用户名: 密码: 验证码:
化学沉淀法处理高浓度氨氮废水动力学研究及工艺条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨氮(NH_3-N)是水相环境中氮的主要存在形态,是导致水体富营养化的重要污染物质,随着全球水环境不断恶化及公众环保意识日益增强,各国都纷纷制定了严格的氨氮排放标准,因此,探索经济有效的氨氮废水处理技术已成为当前水处理领域的热点和难点。
     在人们继续致力于废水生物脱氮工艺深入研究的同时,化学沉淀脱氮技术的发展因其工艺简单、反应迅速、净化率高、尤其适用于高浓度氨氮废水的优势正方兴未艾。本文以某硬质合金厂高浓度氨氮废水为对象,研究了采用化学沉淀法,向废水中投加沉淀剂,在一定条件下与氨氮发生反应,形成难溶性磷酸铵镁(MgNH_4PO_4·6H_2O)沉淀的脱氮过程。
     在大量实验基础上,对反应的动力学参数进行研究,探讨了反应温度、pH值等对氨氮去除的影响。结合反应的动力学特性,以MgHPO_4·3H_2O为沉淀剂对废水进行脱氮,控制反应pH值在8.5~10的范围,废水中的氨氮可由850 mg/L降低到50 mg/L以下(去除率超过96%),而余磷含量低于20 mg/L,为后续生化处理的顺利进行提供了保证。同时,生成的磷酸铵镁晶体不仅纯度高、结构紧密具有良好的沉降性能,易于工程中的分离提取,而且对废水中的有毒、有害物质基本无吸附,适于回收利用,使污染物的资源化成为可能。
     为了获得最佳的反应条件,文章还尝试应用神经网络方法对正交实验结果进行优化,克服了基于传统的正交分析和回归分析选取较优水平进行实验条件优化的结果往往与实际情况不符,有时优化结果还不如原来正交试验中的某一次试验的不足,并且实现了对反应后氨氮和余磷浓度的双目标优化、控制,为今后的研究提供了解决问题的新思路和方法。
     实验研究结果要与实际应用相结合,本文还探索了一套自行研究开发的氨氮废水处理工艺流程,为化学沉淀法脱氮在工程中应用起到了一定的指导作用。
Nitrogen in water environment exists mainly in the form of ammonia-nitrogen, which is the principal contaminant causing eutrophication of water body. With continual worsening of water quality and enhancing of public environmental protection consciousness many countries have constituted strict ammonia-nitrogen discharge standards, therefore, it has already become the focus and difficulty in the present wastewater treatment field to explore the economy and effective treatment technology for ammonia-nitrogen wastewater.
    Having the advantages of simple technology, high reaction speed, high removal efficiency, especially being suitable for the high concentration ammonia-nitrogen wastewater, chemical precipitation method for ammonia-nitrogen removal is blossoming while people are endeavoring in the further research on removing ammonia-nitrogen by biochemical process. In this paper, the process for ammonia-nitrogen removal was studied by adding some chemicals into the wastewater of a certain hard alloy plant to produce the struvite(MgNH4PO4 6H2O) precipitate.
    Ammonia-nitrogen in wastewater was removed by using magnesium hydrogen phosphate(MgHPO4 3H2O) as precipitant. Based on a large amount of experiments, the kinetic parameters about ammonia-nitrogen removal as struvite were studied, especially the effect of temperature and pH value etc. According to the kinetic characteristics, the ammonia-nitrogen concentration of the wastewater is reduced from 850 mg/L to 20 mg/L(removal efficiency is over 96 % ) while residual phosphorus content is under 20 mg/L controlling the pH in the range of 8.5 ~ 10. In addition, the struvite precipitate formed have not only compact crystal structure which shows good sedimentation capability, but also high purity without adsorption of toxic and harmful substances in wastewater, which ensures the possibility of struvite reutilization.
    In this paper, a new method based on neural network was used for optimizing orthogonal trial results to obtain the best reaction conditions. This method overcomes the shortcoming that the optimal results are always not in accordant to the truth, being sometimes not so good as that of a certain experiment by means of orthogonal analysis and regressive analysis. Furthermore, the purpose of double object optimization on the residual ammonia-nitrogen and phosphorus content is
    
