用户名: 密码: 验证码:
细胞缺氧损伤中TRPM7介导的凋亡机制及NGF对TRPM7调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     TRPM7介入氧糖剥夺/再氧合诱导细胞凋亡的机制研究
     第一节
     建立四环素调控性稳定表达全长、缺激酶区TRPM7的HEK293细胞系
     TRPM7(transient receptorpotentialmelastatin 7),也称ChaK1(Channel-Kinase1),是一种独特的、既有非选择性阳离子通道又有蛋白激酶活性的双功能蛋白。本部分实验主要是建立四环素调控性稳定表达全长、缺激酶区TRPM7的HEK293细胞系,为进一步在细胞水平研究TRPM7及其激酶功能提实验基础。
     采用阳离子脂质体法将含小鼠TRPM7 cDNA的真核表达质粒pcDNA5/FRT/TO-HA-TRPM7/WT(表达全长TRPM7(TRPM7/WT))和pcDNA5/FRT/TO-HA-TRPM7/△Kin(表达缺激酶区TRPM7(TRPM7/△Kin))分别与Flp重组酶表达质粒pOG44共同转入Flp-In~(TM) T-REx~(TM) 293细胞,经过潮霉素筛选,收集抗药细胞克隆建立细胞系,分别命名为293-TRPM7/WT(转染pcDNA5/FRT/TO-HA-TRPM7/WT)和293-TRPM7/△Kin(转染pcDNA5/FRT/TO-HA-TRPM7/ΔKin)。采用免疫印迹和免疫荧光技术对细胞进行鉴定,结果显示:293-TRPM7/WT和293-TRPM7/△Kin细胞均在四环素诱导后才表达TRPM7蛋白(前者表达TRPM7/WT,后者表达TRPM7/△Kin),且TRPM7蛋白表达水平均呈四环素浓度依赖性。综上所述,我们成功建立了四环素调控性稳定表达全长、缺激酶区TRPM7的HEK293细胞系。
     第二节
     TRPM7激酶区在氧糖剥夺/再氧合诱导细胞凋亡中的作用,及其与Annexin-1之间的关系
     脑缺血后的神经元损伤是造成神经功能缺损的主要原因。最近的研究显示,TRPM7通道的活动与缺氧神经元的死亡密切相关,但是TRPM7激酶在缺血缺氧神经元损伤过程中作用尚未见报导。
     本部分实验利用四环素调控性稳定表达全长和缺激酶区TRPM7的293-TRPM7/WT和293-TRPM7/△Kin细胞系,通过建立氧糖剥夺/再氧合(oxygen-glucose deprivation/reoxygenation,OGD/R)离体模型,即细胞在无糖无氧的环境中孵育1h(氧糖剥夺)后恢正常培养一定时间(再氧合),模拟在体缺血再灌注过程,从细胞水平初步探讨TRPM7激酶区在OGD/R引起的细胞损伤和细胞凋亡中的作用及其可能的机制。Annexin-1是TRPM7激酶区重要的底物蛋白,本研究通过观察Annexin-1的变化来讨论TRPM7激酶区的作用机制。
     实验采用MTT法检测细胞活性,Annexin V-FITC、PI双染法结合流式细胞术检测、分析细胞凋亡率,应用免疫荧光和免疫印迹技术检测TRPM7、Annexin-1蛋白的分布和表达,利用免疫共沉淀法分析TRPM7与Annexin-1的相互作用。
     结果显示:
     1、TRPM7激酶区参与TRPM7促进OGD/R细胞损伤和细胞凋亡。
     1)在正常情况下,四环素诱导和四环素非诱导的293-TRPM7/WT细胞和293-TRPM7/△Kin细胞活性之间没有显著性差异。经氧糖剥夺处理1h后,在再氧合Oh、6h、12h、24h过程中,四环素诱导293-TRPM7/WT细胞和293-TRPM7/△Kin细胞活性在每个时间点上都显著低于四环素非诱导293-TRPM7/WT细胞和293-TRPM7/△Kin细胞活性(P<0.01)。而且从再氧合12h时开始,四环素诱导293-TRPM7/WT细胞活性明显低于四环素诱导293-TRPM7/△Kin细胞(P<0.05),到再氧合24h差异更加显著(P<0.01)。
     2)在正常情况下,四环素诱导、四环素非诱导的293-TRPM7/WT细胞和293-TRPM7/△Kin细胞凋亡率分别为:1.4%±0.16%、1.5%±0.12%、1.4%±0.13%、1.4%±0.15%,各组之间没有显著性差异;氧糖剥夺1h再氧合24h处理后,四环素诱导293-TRPM7/WT细胞凋亡率(34.1%±1.22%)显著高于四环素非诱导293-TRPM7/WT细胞(10.2%±1.05%,P<0.05)和四环素诱导293-TRPM7/ΔKin细胞(13.5%±1.01%,P<0.05)。
     2、OGD/R过程中,TRPM7通过其激酶区增强与Annexin-1结合。
     1)免疫荧光双标记发现,TRPM7/WT蛋白和Annexin-1共定位于四环素诱导293-TRPM7/WT细胞,TRPM7/WT蛋白主要分布在细胞膜上,Annexin-1分布在整个细胞中,两者在细胞内共存,共定位在细胞膜上。
