用户名: 密码: 验证码:
HIF-1α shRNA表达质粒对卵巢癌SKOV3细胞影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     由于恶性肿瘤增殖失控,新生的血管排列紊乱和功能不良致血供不足,肿瘤组织内不可避免会出现低氧、缺氧。低氧诱导因子(HIF-1)通过调控其靶基因的转录,在肿瘤细胞对低氧的适应过程中起着十分重要的作用。HIF-1由α、β两个亚单位组成,HIF-1α易受多种因素调节。研究显示卵巢癌实体瘤中,低氧诱导了HIF-1α表达增加,从而促进血管内皮生长因子(VEGF)表达增高,HIF-1α表达增高的卵巢癌患者预后差。本研究拟构建人HIF-1α短发夹(sh)RNA表达质粒,并探讨其对HIF-1α基因表达的影响,通过体外和荷瘤裸鼠体内实验了解本研究构建的质粒对卵巢癌细胞增殖、凋亡、对化疗药物敏感性及移植瘤增殖的影响。
     方法
     1.根据shRNA对应的DNA模板设计原则,利用在线设计软件,针对HIF-1α的序列设计DNA片段。设计靶向HIF-1α基因的4对候选RNA干扰序列插入pGPU6/GFP/Neo质粒,构建4个重组质粒(H1、H2、H3和H4),经过测序验证。
     2.在密闭的氮气-二氧化碳-空气混合器中充入氮气和二氧化碳产生低氧环境以模拟体内的低氧环境。
     3.脂质体法转染构建的质粒入低氧培养的卵巢癌SKOV3细胞株,RT-PCR和Western-blot检测各质粒对癌细胞HIF-1αmRNA、蛋白表达的影响,以优选质粒,进行后续实验。转染质粒后,通过MTT(四甲基偶氮唑蓝)比色法检测并绘制细胞生长曲线及平板克隆形成实验了解其对癌细胞增殖的影响,TUNEL法检测其对细胞凋亡的影响,MTT法检测癌细胞对化疗药物紫杉醇(TAX)、多柔比星(阿霉素,ADM)、顺铂(DDP)的敏感性的影响。
     4.用卵巢癌SKOV3细胞建立裸鼠皮下移植瘤模型,予DDP和质粒处理,观测肿瘤体积的变化,免疫组化检测移植瘤组织HIF-1α、VEGF蛋白表达水平的变化。
     结果:
     1. DNA测序证实本研究构建的4个质粒含有与本研究设计的针对HIF-1α的DNA序列完全一致的序列,说明我们已把合成的63bp寡核苷酸链插入了pGPU6/GFP/Neo质粒中,成功构建了靶向HIF-1α的H1、H2、H3和H4 RNAi表达质粒。将构建的质粒转染卵巢癌SKOV3细胞,在荧光倒置显微镜下见多数细胞中出现绿色荧光,表明构建的质粒转染成功,并且可以正常表达其功能。
     2.常氧培养条件下卵巢癌SKOV3细胞可检测到低水平的HIF-1αmRNA和蛋白表达。采用本研究的低氧条件培养卵巢癌SKOV3细胞24小时,与常氧条件下培养比较,RT-PCR结果显示HIF-1αmRNA表达水平无明显差异(p>0.05);Western blot结果显示低氧培养时HIF-1α蛋白表达水平显著升高(p<0.05)。
     3.脂质体法转染构建的构建的质粒48小时后,RT-PCR和Western blot结果显示H3和H4质粒转染组细胞HIF-1αmRNA和蛋白表达均明显下调(p<0.05),脂质体对照组、阴性对照质粒组、H1组和H2组之间HIF-1αmRNA和蛋白表达水平均无明显差异(p>0.05)。选用H3质粒(pGPU6-H质粒,简称H质粒)进行后续实验。
     4.细胞生长曲线和平板克隆形成实验结果显示,转染H质粒能明显抑制SKOV3细胞的增殖,而阴性对照质粒(NC质粒)对细胞的增殖无明显影响。TUNEL法检测细胞凋亡的结果显示转染H质粒组细胞48小时、72小时平均凋亡率分别为19.2%、33.09%,比CTRL组、Lipo组和NC对照组细胞高,差异有统计学意义(p<0.05);且转染质粒后72小时细胞凋亡率高于转染后48小时,差异有统计学意义(p<0.05)。
     5. MTT体外药敏实验结果显示:H质粒转染组SKOV3细胞对紫杉醇/多柔比星/顺铂作用24小时的IC50值明显降低,与Lipo组, NC质粒组相比差异具有统计学意义(p<0.05),而相应的紫杉醇/多柔比星/顺铂组、Lipo组、NC质粒组之间化疗药物作用24小时的IC50值差异具无统计学意义(P>0.05)。Western-blot结果显示,与CTRL组、Lipo组和NC对照组细胞相比,H质粒转染组的P-gp表达水平明显降低,差异有统计学意义(F=7.24,p=0.01),而脂质体组、NC对照组与空白对照组之间的P-gp表达水平相比差异无显著性(p>0.05)。
     6. SKOV3细胞裸鼠移植瘤体内实验结果显示:随着时间的延长,NS组、脂质体组和NC质粒组后一时相与前一时相相比,3组裸鼠的肿瘤体积逐渐增大(p<0.05),各个时相脂质体组和NC质粒组与NS组肿瘤体积差异无统计学意义(p>0.05)。3周前H质粒组肿瘤体积增长受到明显抑制。而3周后H质粒组肿瘤生长加速;4周后DDP组肿瘤肿瘤生长加速。H质粒+DDP组各个时相的肿瘤体积均显著小于单用H质粒和DDP组(p<0.05)。移植瘤组织免疫组化结果显示:H质粒+DDP组、H质粒组和DDP组裸鼠移植瘤组织HIF-1α、VEGF蛋白阳性率比NS组、Lipo组和NC质粒组移植瘤组织的低,差异有统计学意义(p<0.05);H质粒+DDP组的阳性率比H质粒组和DDP组低,差异有统计学意义(p<0.05)。
     结论:
     1.低氧可诱导卵巢癌SKOV3细胞HIF-1α蛋白水平表达显著增高,而低氧对HIF-1αmRNA的表达水平无明显影响;HIF-1αRNAi表达质粒可下调低氧培养的卵巢癌细胞SKOV3 HIF-1α基因mRNA和蛋白的表达,从而抑制癌细胞增殖,促进癌细胞凋亡。表明下调HIF-1α基因的表达可部分逆转卵巢癌细胞的恶性表型。
     2.通过HIF-1αRNAi表达质粒下调卵巢癌细胞SKOV3 HIF-1α基因的表达后,低氧培养的卵巢癌细胞P-gp表达下降,可显著提高癌细胞对化疗药物紫杉醇、多柔比星和顺铂的敏感性。
     3.通过HIF-1αRNAi表达质粒下调卵巢癌细胞SKOV3 HIF-1α基因的表达后,卵巢癌细胞皮下移植瘤的生长速率均显著减慢,癌组织VEGF的表达降低。表明下调HIF-1α基因的表达可降低SKOV3细胞的致瘤性;HIF-1αRNAi质粒联合DDP对肿瘤的抑制作用强于单用质粒和DDP,表明采用RNA干扰技术阻滞HIF-1α基因的表达联合化疗可望成为改善卵巢癌疗效的一个有前景的措施。