    
    
    achieved. In a word, this new method provides a new way for the further research.
    In addition, a set of process flow was developed by author for ammonia-nitrogen removal from wastewater with struvite precipitation method, which can be used in practice.
引文
[1] Schulze-Rettmer R. The simultaneous chemical precipitation of ammonium and phosphate in the form of magnesium ammonium phosphate. Wat Sci Tech, 1991, 23(4-6): 659-667
    [2] Zdybiewska M W and Kula B. Removal of ammonia nitrogen by the precipitation method on the example of some selected waste waters. Wat Sci Tech, 1991, 24(7): 229-234
    [3] 钱易,唐孝炎.环境保护与可持续发展.北京:高等教育出版社,2000:19-23
    [4] 郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社,1998:6-9
    [5] 周彤.污水的零费用脱氮.给水排水,2000,26(2):37-39
    [6] 武汉大学.无机化学.第2版.北京:高等教育出版社,1983:61-62
    [7] 徐寿昌.有机化学.北京:高等教育出版社,1990:123-128
    [8] 汪大晕,徐新华,宋爽.工业废水中专项污染物处理手册.北京:化学工业出版社,2000:211-219
    [9] 沈耀良,王宝贞.废水生物处理新技术:理论与应用.北京:环境科学出版社,1999:76-78
    [10] 张希衡.水污染控制工程.修订版.北京:冶金工业出版社,1997:56
    [11] 张晓丽,温俨,武果香,等.沸石去除废水中氨氮的实验研究.科技情报开发与经济,1999,(1):14-17
    [12] 黄骏,陈建中.氨氮废水处理技术研究进展.环境污染治理技术与设备,2002,3(1):65-68
    [13] 全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用.环境科学研究,1999,12(3):22-26
    [14] 仝武刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发展.工业水处理,2002,22(9):9-12
    [15] 吕锡武,李峰,稻森悠平,等.氨氮废水处理过程中的好氧反硝化研究.给水排水,2000,26(4):17-20
    [16] 李洪仁,王敬涛,胡晓静.湿式氧化法处理工业污水的应用与展望.工业水处理,1999,19(3):10-12
    [17] 尹承龙,单忠健,曾锦之.焦化废水存在的问题及解决对策.给水排水,2000,26(6):35-37
    
    
    [18] Li-Choung C, Juu-En C and Shu-Chuan T. Electro-chemical oxidation process for the treatment of coke-plant wastewater. Env Sci Health, 1995, A30(4): 753-771
    [19] Stratful I, Scrimshaw M D and Lester J N. Conditions influencing the precipitation of magnesium ammonium phosphate. Wat Res, 2001, 35(17): 4191-4199
    [20] Chirmuley D G. Struvite precipitation in WWTPs: causes and solutions. Water, 1994, 12: 21-23
    [21] Siegrist H. Nitrogen removal from digester supernatant-comparison of chemical and biological methods. Wat Sci Tech, 1996, 34(1-2): 399-406
    [22] Olcay Tünay, Isik Kabdasli, Derin Orhon, et al. Ammonia removal by magnesium ammonium phosphate precipitation in industrial wastewaters. Wat Sci Tech, 1997, 36(2-3): 225-228
    [23] Ipek Celen and Mustafa Türker. Recovery of ammonia as struvite from anaerobic digester effluents. In: 2nd Int. Conf. on Recovery of phosphates from sewage and animal wastes. Holland: NL, 2001: 324-328
    [24] Battistoni P, De Angelis A, Prisciandaro M, et al. P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Wat Res, 2002, 36: 1927-1938
    [25] Li X Z and Zhao Q L. Efficiency of biological treatment affected by high strength of ammonia-nitrogen in leachate and chemical precipitation of ammonia-nitrogen as pretreatment. Chemosphere, 2001, 44: 37-43
    [26] Buchanan J R, Mote C R and Robinson R B. Thermodynamics of struvite formation. Transactions of ASAE, 1994, 37(2): 617-621
    [27] Münch E V, Scott A B, Josey J, et al. Making a business from struvite crystallisation for wastewater treatment: turning waste into gold. In: 2nd Int. Conf. on Recovery of phosphates from sewage and animal wastes. Holland: NL, 2001: 137-143
    [28] Münch E V and Keith Barr. Controlled struvite crystallisation for removing phosphorus from anaerobic digester sidestreams. Wat Res, 2001, 35(1): 151-159
    [29] 郝晓地,汪慧真,钱易.欧洲城市污水处理技术新概念—可持续生物除磷脱氮工艺(上).给水排水,2002,28(6):6-11
    [30] Coulson J M and Richardson J F. Particle technology and separation processes. Fourth edition. 1991: 76-81
    [31] Klein J P and David R. Crystallization technology handbook. 1995:267-269
    