     2)免疫共沉淀发现,在正常情况下,四环素诱导293-TRPM7/WT细胞中有少量Annexin-1与TRPM7/WT结合;氧糖剥夺1h后,随着再氧合时间的延长,Annexin-1与TRPM7/WT的结合逐渐增多。再氧合24h时,用BAPTA-AM或EDTA螯合细胞内或细胞外钙离子不影响四环素诱导293-TRPM7/WT细胞中Annexin-1与TRPM7/WT的结合,而四环素诱导293-TRPM7/ΔKin细胞中未发现Annexin-1与TRPM7/ΔKin结合。
     3、OGD/R诱导HEK293细胞出现TRPM7激酶区依赖的Annexin-1蛋白高表达和Annexin-1细胞核、细胞膜转位。
     1)氧糖剥夺1h后,从再氧合6h开始,四环素诱导293-TRPM7/WT细胞中Annexin-1蛋白的表达水平随再氧合时间延长逐渐增加,到24h达到高峰,与氧糖剥夺1h再氧合24h后四环素非诱导293-TRPM7/WT、293-TRPM7/ΔKin细胞和四环素诱导293-TRPM7/ΔKin细胞相比,Annexin-1蛋白表达增加有显著性差异(P<0.05)。而四环素非诱导293-TRPM7/WT、293-TRPM7/ΔKin细胞和四环素诱导293-TRPM7/ΔKin细胞之间比较无显著性差异。在再氧合6h、12h、24h过程中,四环素诱导293-TRPM7/WT细胞中Annexin-1的表达水平在各个时间点均显著高于四环素非诱导293-TRPM7/WT细胞(P<0.05)。
     2)氧糖剥夺1h再氧合24h时,免疫荧光结果显示:四环素诱导293-TRPM7/WT细胞中Annexin-1转位到细胞膜和细胞核,而四环素非诱导293-TRPM7/WT细胞和四环素诱导293-TRPM7/ΔKin细胞中Annexin-1未发生明显转位。进一步用免疫印迹分别检测胞膜、胞浆和胞核中Annexin-1的表达,发现:氧糖剥夺1h再氧合24h处理后,四环素诱导293-TRPM7/WT细胞胞浆中Annexin-1的表达水平比正常低,而胞膜特别是胞核中Annexin-1的表达水平明显高于正常;四环素非诱导293-TRPM7/WT细胞胞膜和胞核中Annexin-1的表达水平与正常相似,而胞浆中Annexin-1的表达水平高于正常。
     4、Annexin-1参与TRPM7介导的OGD/R细胞损伤和细胞凋亡。
     1)氧糖剥夺1h再氧合24h时,Annexin-1反义脱氧寡核苷酸(ASODN)显著下调四环素诱导293-TRPM7/WT细胞中Annexin-1的高表达至正常水平(P<0.05),同时显著增加细胞活性(P<0.01),而Annexin-1正义脱氧寡核苷酸(SODN)对Annexin-1的表达和细胞活性均没有影响。
     2)氧糖剥夺1h再氧合24h时,Annexin-1 ASOND显著减少四环素诱导293-TRPM7/WT细胞凋亡率19.6%±1.01%(P<0.05);Annexin-1 SODN对细胞凋亡率没有影响,仍有高达33.7%±1.56%细胞凋亡。
     综上所述,本实验首次验证了:TRPM7通过其激酶区上调Annexin-1的表达,促进Annexin-1的核、膜转位,加剧OGD/R引起的细胞损伤和细胞凋亡。本研究的发现为进一步研究TRPM7激酶介导脑缺血再灌注神经元凋亡提了实验依据。
     第二部分
     NGF抑制Gd~(3+)敏感性钙内流,减少化学缺氧神经元死亡
     本部分实验主要探讨急性缺氧神经元损伤过程中是否存在非谷氨酸受体通道和非电压门控钙通道依赖性的钙内流,及其与NGF神经元保护作用之间的关系。
     以KCN作为诱导剂,在体外培养的新生大鼠海马神经元上建立急性缺氧的细胞模型,应用激光扫描共聚焦显微镜监测细胞内钙离子浓度变化,利用cFDA与PI染色法评价细胞的存活和死亡率。
     结果显示:
     1、给予原代培养的海马神经元KCN(3mM)处理15min后,细胞内钙离子浓度([Ca~(2+)]i)显著升高至缺氧前6.27±0.05倍(p<0.05),73.3%±12.1%细胞死亡(P<0.05)。
     2、20μM MK-801(NMDA受体拮抗剂)、40μM CNQX(AMPA受体拮抗剂)和5μM Nimodipine(电压门控钙通道拮抗剂)联用(简称MCN)显著降低KCN引起的[Ca~(2+)]_i升高和细胞死亡率(P<0.05),但[Ca~(2+)]_i为缺氧前4.02±0.04倍,仍有38.5%±4.4%细胞死亡,均显著高于正常(P<0.05)。
     3、Gd~(3+)(10μM)与MCN联用后几乎完全阻断KCN引起的[Ca~(2+)]_i升高,并进一步降低细胞死亡率。[Ca~(2+)]_i仅为缺氧前1.2±0.03倍,与正常相比差异无显著性,神经元死亡率降至8.2%±1.5%。
     4、与Gd~(3+)的作用相似,NGF(100ng/m1)与MCN联用后显著减弱KCN引起的[Ca~(2+)]_i升高,[Ca~(2+)]_i仅为缺氧前1.42±0.06倍,与正常相比无统计学差异,只有9.1%±2.3%细胞死亡。NGF的作用可被磷脂酶C(PLC)拮抗剂U73122(10μM)逆转。