Background and purpose
     With the over-proliferation of malignant tumors with disorganized, insufficient blood supply,hypoxic and or anoxic regions will inevitably develop. Hypoxia inducible factor-1(HIF-1) plays a key role in the adaptation of tumor cells to hypoxia by activating the transcription of the targeted genes. HIF-1 is a heterodimer composed of HIF-1αand HIF-1β. The expression of HIF-1αis regulated by various factors. Some studies have revealed a significant association between the expression of HIF-1αand VEGF within the ovarian cancer tissues and the poor prognosis of the patients with ovarian cancer. To investigate the effect of HIF-1αshort hairpin RNA(shRNA) expressing plasmid on ovarian cancer in vitro and in vivo.
     Methods
     1. Oligos for hairpin RNA expression which targeted HIF-1αgene were designed and selected based on the well-known principle using online software and synthesized and annealed. Annealed oligos were inserted into the down stream of human U6 promoter of the pGPU6/GFP/Neo plasmid to construct H1,H2,H3 and H4 recombinant plasmids.The recombinant vectors were verified by sequencing.
     2. Ovarian cancer SKOV3 cells were cultured in mimic hypoxia condition using N2-O2-Air Mixing chamber.
     3. The plasmids were transfected into SKOV3 cells using lipofectmine.
     4. The expression of HIF-1αmRNA and protein was assayed by RT-PCR andWestern-bloting respectively. Cell apoptosis was evaluated by TUNEL.Cell viability and chemotherapy drug sensitivity were determined by methylthiazoly- ltetrazolium(MTT) assay.
     5. The nude mice with SKOV3 cell subcutaneous xenograft tumor were treated with the recombinant plasmids and DDP. Tumor sizes were measured every week.The HIF-1αand VEGF expression of xenograft tumor tissue were evaluated with immunohistochemistry.
     Results:
     1. Recombinant plasmids were confirmed successful by sequencing analysis.
     2. There are low level of expression of HIF-1αmRNA and protein in normoxic SKOV3 cells. The hypoxic environment significantly induced the expression of protein HIF-1α(P<0.05),while the HIF-1αmRNA expression were not significantly changed(P>0.05) .
     3. Compared to that of lipofectmine(Lipo) group, negative control(NC) group,H1group and H2 group , HIF-1αmRNA and protein expressions of H3 and H4 group were significantly downregulated at 48 h after transfection with the recombinant plasmids (P<0.05), and that were not significantly defference among Lipo group, NC group,H1group and H2 group (P>0.05). H3 plasmid(named H plasmid)was selected for the latter experiment.