    
    [32] 杨代菱,孟凡昌,潘祖亭,等.分析化学.第4版.北京:高等教育出版社,2000:126-127
    [33] Ohlinger K N, Young T M and Schroeder E D. Kinetics effects on preferential struvite accumulation in wasterwater. Journal of Environmental Engineering, 1999, 125(8): 730-737
    [34] Bouropoulos N and Koutsoukos P G. Spontaneous precipitation of struvite from aqueous solutions. Journal of Crystal Growth, 2000, 213: 381-388
    [35] Lowenthal R E, Kornmuller, URC, et al. Modelling struvite precipitation in anaerobic treatment systems. War Sci Tech, 1994, 30: 107-116
    [36] Musvoto E V, Wentzel M C, Loewenthal, et al. Integrated chemical-physical processes modelling-Ⅰ. Development of a kinetic-based model for mixed weak acid/base systems. Wat Res, 2000, 34(6): 1857-1867
    [37] Abbona F, Calleri M and Ivaldi G. Synthetic struvite, MgNH4PO_4·6H_2O:correct polarity and surface features of some complementary forms. ACTA crystallographica section b-structural science, 1984, 40: 223-227
    [38] Battistoni P, Fava G, Pavan P, et al. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Wat Res, 1997, 31: 2925-2929
    [39] Momberg G A and Oellermann R A. The removal of phosphate by hydroxypatite and struvite crystallization in South Africa. Wat Sci Tech, 1992, 26: 987-996
    [40] 中国标准出版社第二编辑室.中国环境保护标准汇编:水质分析方法.北京:中国标准出版社,2001:137-139
    [41] 周复恭,黄运成.应用线性回归分析.北京:中国人民大学出版社,1989:112-115
    [42] 约翰内特,威廉.沃塞曼和迈科尔.H.库特纳.应用线性回归模型.北京:中国统计出版社,1990:145-146
    [43] 邓勃.数理统计方法在分析测试中的应用.北京:化学工业出版社,1984:189-192
    [44] 湖南化工研究所.钙镁磷肥分析方法.北京:石油化工出版社,1976:203-207
    [45] 武汉大学.分析化学.第4版.北京:高等教育出版社,2000:214
    [46] Davidov I V, Liapunov A N, Shmorgunenko N S, et al. Optimization of temperature condition of the aluminate liquor decomosition process. Light Metals, 1999, 1: 173
    [47] 何培之,王世驹,李续娥.普通化学.北京:科学出版社,2001:186-190
    [48] 陈虹锦,谢少艾,张卫.无机与分析化学.北京:科学出版社,2002:259-262
    