     以上结果表明,在急性缺氧神经元损伤过程中存在非谷氨酸受体通道和非电压门控钙通道依赖性的Gd~(3+)敏感性钙内流和神经元死亡;NGF可通过激活PLC通路抑制Gd~(3+)敏感性钙内流,同时减少缺氧神经元死亡。
Part 1
     Mechanism study for implication of TRPM7 in oxygen-glucosedeprivation/reoxygenation-induced apoptosis
     Segment 1
     Establishment of stable HEK293 cell lines with tetracycline-inducible expression offull-length or kinase domain truncated TRPM7
     Transient receptor potential melastatin 7 (TRPM7),also named asChannel-Kinasel (ChaK1),is a unique bifunctional protein consisting of a proteinkinase domain fused to a non-selective cation channel.The aim of this study was toestablish stable HEK293 cell lines with tetracycline-inducible expression of full-lengthor kinase domain truncated TRPM7,so that we can investigate the functions of TRPM7and its kinase at cellular level.
     Eukaryotic expression plasmid pcDNA5/FRT/TO-HA-TRPM7/WT (expressingfull-length TRPM7 (TRPM7/WT)) or pcDNA5/FRT/TO-HA-TRPM7/△Kin(expressing kinase domain truncated TRPM7 (TRPM7/△Kin)) was cotransfected withthe Flp recombinase expression plasmid pOG44 into Flp-In~(TM) T-REx~(TM) 293 cells usingLipofectamine 2000~(TM).After selection with hygromycin,cell clones were pooled anddefined as 293-TRPM7/WT (transfected with pcDNA5/FRT/TO-HA-TRPM7/WT) and293-TRPM7/△Kin (transfected with pcDNA5/FRT/TO-HA-TRPM7/△Kin),respectively.The tetracycline-inducible expression of TRPM7/WT in 293- TRPM7/WTcells or TRPM7/△Kin in 293-TRPM7/△Kin cells was confirmed by western blot andimmunofluorescence analysis.The results showed that TRPM7/WT or TRPM7/△Kinexpression was switched on by application of tetracycline in a concentration dependent manner.In conclusion,we successfully established tetracycline-inducible HEK293stable cell lines expressing full-length or kinase domain truncated TRPM7.
     Segment 2
     The role of TRPM7 kinase domain in oxygen-glucosedeprivation/reoxygenation-induced apoptosis and the relationship betweenTRPM7 and Annexin-1
     Neuronal death after cerebral ischemia is the main cause of neurologicimpairment.It is recently revealed that the activity of TRPM7 channel is closely relatedto anoxic neuronal death,however,the exact function of TRPM7 kinase in ischemicneuronal injury is unknown.