     4. Compared with that of Lipo group and NC group ,growth and clone formation of SKOV3 cell was markedly inhibited after transfection with H plasmid and viable cells were significantly declined (P<0.05).And the apoptosis rate of SKOV3 cell was19.2%,33.09 % at 48h,72h after transfection with H plasmid respectively,which was significantly increased (p<0.05), apoptosis rate of SKOV3 cell at 72h posttransfection was significantly higher than that of SKOV3 cell at 48h posttransfection (p<0.05).
     5. Compared with that of Lipo group and NC group, IC50 of H plasmid group SKOV3 cells to paclitaxel,cisplatin and doxorubicin is significantly lower (P<0.05),and there were not significantly difference among the IC50 of Lipo group , NC group and the corresponding paclitaxel,cisplatin and doxorubicin group (P>0.05).
     6. In vivo tests,the tumor volume growth rates of H plasmid +DDP group ,DDP group and H plasmid group were significantly lower than that of NS group,Lipo group and NC group within 3 weeks after treatment(P<0.05) ;and compared with that of DDP group and H plasmid group,the tumor growth rate in H plasmid +DDP group was significantly lower (P<0.05). The expression of HIF-1αand VEGF protein of H plasmid +DDP group ,DDP group and H plasmid group xenograft tumor tissue detected by immunohistochemistry were all significantly reduced (P<0.05) when compared with those of NS group,Lipo group and NC group.
     Conclusions:
     1. These data indicate that the HIF-1αprotein expression of SKOV3 cells is significantly up-regulated by the hypoxic environment.
     2. RNAi expressing plasmid directed against HIF-1αcan effectively inhibit the growth and enhance the apoptosis of SKOV3 cells through down-regulating the expression of HIF-1αmRNA and protein. After selectively silencing HIF-α, hypoxia-induced expression of its target genes such as P-glycoprotein were markedly attenuated. Moreover, HIF-1αknockdown was found to increase drug sensitivity of SKOV3 cells to paclitaxel,cisplatin and doxorubicin.
     3. Intratumoral injection of HIF-1αRNAi expression plasmid can effectively activate RNAi-mediated down-regulation of HIF-1αand VEGF in vivo.HIF-1a knockdown can effectively curb the growth of SKOV3 cells xenograft and increase the sensitivity of SKOV3 cells xenograft tumor to DDP, and which suggest a promising combination of both downregulating HIF-1αexpression by RNA interference and traditional chemotherapy to improve cancer treatment.
引文
[1] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10):721-732.
    [2] Birner P, Schindl M, Obermair A, et al.. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 2001;7(6):1661-1668.
    [3] Horiuchi A, Imai T, Shimizu M, et al. Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Res 2002;22(5):2697-2702.
    [4] Wong C, Wellman TL, Lounsbury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol 2003;91(3):513-517.
    [5] Spinella F, Rosano L, Di Castro V, et al. Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. J Biol Chem 2002;277(31):27850-27855.
    [6] Imai T, Horiuchi A, Wang C, et al. Hypoxia attenuates the expression of E-cadherin via up-regulation of SNAIL in ovarian carcinoma cells. Am J Pathol 2003;163(4):1437-1447.
    [7] Comerford KM, Wallace TJ, Karhausen J, et al. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002;62(12):3387-3394.
    [8] Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 2003;95(7):516-525.
    [9] Zhao Q, Du J, Gu H, et al. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 2007;34(2):242-247.
    [10] Wang Y, Minko T. A novel cancer therapy: combined liposomal hypoxia inducible factor 1 alpha antisense oligonucleotides and an anticancer drug. Biochem Pharmacol 2004; 68(10):2031-2042.
    [11] Aoki Y, Cioca DP, Oidaira H, et al.. RNA interference may be more potent than antisense RNA in human cancer cell lines. Clin Exp Pharmacol Physiol 2003;30(1-2):96-102.
    [12] Paul CP, Good PD, Winer I, et al. Effective expression of small interfering RNA in human cells. Nat Biotechnol 2002;20(5):505-508.
    [13] Lee NS, Dohjima T, Bauer G et al. Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 2002;20(5):500-505.
    [14] Li J, Shi M, Cao Y, et al. Knockdown of hypoxia-inducible factor-1alpha in breast carcinoma MCF-7 cells results in reduced tumor growth and increased sensitivity to methotrexate. Biochem Biophys Res Commun 2006;342(4):1341-1351.
    [15] Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411(6836):494-498.
    [16] Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 2003;31(15):4417-4424.
    [17] Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49(23):6449-6465.
    [18] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92(12):5510-5514.
    [19] Jiang BH, Rue E, Wang GL et al. Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 1996;271(30):17771-17778.
    [20] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12(12):5447-5454.
    [21] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001;7(8):345-350.
    [22] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002; 2(1):38-47.
    [23] Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000;157(2):411-421.
    [24] Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in co mmon human cancers and their metastases. Cancer Res 1999;59(22):5830-5835.
    [25] Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998;17(11):3005-3015.
    [26] Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000;60(15):4010-4015.
    [27] Sharp PA, Zamore PD. Molecular biology. RNA interference. Science 2000;287 (5462): 2431-2433.