    
    [49] 王琪.化学动力学导论.长春:吉林人民出版社,1982:79-80
    [50] Wetherill G B. Regression analysis with applications. New York: Chapman and Hall, 1986: 317-318
    [51] 方开泰,金辉,陈庆云.实用回归分析.北京:科学出版社,1988:78-82
    [52] Draper N R and Smith H. Applied regression analysis. 2nd edition. New York: Wiley, 1981: 287-288
    [53] 何灿芝,罗汉,喻胜华,等.应用统计.长沙:湖南科学技术出版社,1997:76-81
    [54] 高胜得,陈三平,胡荣祖,等.化学反应的热力学方程及其应用.无机化学学报,2002,18(4):362-366
    [55] 高庆宇,蔡遵生,赵学庄.非线性化学反应动力学.化学进展,1997,9(1):59-68
    [56] Rawn A M, Banta A P and Pomeroy R. Multiple-stage sewage sludge digestion. Transactions of ASCE, 1939, 105:93-132
    [57] Abdelrazig B E I and Sharp J H. Phase changes on heating magnesium ammonium phosphate hydrates. Thermochemical Acta, 1988, 129: 197-215
    [58] Mohajit K, Bhattarai K, Taignides E P, et al. Struvite deposits in pipes and aerators. Biological Wastes, 1989, 30: 133-147
    [59] 曾之平,赵天源,任保增,等.利用碱厂滤过母液制取磷酸铵镁的研究.纯碱工业,1995,6:14-18
    [60] 袁军,向建敏,艾军,等.人工神经网络在表面张力数据处理中的应用.计算机与应用化学,1999,16(3):211-214
    [61] 王世明,施汉昌,钱易.用人工神经网络预测芳香化合物的生物可降解性.环境化学,2000,19(1):48-51
    [62] 陈锦言,姚芳莲,孙经武,等.人工神经网络及其在化学领域中的应用.计算机与应用化学,1999,16(2):111-115
    [63] 郝明亮,徐建英,左玉辉.人工神经网络在环境科学中的应用研究.上海环境科学,1999,18(11):510-512
    [64] 张立明.人工神经网络的模型及其应用.上海:复旦大学出版社,1993:127-128
    [65] 程相君,王春宁,陈生源.神经网络原理及其应用.北京:国防工业出版社,1995:47
    [66] 庄镇泉,王煦法,王东生.神经网络与计算机.北京:科学出版社,1992:235
    [67] 史忠植.神经计算.北京:电子工业出版社,1993:142-143
    
    
    [68] Henze M, Grady C P L, Gujer W, et al. A general model for single-sludge wastewater treatment systems. Wat Res, 1987, 21(5): 505-515
    [69] Gills G Patry and David Chapman. Dynamics modeling and expert systems in wastewater engineering. New York: Lewis Publishers, 1989: 346-348
    [70] Zhou S and McCorquodale J A. Modeling of rectangular settling tanks. Journal of hydraulic engineering. 1992, 118(10): 1391-1405
    [71] Calderon Z, Espuna A and Puigjaner L. Waste analysis and minimization in batch and semibatch reactor operation through dynamic simulation and neural networks. Computer & chemical engineering. 1998, 22: 977-980
    [72] 白桦,李圭白.混凝投药的神经网络控制方法.给水排水,2001,27(11):83-85
    [73] 蒋慰孙.过程与控制.北京:化学工业出版社,1992:87
    [74] 张蕴端.化工自动化和仪表.上海:华东化工学院出版社,1990:24
    [75] 孙增忻,张再兴,邓志东.智能控制理论与技术.北京:清华大学出版社,1997:117-118
    [76] 杨松林.工程模糊论方法及其应用.北京:国防工业出版社,1996:23-25
    [77] 张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998:126
    [78] 胡泽新,邵惠鹤,蒋慰孙.神经元网络在控制系统中的应用.控制与决策,1991,6(6):472-478
    [79] 赵振宇,徐用懋.模糊理论和神经网络的基础与应用.北京:清华大学出版社,1997:32-35
    [80] 张慧琴,过孝民.环境经济系统分析、规划方法与模型.北京:清华大学出版社,1993:85
    [81] 周申范,黄俊.BP神经网络及其在化工优化中的应用.江苏化工,2000,28(4):27-28
    [82] 胡泽新.甲醛生产优化控制的神经网络新方法.华东理工大学学报,1994,20(2):198-204
    [83] 蒋志国,刘晓东,孙秀云,等.人工神经网络在起爆药废水处理中的应用.爆破器材,2000,29(5):31-33
    [84] 何耀华,华贲,杨道红.系统模拟优化中的神经网络和遗传算法.石油炼制与化工,1998,29(9):53-56
    [85] 张自杰.排水工程(下册).第4版.北京:中国建筑出版社,2000:79-80
    [86] 高廷耀.水污染控制工程(下册).北京:高等教育出版社,1989:225-227
    [87] Battistoni P, Pavan P, Prisciandaro M, et al. Struvite crystallization: a feasible and reliable way to fix phosphorus in anaerobic supernatants. Wat Res, 2000,
    
    34(11): 3033-3041
    [88] Kumashiro K, Ishiwatari H and Nawamura Y. A pilot plant study on using seawater as a magnesium source for struvite precipitation. In: 2nd Int. Conf. on Recovery of phosphates from sewage and animal wastes. Holland: NL, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700