     In this study,by using stable HEK293 cell lines with tetracycline (Tet)-inducibleexpression of full-length and kinase domain truncated TRPM7 (293-TRPM7/WT cellsand 293-TRPM7/△Kin cells) and establishing in vitro model of oxygen-glucosedeprivation followed by reoxygenation (OGD/R) mimicking in vivo ischemicreperfusion process,we investigated the role of TRPM7 kinase domain inOGD/R-induced cell damage and cell apoptosis and the possible mechanisms.SinceAnnexin-1 is an important substrate for TRPM7 kinase,changes of Annexin-1 wasobserved in this study to explored the mechanism of action of TRPM7 kinase domain.
     Cell viability was determined by MTT assay.Apoptosis was quantitativelyanalyzed by Annexin V-FITC and PI double-staining followed by flow cytometry.Immunofluorescence and western blot were used to detect the localization andexpression of TRPM7 and Annexin-1,respectively.Interaction between TRPM7 andAnnexin-1 was measured by immunoprecipitation.
     The results showed that:
     1.TRPM7 kinase domain was implicated in OGD/R-induced,TRPM7-mediatedcell damage and apoptosis of HEK293 cells.
     1) Under normal condition,cell viability among Tet-induced,non-Tet-induced293-TRPM7/WT and 293-TRPM7/△Kin cells were no statistic difference.After 1h ofOGD and 0h,6h,12h or 24h of reoxygenation,the viability of Tet-induced293-TRPM7/WT or 293-TRPM7/△Kin cells was significantly lower than that ofnon-Tet-induced 293-TRPM7/WT or 293-TRPM7/△Kin cells at each time point(P<0.01).At 12h after reoxygenation,the viability of Tet-induced 293-TRPM7/WTcells was significantly lower than that of Tet-induced 293-TRPM7/△Kin cells (P<0.05).The difference of cell viability between Tet-induced 293-TRPM7/WT cells and293-TRPM7/△Kin cells was more significant at 24h after reoxygenation (P<0.01).
     2) Under normal condition,the apoptotic rate of Tet-induced,non-Tet-induced293-TRPM7/WT and 293-TRPM7/△Kin cells were 1.4%±0.16%,1.5%±0.12%,1.4%±0.13%,1.4%±0.15%,respectively,and there was no statistic difference among them.However,after 1h of OGD and 24h of reoxygenation,the apoptotic rate of Tet-induced293-TRPM7/WT cells (34.1%±1.22%) was significantly higher than that ofnon-Tet-induced 293-TRPM7/WT cells (10.2%±1.05%,P<0.05) and Tet-induced293-TRPM7/△Kin cells (13.5%±1.01%,P<0.05).
     2.OGD/R promoted the association between TRPM7 and Annexin-1 in acalcium-independent and TRPM7 kinase domain-dependent manner.
     1) Double immunofluorescence staining assay showed colocalization ofTRPM7/WT protein with Annexin-1 in Tet-induced 293-TRPM7/WT cells.TRPM7/WT protein was mainly located at plasma membrane,while Annexin-1 wasevenly distributed throughout the cell.Colocalization of TRPM7/WT with Annexin-1was on plasma membrane.
     2) Immunoprecipitation assay showed that under normal condition,a fewassociation of Annexin-1 with TRPM7/WT was detected in Tet-induced293-TRPM7/WT cells.After 1h of OGD,the association between Annexin-1 andTRPM7/WT was gradually increased with the increasing duration of reoxygenation.After 1 h of OGD and 24h of reoxygenation,chelating intracellular or extracellular Ca~(2+), using BAPTA-AM or EDTA,did not abrogate the association of Annexin-1 withTRPM7/WT in Tet-induced 293-TRPM7/WT cells,and no association betweenAnnexin-1 and TRPM7/△Kin was detected in Tet-induced 293-TRPM7/△Kin cells.
     3.OGD/R induced TRPM7 kinase domain-dependent high expression ofAnnexin-1 and translocation of Annexin-1 to nucleus and cell membrane in HEK293cells.
     1) After lh of OGD,the expression of Annexin-1 in Tet-induced293-TRPM7/WT cells was gradually upregulated during reoxygenation,which startedat 6h and reached a peak at 24h.After lh of OGD and 24h of reoxygenation,theexpression level of Annexin-1 in Tet-induced 293-TRPM7/△Kin cells was no statisticdifference from that in non-Tet-induced 293-TRPM7/△Kin cells and non-Tet-induced293-TRPM7/WT cells,but it was significantly lower than that in Tet-induced293-TRPM7/WT cells (P<0.05).In addition,Tet-induced 293-TRPM7/WT cellsexpressed higher level of Annexin-1 protein than non-Tet-induced 293-TRPM7/WTcells at the time points of 6h,12h and 24h after reoxygenation (P<0.05).