    [28] Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007;8(3):173-184.
    [29] Miyagishi M, Taira K. Development and application of siRNA expression vector. Nucleic Acids Res Suppl 2002;(2):113-114.
    [30] Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 2002;20(5):497-500.
    [31] Gilligan MG, Knox P, Weedon S, et al. Adenoviral delivery of B7-1 (CD80) increases the immunogenicity of human ovarian and cervical carcinoma cells. Gene Ther 1998;5(7): 965 -974.
    [32] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 2002;296(5567):550-553.
    [33] Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev 2003;13(2):83-105.
    [34] Jackson AL, Burchard J, Schelter J, et al. Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006;12(7):1179-1187.
    [35] Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 2002;26(2):199-213.
    [36] Brahimi-Horn C,Mazure N,Pouysse′gur J. Signalling via the hypoxia-inducible factor-1a requires multiple posttranslational modifications. Cellular Signalling 2005;17:1-9.
    [37] Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399(6733): 271-275.
    [38] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270(3):1230-1237.
    [39] Yu AY, Frid MG, Shimoda LA, et al.Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 1998;275(4 Pt 1):L818-826.
    [40] Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996;271(4 Pt 1):C1172-1180.
    [41] Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 2005;1755(2):107-120.
    [42] Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002;8(4 Suppl):S62-67.
    [43] Kunz M, Ibrahim SM. Molecular responses to hypoxia in tumor cells. Mol Cancer 2003;2:23.
    [44] Storey A, Oates D, Banks L, et al. Anti-sense phosphorothioate oligonucleotides have both specific and non-specific effects on cells containing human papillomavirus type 16. Nucleic Acids Res 1991;19(15):4109-4114.
    [45] Tan TM, Ting RC. In vitro and in vivo inhibition of human papillomavirus type 16 E6 and E7 genes. Cancer Res 1995;55(20):4599-4605.
    [46] Zhong XS, Zheng JZ, Reed E, et al. SU5416 inhibited VEGF and HIF-1alpha expression through the PI3K/AKT/p70S6K1 signaling pathway. Biochem Biophys Res Commun 2004;324(2):471-480.
    [47] Fang J, Cao Z, Chen YC, et al. 9-beta-D-arabinofuranosyl-2-fluoroadenine inhibits expression of vascular endothelial growth factor through hypoxia-inducible factor-1 in human ovarian cancer cells. Mol Pharmacol 2004;66(1):178-186.
    [48]聂春莲,高国兰.低氧诱导因子-1在肿瘤治疗中的研究进展. 2008;18(11):866-869.
    [49] Wang Y, Pakunlu RI, Tsao W, et al. Bimodal effect of hypoxia in cancer: role of hypoxia inducible factor in apoptosis. Mol Pharm 2004;1(2):156-165.
    [50] Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 2001;85(6):881-890.
    [51] Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394(6692):485-490.
    [52] Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 2000;97(16):9082-9087.
    [53] Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 2001;20(41):5779-5788.
    [54] Baek JH, Jang JE, Kang CM, et al. Hypoxia-induced VEGF enhances tumor survivability via suppression of serum deprivation-induced apoptosis. Oncogene 2000;19(40):4621-4631.
    [55] Brown JM, Wouters BG. Apoptosis, p53, and tumor cell sensitivity to anticancer agents. Cancer Res 1999;59(7):1391-1399.
    [56] Erler JT, Cawthorne CJ, Williams KJ, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 2004;24(7):2875-2889.
    [57] Wartenberg M, Ling FC, Muschen M, et al. Regulation of the multidrug resistance transporter P-glycoprotein in multicellular tumor spheroids by hypoxia-inducible factor (HIF-1) and reactive oxygen species. FASEB J 2003;17(3):503-505.
    [58] Comerford KM, Cummins EP, Taylor CT. c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res 2004;64(24):9057-9061.
    [59] Tan B, Piwnica-Worms D, Ratner L. Multidrug resistance transporters and modulation. Curr Opin Oncol 2000;12(5):450-458.
    [60]蒋红元,丰有吉.西罗莫司抑制缺氧诱导因子1α蛋白表达及其对SKOV3裸鼠移植瘤生长的作用.中华妇产科杂志2004;39(7):474~477.
    [61] Zhong XS, Liu LZ, Skinner HD, et al. Mechanism of vascular endothelial growth factor expression mediated by cisplatin in human ovarian cancer cells. Biochem Biophys Res Commun 2007;358(1):92-98.
    [62] Duyndam MC, van Berkel MP, Dorsman JC, et al. Cisplatin and doxorubicin repress Vascular Endothelial Growth Factor expression and differentially down-regulate Hypoxia-inducible Factor I activity in human ovarian cancer cells. Biochem Pharmacol 2007;74(2):191-201.
    [63]李文锦,钱和年,吕文英.人卵巢上皮性癌裸鼠皮下移植瘤模型和腹水瘤模型的建立.中华妇产科杂志1993;28((1)):38-40.
