thin films [J]. Appl. Phys. Lett.,2007, 90(14):142502.
    [5]Lee Hyeon-Jun, Jeong Se-Young, Cho Chae Ryong, Park Chul Hong. Study of diluted magnetic semiconductor:Co-doped ZnO [J]. Appl. Phys. Lett.,2002, 81(21):4020-4022.
    [6]Han S. J., Song J. W., Yang C. H., Park S. H., Park J. H., Jeong Y H., Rhie K. W.. A key to room-temperature ferromagnetism in Fe-doped ZnO:Cu [J]. Appl. Phys. Lett., 2002,81 (22):4212-4214.
    [7]Dietl T., Ohno H., Matsukura F., Cibert J., Ferrand D.. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors [J]. Science,2000, 287(5455):1019-1022.
    [8]Cheng X. M., Chien C. L.. Magnetic properties of epitaxial Mn-doped ZnO thin films [J]. J. Appl. Phys.,2003,93(10):7876-7878.
    [9]Sharma Parmanand, Gupta Amita, Rao K. V., Owens Frank J., Sharma Renu, Ahuja Rajeev, Guillen J. M. Osorio, Johansson Borje, Gehring G. A.. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J]. Nat Mater, 2003,2(10):673-677.
    [10]徐海阳,掺杂Zn0薄膜及ZnO基异质结发光器件研究[博士学位论文],中国科学院长春光学精密机械与物理研究所,2006.5.
    [11]Hirasawa Hiroshi, Yoshida Makoto, Nakamura Susumu, Suzuki Yoshio, Okada Satoshi, Kondo Ken-Ichi. ZnO:Ga conducting-films grown by DC arc-discharge ionplating [J]. Sol. Energy Mater. Sol. Cells,2001,67(1-4):231-236.
    [12]Song Shumei, Yang Tianlin, Xin Yanqing, Jiang Lili, Li Yanhui, Pang Zhiyong, Lv Maoshui, Han Shenghao. Effect of GZO thickness and annealing temperature on the structural, electrical and optical properties of GZO/Ag/GZO sandwich films [J]. Current Applied Physics,2010,10(2):452-456.
    [13]Janousch M., Meijer G.□I., Staub U., Delley B., Karg S. □F., Andreasson B.□P.. Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory [J]. Adv. Mater.,2007,19(17):2232-2235.
    [14]Liu Qi, Long Shibing, Wang Wei, Zuo Qingyun, Zhang Sen, Chen Junning, Liu Ming. Improvement of Resistive Switching Properties in ZrO2-Based ReRAM With Implanted Ti Ions [J]. Electron Device Letters, IEEE,2009,30(12):1335-1337.
    [15]Kinoshita K., Okutani T., Tanaka H., Hinoki T., Agura H., Yazawa K., Ohmi K., Kishida S.. Flexible and transparent ReRAM with GZO-memory-layer and GZO-electrodes on large PEN sheet [C].Memory Workshop (IMW),2010 IEEE International.2010:1-3.
    [16]Zheng K., Sun X. W., Zhao J. L., Wang Y, Yu H. Y, Demir H. V., Teo K. L.. An Indium-free Transparent Resistive Switching Random Access Memory [J]. Electron Device Letters, IEEE,2011,32(6):797-799.
    [17]Yang Yu Chao, Pan Feng, Liu Qi, Liu Ming, Zeng Fei. Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and High-Density Memory Application [J]. Nano Lett.,2009,9(4):1636-1643.
    [18]Guan Weihua, Long Shibing, Liu Qi, Liu Ming, Wang Wei. Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2 [J]. Electron Device Letters, IEEE,2008, 29(5):434-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700