     2) Immunofluorescence staining assay showed that Annexin-1 in Tet-induced293-TRPM7/WT cells was translocated to cell membrane and nucleus after 1h of OGDand 24h of reoxygenation,whereas Annexin-1 in Tet-induced 293-TRPM7/△Kin ornon-Tet-induced 293-TRPM7/WT cells did not.Expression of Annexin-1 in cellmembrane,cytoplasm and nucleus fractions was further measured by immunoblot.Itshowed that after 1h of OGD and 24h of reoxygenation,expression level of Annexin-1in cytosolic fraction in Tet-induced 293-TRPM7/WT cells was lower than normal,however,expression level of Annexin-1 in membrane,especially in nuclear fraction wasobviously higher than normal.On the other hand,Annexin-1 expression level in cellmembrane or nuclear fraction in non-Tet-induced 293-TRPM7/WT cells was nodifference from normal,while Annexin-1 expression level in cytosolic fraction washigher than normal.
     4.Annexin-1 was involved in OGD/R-induced,TRPM7-mediated cell damage and apoptosis of HEK293 cells.
     1) After 1h of OGD and 24h of reoxygenation,Annexin-1 antisenseoligodeoxynucleotides (ASODN) significantly downregulated OGD/R-induced highexpression of Annexin-1 in Tet-induced 293-TRPM7/WT cells to a level similar tonormal (P<0.05),and markedly increased cell viability (P<0.01).However,Annexin-1sense oligodeoxynucleotides (SODN) affected neither Annexin-1 expression inTet-induced 293-TRPM7/WT cells nor cell viability.
     2) After 1h of OGD and 24h of reoxygenation,Annexin-1 ASODN significantlyreduced OGD/R-induced high apoptotic rate of Tet-induced 293-TRPM7/WT cells by19.6%±1.01% (P<0.05).However,Annexin-1 SODN did not affect the apoptotic rateof Tet-induced 293-TRPM7/WT cells,the percentage of apoptotic cells was 33.7%±1.56%.
     In conclusion,in this study,we firstly verify that TRPM7,through its kinasedomain,is implicated in upregulating Annexin-1 expression and promoting Annexin-1translocation from cytoplasm to nucleus and cell membrane in response to OGD/Rtreatment,and serves to aggravate OGD/R-induced cell damage and apoptosis inHEK293 cells.These findings provide theoretical evidence for further investigating therole of TRPM7 kinase in ischemic reperfusion-induced neuronal cell apoptosis.
     Part 2
     NGF inhibits Gd~(3+)-sensitive calcium influx and reduces chemical anoxic neuronal death
     The aim of this study was to investigate whether glutamate receptor channels andvoltage-gated calcium channels independent calcium influx arises in the process ofacute anoxic neuronal damage and its possible relationship to neuronal protectivefunction of NGF.
     In in vitro model of acute anoxia,hippocampal cultures from newborn rats wereexposed to KCN.Changes of intracellular Ca~(2+) concentration ([Ca~(2+)]_i) were monitoredby laser scanning confocal microscope and cell viability was assayed by PI and cFDAstaining.
     The results showed that:
     1.After treatment with 3mM KCN for 15min,[Ca~(2+)]_i in hippocampal neuronswas significantly increased 6.27±0.05-fold compared with pre-anoxia level(P<0.05) and 73.3%±12.1% of the cells died (P<0.05).
     2.When combination of 20μM MK-801 (glutamate receptor antagonist),40μMCNQX (AMPA receptor antagonist) and 5μM nimodipine (voltage-gated calciumchannel antagonist) (hereafter denoted as MCN) were administrated to hippocampalneurons,KCN-induced increase of [Ca~(2+)]_i and cell death were significantlyreduced (P<0.05).Levels of [Ca~(2+)]_i was 4.02±0.04-fold of pre-anoxia and cell deathrate was 38.5%±4.4%,both of which were still markedly higher than normal (P<0.05).
     3.Gd~(3+) (10μM) completely blocked KCN-induced elevation of [Ca~(2+)]_i and furtherreduced cell death in the presence of MCN.Levels of [Ca~(2+)]_i was 1.2±0.03-fold ofpre-anoxia,which was no statistic difference from normal.Cell death rate was only8.2%±1.5%.