    [64]孙慧,战忠利,黄建英.人卵巢癌裸鼠移植瘤模型的建立及生物学特性的实验应用研究.中国肿瘤临床1994;21((10)):786-791.
    [65] Manetta A, Satyaswaroop PG, Hamilton T, et al.Radioimaging of human ovarian carcinoma xenograft in nude mice. Gynecol Oncol 1987;28(3):292-299.
    [66]何国平,褚芳,孙玉芳,等.两种人卵巢癌裸鼠皮下移植瘤模型的比较研究.实验动物与比较医学2008;28(5):328-330.
    [67] Bos R, Zhong H, Hanrahan CF, et al. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 2001;93(4):309-314.
    [68] Obermair A, Tempfer C, Hefler L, et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer 1998;77(11):1870-1874.
    [69] Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13(1):9-22.
    [70] Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192-198.
    [71] Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999;59(22): 5830-58635.
    [72] Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16(9):4604-4613.
    [73] Skinner HD, Zheng JZ, Fang J, et al. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 2004;279(44):45643-45651.
    [74] Liu LX, Lu H, Luo Y, et al. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun 2002;291(4):908-914.
    [75] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391(6669):806-811.
    [76]高国兰邹春芳邹学森等.人卵巢上皮癌裸鼠皮下移植瘤模型的建立及生物学性状的鉴定.实用癌症杂志2004;19(5):454-457.
    [77] Gillespie DL, Whang K, Ragel BT, et al. Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 2007;13(8):2441-2448.
    [1] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10):721-732.
    [2] Birner P, Schindl M, Obermair A, et al. Expression of hypoxia-inducible factor 1alpha in epithelial ovarian tumors: its impact on prognosis and on response to chemotherapy. Clin Cancer Res 2001;7(6):1661-1668.
    [3] Shimogai R, Kigawa J, Itamochi H, et al. Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with ovarian cancer. Int J Gynecol Cancer 2008;18(3):499-505.
    [4] Osada R, Horiuchi A, Kikuchi N, et al. Expression of hypoxia-inducible factor 1alpha, hypoxia-inducible factor 2alpha, and von Hippel-Lindau protein in epithelial ovarian neoplasms and allelic loss of von Hippel-Lindau gene: nuclear expression of hypoxia-inducible factor 1alpha is an independent prognostic factor in ovarian carcinoma. Hum Pathol 2007;38(9):1310-1320.
    [5] Nakayama K, Kanzaki A, Hata K, et al. Hypoxia-inducible factor 1 alpha (HIF-1 alpha) gene expression in human ovarian carcinoma. Cancer Lett 2002;176(2):215-223.
    [6] Nakai H, Watanabe Y, Ueda H, et al. Hypoxia inducible factor 1-alpha expression as a factor predictive of efficacy of taxane/platinum chemotherapy in advanced primary epithelial ovarian cancer. Cancer Lett 2007;251(1):164-167.
    [7] Wong C, Wellman TL, Lounsbury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol 2003;91(3):513-517.
    [8] Bachtiary B, Schindl M, Potter R, et al. Overexpression of hypoxia-inducible factor 1alpha indicates diminished response to radiotherapy and unfavorable prognosis in patients receiving radical radiotherapy for cervical cancer. Clin Cancer Res 2003;9(6):2234-2240.
    [9] Burri P, Djonov V, Aebersold DM, et al. Significant correlation of hypoxia-inducible factor-1alpha with treatment outcome in cervical cancer treated with radical radiotherapy. Int J Radiat Oncol Biol Phys 2003;56(2):494-501.
    [10] Markowska J, Grabowski JP, Tomaszewska K, et al. Significance of hypoxia in uterine cervical cancer. Multicentre study. Eur J Gynaecol Oncol 2007;28(5):386-388.
    [11] Dellas K, Bache M, Pigorsch SU, et al. Prognostic impact of HIF-1alpha expression in patients with definitive radiotherapy for cervical cancer. Strahlenther Onkol 2008;184(3):169-174.
    [12] Haugland HK, Vukovic V, Pintilie M, et al. Expression of hypoxia-inducible factor-1alpha in cervical carcinomas: correlation with tumor oxygenation. Int J Radiat Oncol Biol Phys 2002;53(4):854-861.
    [13] Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene 2004;23(20):3708-3715.
    [14] Lu ZH, Wright JD, Belt B, et al. Hypoxia-inducible factor-1 facilitates cervical cancerprogression in human papillomavirus type 16 transgenic mice. Am J Pathol 2007;171(2):667-681.
    [15] Pijnenborg JM, Wijnakker M, Hagelstein J, et al. Hypoxia contributes to development of recurrent endometrial carcinoma. Int J Gynecol Cancer 2007;17(4):897-904.
    [16] Ozbudak IH, Karaveli S, Simsek T, et al. Neoangiogenesis and expression of hypoxia-inducible factor 1alpha, vascular endothelial growth factor, and glucose transporter-1 in endometrioid type endometrium adenocarcinomas. Gynecol Oncol 2008;108(3):603-608.
    [17] Huynh H, Teo CC, Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Mol Cancer Ther 2007;6(11):2959-2966.
    [18] Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 2003;95(7):516-525.
    [19] Zhao Q, Du J, Gu H, et al. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 2007;34(2):242-247.
    [20] Zhong XS, Zheng JZ, Reed E, et al.. SU5416 inhibited VEGF and HIF-1alpha expression through the PI3K/AKT/p70S6K1 signaling pathway. Biochem Biophys Res Commun 2004;324(2):471-480.
    [21] Fang J, Cao Z, Chen YC, et al. 9-beta-D-arabinofuranosyl-2-fluoroadenine inhibits expression of vascular endothelial growth factor through hypoxia-inducible factor-1 in human ovarian cancer cells. Mol Pharmacol 2004;66(1):178-186.
    [22] Zhang Q, Tang X, Lu Q, et al. Green tea extract and (-)-epigallocatechin-3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 2006;5(5):1227-1238.
    [23] Cao Z, Fang J, Xia C, et al. trans-3,4,5'-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res 2004;10(15):5253-5263.
    [24] Lee CH, Wu CL, Shiau AL. Hypoxia-induced cytosine deaminase gene expression for cancer therapy. Hum Gene Ther 2007;18(1):27-38.
    [25] Wang Y, Minko T. A novel cancer therapy: combined liposomal hypoxia inducible factor 1 alpha antisense oligonucleotides and an anticancer drug. Biochem Pharmacol 2004; 68(10):2031-2042.
    [26] Li L, Lin X, Staver M, et al. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 2005;65(16): 7249-7258.
    [1] Wang GL, Jiang BH, Rue EA, et al. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 1995;92(12):5510-5514.
    [2] Talks KL, Turley H, Gatter KC, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000;157(2):411-421.
    [3] Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in co mmon human cancers and their metastases. Cancer Res 1999;59(22):5830-5835.
    [4] Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 1998;17(11):3005-3015.
    [5] Ryan HE, Poloni M, McNulty W, et al. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Cancer Res 2000;60(15):4010-4015.
    [6] Ping H, Xing NZ, Chen XC, et al. Vector-mediated shRNA inhibits HIF-1alpha expression in prostate cancer cells. Zhonghua Nan Ke Xue 2008; 14(11):993-997.
    [7] Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3(10):721-732.
    [8] Brahimi-Horn C,Mazure N,Pouysse′gur J. Signalling via the hypoxia-inducible factor-1a requires multiple posttranslational modifications. Cellular Signalling 2005;17:1-9.
    [9] Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999;399(6733):271-275.
    [10] Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 1995;270(3):1230-1237.
    [11] Yu AY, Frid MG, Shimoda LA, et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol 1998;275(4 Pt 1):L818-826.
    [12] Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996;271(4 Pt 1):C1172-1180.
    [13] Bardos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta 2005;1755(2):107-120.
    [14] Semenza GL. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol Med 2002;8(4 Suppl):S62-67.
    [15] Yamashita K, Discher DJ, Hu J, et al. Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J Biol Chem 2001;276(16):12645-12653.
    [16] Forsythe JA, Jiang BH, Iyer NV, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16(9):4604-4613.
    [17] Lando D, Peet DJ, Gorman JJ, et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002;16(12):1466-1471.
    [18] Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 2001;15(20):2675-2686.
    [19] Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001;7(8):345-350.
    [20] Harris AL. Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer 2002;2(1): 38-47.
    [21] Obermair A, Tempfer C, Hefler L, P et al. Concentration of vascular endothelial growth factor (VEGF) in the serum of patients with suspected ovarian cancer. Br J Cancer 1998;77(11):1870-1874.
    [22] Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13(1):9-22.
    [23] Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192-198.
    [24] Zhong H, De Marzo AM, Laughner E, et al. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 1999;59(22):5830-5835.
    [25] Skinner HD, Zheng JZ, Fang J, et al. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 2004;279(44):45643-45651.
    [26] Liu LX, Lu H, Luo Y, et al. Stabilization of vascular endothelial growth factor mRNA by hypoxia-inducible factor 1. Biochem Biophys Res Commun 2002;291(4):908-914.
    [27] Spinella F, Rosano L, Di Castro V, et al. Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. J Biol Chem 2002;277(31):27850-27855.
    [28] Wong C, Wellman TL, Lounsbury KM. VEGF and HIF-1alpha expression are increased in advanced stages of epithelial ovarian cancer. Gynecol Oncol 2003;91(3):513-517.
    [29] Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 2001;20(41):5779-5788.
    [30] Wang Y, Pakunlu RI, Tsao W, et al. Bimodal effect of hypoxia in cancer: role of hypoxia inducible factor in apoptosis. Mol Pharm 2004;1(2):156-165.
    [31] Giatromanolaki A, Koukourakis MI, Sivridis E, et al. Relation of hypoxia inducible factor 1 alpha and 2 alpha in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival. Br J Cancer 2001;85(6):881-890.
    [32] Carmeliet P, Dor Y, Herbert JM, et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998;394(6692):485490.
    [33] Bruick RK. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc Natl Acad Sci U S A 2000;97(16):9082-9087.