     4.Similar to Gd~(3+),NGF (100ng/ml),used in combination with MCN,significantly inhibited KCN-induced increase of [Ca~(2+)]_i and cell death.Levels of [Ca~(2+)]_iwas 1.42±0.06-fold of pre-anoxia,which was also no statistic difference from normal. Only 9.1%±2.3% of the cells died.The effects of NGF were abolished by PLCinhibitor U73122 (10μM).
     It is concluded that Gd~(3+)-sensitive calcium influx and cell death,which areglutamate receptor channels and voltage-gated calcium channels independent,arise inthe process of acute anoxic neuronal damage.NGF can inhibit Gd~(3+)-sensitive calciuminflux and reduce anoxic neuronal death through activating PLC pathway.
引文
[1]Lee JM,Grabb MC,Zipfel GJ,Choi DW.Brain tissue responses to ischemia.J Clin Invest.2000; 106: 723-31.
    [2]Ikonomidou C,Turski L.Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol.2002; 1:383-6.
    [3]Arts M,lihara K,Wei WL,Xiong ZG,Arundine M,Cerwinski W,MacDonald JF,Tymianski M.A key role for TRPM7 channels in anoxic neuronal death.Cell.2003;115: 863-877.
    [4]Runnels LW,Yue L,Clapham DE.TRP-PLIK,a bifunctional protein with kinase and ion channel activities.Science.2001;291:1043-1047.
    [5] Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J General Physiol 2003; 121: 49-60.
    [6] Montell C. Mg~(2+) homeostasis: the Mg~(2+)nificent TRPM chanzymes. Curr Biol 2003; 13:R799-R801.
    [7] Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes Aj, et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 2001; 411: 590-5.
    [8] Riazanova LV, Pavur KS, Petrov AN, Dorovkov MV, Riazanov AG. Novel type of signaling molecules: protein kinases covalently linked to ion channels. Mol Biol (Mosk).2001; 35: 321-32.
    [9] Ryazanov AG. Elongation factor-2 kinase and its newly discovered relatives. FEBS Lett. 2002; 514: 26-29.
    [10]Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg Med.2000; 36: 483-506.
    [11]Ryazanov AG, Pavur KS, Dorovkov MV. Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol. 1999; 28: R43- R45.
    [12] Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 2004; 279: 50643-50646.
    [13]Ryazanova LV, Dorovkov MV, Ansari A, Ryazanov AG. Characterization of the protein kinase activity of TRPM7/ChaKl, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem. 2004; 279: 3708-3716. [14]Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev. 2002; 82:331-371.
    [15] Sakamoto T, Repasky WT, Uchida K, Hirata A, Hirata F. Modulation of cell death pathways to apoptosis and necrosis of H_2O_2-treated rat thymocytes by lipocortin I.Biochem Biophys Res Commun.1996; 220: 643-647.
    [16]Hsiang CH, Tunoda T, Whang YE, Tyson DR, Ornstein DK. The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells. Prostate. 2006; 66: 1413-1424.
    [17]Ishido M. Overexpression of Bcl-2 inhibits nuclear localization of annexin I during tumor necrosis factor-alpha-mediated apoptosis in porcine renal LLC-PK1 cells.Regul Pept. 2005; 124:45-51.
    [18]Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation. Br J Pharmacol. 2001; 133: 217-228.
    [19]Debreta R, El Btaouria HE, Duca L, Rahman I, Radke S, Haye B, Sallenave JM, Antonicelli F. Annexin Al processing is associated with caspase-dependent apoptosis in BZR cells. FEBS Lett. 2003; 546: 195-202.
    [20] Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M. Activation of the annexin 1 counterregulatory circuit affords protection in the mouse brain microcirculation.FASEB J. 2007; 21(8):1751-1758.
    [21]Relton JK, Strijbos PJ, O'Shaughnessy CT, Carey F, Forder RA, Tilders FJ,Rothwell NJ. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991; 174(2): 305-310.
    [22]Eberhard DA, Brown MD, VandenBerg SR. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and pll subunits), IV, and VI in the human hippocampus. Am J Pathol. 1994; 145(3): 640-649.
    [23]Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease:iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci. 2000; 16(6):724-739.
    [24]Sudlow AW, Carey F, Forder R, Rothwell NJ. Lipocortin-1 inhibits CRH stimulation of plasma ACTH and IL-1 beta-stimulated hypothalamic CRH release in rats. Am J Physiol. 1996; 270(1 Pt 2): R54-60.