    [34] Erler JT, Cawthorne CJ, Williams KJ, et al. Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 2004;24(7):2875-2889.
    [35] Kurebayashi J, Otsuki T, Kurosumi M, et al. A radicicol derivative, KF58333, inhibits expression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor, angiogenesis and growth of human breast cancer xenografts. Jpn J Cancer Res 2001;92(12):1342-1351.
    [36] Welsh SJ, Williams RR, Birmingham A, et al. The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2003;2(3):235-243.
    [37] Koh MY, Spivak-Kroizman T, Venturini S, et al. Molecular mechanisms for the activity of PX-478, an antitumor inhibitor of the hypoxia-inducible factor-1{alpha}. Mol Cancer Ther 2008;7(1):90-100.
    [38] Welsh S, Williams R, Kirkpatrick L et al. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol Cancer Ther 2004;3(3):233-244.
    [39] Cohen-Jonathan E, Evans SM, Koch CJ, et al. The farnesyltransferase inhibitor L744,832 reduces hypoxia in tumors expressing activated H-ras. Cancer Res 2001;61(5):2289-2293.
    [40] Tan C, de Noronha RG, Roecker AJ, et al. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res 2005;65(2):605-612.
    [41] Blum R, Jacob-Hirsch J, Amariglio N, et al. Ras inhibition in glioblastoma down-regulateshypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. Cancer Res 2005;65(3):999-1006.
    [42] Lang SA, Gaumann A, Koehl GE, et al. Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Int J Cancer 2007;120(8):1803-1810.
    [43] Guba M, von Breitenbuch P, Steinbauer M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 2002;8(2):128-135.
    [44] Liu M, Howes A, Lesperance J, et al. Antitumor activity of rapamycin in a transgenic mouse model of ErbB2-dependent human breast cancer. Cancer Res 2005;65(12):5325-5336.
    [45] Heimberger AB, Wang E, McGary EC, et al. Mechanisms of action of rapamycin in gliomas. Neuro Oncol 2005;7(1):1-11.
    [46] Wang Y, Zhao Q, Ma S, et al. Sirolimus inhibits human pancreatic carcinoma cell proliferation by a mechanism linked to the targeting of mTOR/HIF-1 alpha/VEGF signaling. IUBMB Life 2007;59(11):717-721.
    [47] Huynh H, Teo CC, Soo KC. Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Mol Cancer Ther 2007;6(11):2959-66.
    [48] Wang Z, Fan J, Zhou J, et al. [Inhibition of growth and metastasis of hepatocellular carcinoma by rapamycin: experiment with mice]. Zhonghua Yi Xue Za Zhi 2006;86(24):1666-1670.
    [49] Wan X, Shen N, Mendoza A, et al. CCI-779 inhibits rhabdomyosarcoma xenograft growth by an antiangiogenic mechanism linked to the targeting of mTOR/Hif-1alpha/VEGF signaling. Neoplasia 2006;8(5):394-401.
    [50] Mabjeesh NJ, Escuin D, LaVallee TM, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003;3(4):363-375.
    [51] Jung YJ, Isaacs JS, Lee S, et al. Microtubule disruption utilizes an NFkappa B-dependent pathway to stabilize HIF-1alpha protein. J Biol Chem 2003;278(9):7445-7452.
    [52] Ricker JL, Chen Z, Yang XP, et al. 2-methoxyestradiol inhibits hypoxia-inducible factor 1alpha, tumor growth, and angiogenesis and augments paclitaxel efficacy in head and neck squamous cell carcinoma. Clin Cancer Res 2004;10(24):8665-8673.
    [53] Kang SH, Cho HT, Devi S, et al. Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res 2006;66(24):11991-7.
    [54] Mabjeesh NJ, Shefler A, Amir S, et al. Potentiation of 2-methoxyestradiol-induced cytotoxicity by blocking endothelin A receptor in prostate cancer cells. Prostate 2008;68(6):679-689.
    [55] Duyndam MC, van Berkel MP, Dorsman JC, et al. Cisplatin and doxorubicin repress Vascular Endothelial Growth Factor expression and differentially down-regulate Hypoxia-inducible Factor I activity in human ovarian cancer cells. Biochem Pharmacol 2007;74(2):191-201.
    [56] Yeo EJ, Chun YS, Cho YS, et al. YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 2003;95(7):516-525.
    [57] Zhao Q, Du J, Gu H, et al. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 2007;34(2):242-247.
    [58] Shin DH, Kim JH, Jung YJ, et al. Preclinical evaluation of YC-1, a HIF inhibitor, for the prevention of tumor spreading. Cancer Lett 2007;255(1):107-116.
    [59] Lau CK, Yang ZF, Lam CT, et al. Suppression of hypoxia inducible factor-1alpha (HIF-1alpha) by YC-1 is dependent on murine double minute 2 (Mdm2). Biochem Biophys Res Commun 2006;348(4):1443-1448.