    [25]Taylor AD,Philip JG,John CD,Cover PO,Morris JF,Flower RJ,Buckingham JC.Annexin 1 (lipocortin 1) mediates the glucocorticoid inhibition of cyclic adenosine 3',5'-monophosphate-stimulated prolactin secretion.Endocrinology.2000; 141(6):2209-2219.
    [1]Krapivinsky G,Mochida S,Krapivinsky L,Cibulsky SM,Clapham DE.The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release.Neuron.2006; 52: 485-496.
    [2]Jiang X,Newell EW,Schlichter LC.Regulation of a TRPM7-like current in rat brain microglia.J Biol Chem.2003; 278: 42867-42876.
    [3]Arts M,lihara K,Wei WL,Xiong ZG,Arundine M,Cerwinski W,MacDonald JF,Tymianski M.A key role for TRPM7 channels in anoxic neuronal death.Cell.2003;115: 863-877.
    [4] Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol. 1977; 36: 59-74.
    [5] Thomas P, Smart TG. HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods. 2005; 51:187-200.
    [6] Kaplan MP, Chin SS, Fliegner KH, Liem RK. Alpha-internexin, a novel neuronal intermediate filament protein, precedes the low molecular weight neurofilament protein (NF-L) in the developing rat brain. J Neurosci. 1990; 10: 2735-2748.
    [7] Shaw G, Weber K. Differential expression of neurofilament triplet proteins in brain development. Nature. 1982; 298: 277-279.
    [8] Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. FASEB J.2002; 16:869-871.
    [9] Dautzenberg FM, Higelin J, Teichert U. Functional characterization of corticotropin-releasing factor type 1 receptor endogenously expressed in human embryonic kidney 293 cells. Eur J Pharmacol. 2000; 390: 51-59.
    [10]Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature. 1997;390: 88-91.
    [11]van Koppen C, Meyer zu Heringdorf M, Laser KT, Zhang C, Jakobs KH,Bunemann M, Pott L. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996; 271:2082-2087.
    [12]Schachter JB, Sromek SM, Nicholas RA, Harden TK. HEK293 human embryonic kidney cells endogenously express the P2Y1 and P2Y2 receptors.Neuropharmacology. 1997; 36: 1181-1187.
    [13]Lin K, Sadee W, Quillan JM. Rapid measurements of intracellular calcium using a fluorescence plate reader. Biotechniques. 1999; 26: 318-322, 324-316. [14] Anderson L, Alexander CL, Faccenda E, Eidne KA. Rapid desensitization of the thyrotropin-releasing hormone receptor expressed in single human embryonal kidney 293 cells. Biochem J. 1995; 311: 385-392.
    [1]Schmitz C,Perraud AL,Johnson CO,Inabe K,Smith MK,Penner R,Kurosaki T Fleig A,Scharenberg AM.Regulation of vertebrate cellular Mg~(2+) homeostasis by TRPM7.Cell.2003; 114: 191-200.
    [2]Trzeciakiewicz A,Opolski A,Mazur A.TRPM7: a protein responsible for magnesium homeostasis in a cell.Postepy Hig Med Dosw (Online).2005; 59:496-502.
    [3]Monteilh-Zoller MK,Hermosura MC,Nadler MJ,Scharenberg AM,Penner R,Fleig A.TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions.J Gen Physiol.2003; 121:49-60.
    [4]Hanano T,Hara Y,Shi J,Morita H,Umebayashi C,Mori E,Sumimoto H,Ito Y,Mori Y,Inoue R.Involvement of TRPM7 in cell growth as a spontaneously activated Ca~(2+) entry pathway in human retinoblastoma cells.J Pharmacol Sci.2004;95:403-419.
    [5] Su LT, Agapito MA, Li M, Simonson WT, Huttenlocher A, Habas R, Yue L,Runnels LW. TRPM7 Regulates Cell Adhesion by Controlling the Calcium-dependent Protease Calpain. J Biol Chem. 2006; 281: 11260-11270.
    [6] Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ.Involvement of TRP-like channels in the acute ischemic response of hippocampal CAl neurons in brain slices. Brain Res. 2006; 1077: 187-199.
    [7] Chinopoulos C, Connor JA, Shuttleworth CW. Emergence of a spermine-sensitive,non-inactivating conductance in mature hippocampal CAl pyramidal neurons upon reduction of extracellular Ca~(2+): Dependence on intracellular Mg~(2+) and ATP Neurochem Int. 2007; 50: 148-158.
    [8] Jiang X, Newell EW, Schlichter LC. Regulation of a TRPM7-like current in rat brain microglia. J Biol Chem. 2003; 278: 42867-42876.