    [60] Sun HL, Liu YN, Huang YT, et al. YC-1 inhibits HIF-1 expression in prostate cancer cells: contribution of Akt/NF-kappaB signaling to HIF-1alpha accumulation during hypoxia. Oncogene 2007;26(27):3941-3951.
    [61] Fang J, Cao Z, Chen YC, et al.9-beta-D-arabinofuranosyl-2-fluoroadenine inhibits expression of vascular endothelial growth factor through hypoxia-inducible factor-1 in human ovarian cancer cells. Mol Pharmacol 2004;66(1):178-186.
    [62] Zhang Q, Tang X, Lu Q, et al. Green tea extract and (-)-epigallocatechi- n -3-gallate inhibit hypoxia- and serum-induced HIF-1alpha protein accumulation and VEGF expression in human cervical carcinoma and hepatoma cells. Mol Cancer Ther 2006;5(5):1227-1238.
    [63] Cao Z, Fang J, Xia C, et al. trans-3,4,5'-Trihydroxystibene inhibits hypoxia -inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin Cancer Res 2004;10(15):5253-5263.
    [64] Zhong XS, Zheng JZ, Reed E, et al. SU5416 inhibited VEGF and HIF-1alpha expression through the PI3K/AKT/p70S6K1 signaling pathway. Biochem Biophys Res Commun 2004;324(2):471-480.
    [65] Birle DC, Hedley DW. Suppression of the hypoxia-inducible factor-1 response in cervical carcinoma xenografts by proteasome inhibitors. Cancer Res 2007;67(4):1735-1743.
    [66] Fang J, Zhou Q, Liu LZ, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis 2007;28(4):858-864.
    [67] Oh SH, Woo JK, Jin Q, et al. Identification of novel antiangiogenic anticancer activities of deguelin targeting hypoxia-inducible factor-1 alpha. Int J Cancer 2008;122(1):5-14.
    [68] Ruan H, Wang J, Hu L, et al. Killing of brain tumor cells by hypoxia-responsive element mediated expression of BAX. Neoplasia 1999;1(5):431-437.
    [69] Lee CH, Wu CL, Shiau AL. Hypoxia-induced cytosine deaminase gene expression for cancer therapy. Hum Gene Ther 2007;18(1):27-38.
    [70] Wang Y, Minko T. A novel cancer therapy: combined liposomal hypoxia inducible factor 1 alpha antisense oligonucleotides and an anticancer drug. Biochem Pharmacol 2004;68 (10):2031-2042.
    [71] Sun X, Kanwar JR, Leung E, et al. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 2001;8(8):638-645.
    [72] Liu F, Wang P, Jiang X, et al. Antisense hypoxia-inducible factor 1alpha gene therapy enhances the therapeutic efficacy of doxorubicin to combat hepatocellular carcinoma. Cancer Sci 2008;99(10):2055-2061.
    [73] Sharp PA, Zamore PD. Molecular biology. RNA interference. Science 2000; 287(5462): 2431-2433.
    [74] Gross C, Dubois-Pot H, Wasylyk B. The ternary complex factor Net/Elk-3 participates in the transcriptional response to hypoxia and regulates HIF-1alpha. Oncogene 2007.
    [75] Razorenova OV, Ivanov AV, Budanov AV, et al. Virus-based reporter systems for monitoring transcriptional activity of hypoxia-inducible factor 1. Gene 2005;350(1):89-98.
    [76] Li L, Lin X, Staver M, et al. Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo. Cancer Res 2005;65(16): 7249-7258.
    [77] Li J, Shi M, Cao Y, et al. Knockdown of hypoxia-inducible factor-1alpha in breast carcinoma MCF-7 cells results in reduced tumor growth and increased sensitivity to methotrexate. Biochem Biophys Res Commun 2006;342(4):1341-1351.
    [78] Liu YL, Yu JM, Song XR, et al. Regulation of the chemokine receptor CXCR4 and metastasis by hypoxia-inducible factor in non small cell lung cancer cell lines. Cancer Biol Ther 2006;5(10):1320-1326.
    [79] Huang L, Zhang QH, Ao QL, et al. Effect of hypoxia on the chemotherapeutic sensitivity of human ovarian cancer cells to paclitaxel and its mechanism. Zhonghua Zhong Liu Za Zhi 2007;29(2):96-100.
    [80] Wu XA, Sun Y, Fan QX, et al. Impact of RNA interference targeting hypoxia-inducible factor-1alpha on chemosensitivity in esophageal squamous cell carcinoma cells under hypoxia. Zhonghua Yi Xue Za Zhi 2007;87(37):2640-2644.
    [81] Gillespie DL, Whang K, Ragel BT, Flynn JR, Kelly DA, Jensen RL. Silencing of hypoxia inducible factor-1alpha by RNA interference attenuates human glioma cell growth in vivo. Clin Cancer Res 2007;13(8):2441-2448.
    [82] Takahashi Y, Nishikawa M, Takakura Y. Inhibition of tumor cell growth in the liver by RNA interference-mediated suppression of HIF-1alpha expression in tumor cells and hepatocytes. Gene Ther 2008;15(8):572-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700