    [9] Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron. 2006; 52: 485-496.
    [10]Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM. A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA. 2005;102:115010-11515.
    [11] Arts M, Ihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF,Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115:863-877.
    [12]Raynal P, van Bergen en Henegouwen PM, Hullin F, Ragab-Thomas JM, Fauvel J, Verkleij A, Chap H. Morphological and biochemical evidence for partial nuclear localization of annexin 1 in endothelial cells. Biochem Biophys Res Commun. 1992;186:432-439.
    [13]Solito E, Mulla A, Morris JF, Christian HC, Flower RJ, Buckingham JC.Dexamethasone induces rapid serine-phosphorylation and membrane translocation of annexin 1 in a human folliculostellate cell line via a novel nongenomic mechanism involving the glucocorticoid receptor, protein kinase C,phosphatidylinositol 3-kinase, and mitogenactivated protein kinase. Endocrinology.2003; 144:1164-1174.
    [14]Solito E, Christian HC, Festa M, Mulla A, Tierney T, Flower RJ, Buckingham JC. Post-translational modification plays an essential role in the translocation of annexin Al from the cytoplasm to the cell surface. FASEB J. 2006; 20: 1498-1500.
    [15]Skouteris GG, Schroder CH. The hepatocyte growth factor receptor kinase-mediated phosphorylation of lipocortin-1 transduces the proliferating signal of the hepatocyte growth factor. J Biol Chem. 1996; 271:27266-272733.
    [16]Rhee HJ, Kim SW, Lee SO, Park YM, Na DS. Translocation of annexin I to the nucleus by epidermal growth factor in A549 cells. J Biochem Mol Biol. 1999; 32:28-32.
    [17]Kim YS, Ko J, Kim IS, Jang SW, Sung HJ, Lee HJ, Lee SY, Kim Y, Na DS.PKC8-dependent cleavage and nuclear translocation of annexin Al by phorbol 12-myristate 13-acetate. Eur J Biochem. 2003; 270: 4089-4094.
    [18]Rhee HJ, Kim GY, Huh JW, Kim SW, Na DS. Annexin I is a stress protein induced by heat, Oxidative stress and a sulfhydryl-reactive agent. Eur J Biochem. 2000; 267:3220-3225.
    [19]Hsiang CH, Tunoda T, Whang YE, Tyson DR, Ornstein DK. The impact of altered annexin I protein levels on apoptosis and signal transduction pathways in prostate cancer cells. Prostate. 2006; 66: 1413-1424.
    [20]Ishido M. Overexpression of Bcl-2 inhibits nuclear localization of annexin I during tumor necrosis factor-alpha-mediated apoptosis in porcine renal LLC-PK1 cells.Regul Pept. 2005; 124: 45-51.
    [21]Dorovkov MV, Ryazanov AG. Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 2004; 279: 50643-50646.
    [22]Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation. Br J Pharmacol. 2001; 133: 217-228.
    [23]Debreta R, El Btaouria HE, Duca L, Rahman I, Radke S, Haye B, Sallenave JM, Antonicelli F. Annexin Al processing is associated with caspase-dependent apoptosis in BZR cells. FEBS Lett. 2003; 546: 195-202.
    [24] Gavins FN, Kamal AM, D'Amico MD, Oliani SM, Perretti M. Formyl-peptide receptor is not involved in the protection afforded by annexin 1 in murine acute myocardial infarct. FASEB J. 2005; 19: 100-102.
    [25] Cuzzocrea S, Tailor A, Zingarelli B, Salzman AL, Flower RJ, Szabo C, Perretti M.Lipocortin 1 protects against splanchnic artery occlusion and reperfusion injury by affecting neutrophil migration. J Immunol. 1997; 159: 5089-5097.
    [26]Relton JK, Strijbos PJ, O'Shaughnessy CT, Carey F, Forder RA, Tilders FJ,Rothwell NJ. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991; 174: 305-310.
    [1]Lipton P.Ischemic cell death in brain neurons.Physiol Rev.1999; 79: 1431-1568.
    [2]Goldberg MP,Weiss JH,Pham PC,Choi DW.N-methyl-D-aspartate receptors mediate hypoxic neuronal injury in cortical culture.J Pharmacol Exp Ther.1987;243:784-791.
    [3]Choi DW,Maulucci-Gedde M,Kriegstein AR.Glutamate neurotoxicity in cortical cell culture.J Neurosci.1987; 7: 357-368.
    [4]Sattler R,Charlton MP,Hafner M,Tymianski M.Distinct influx pathways,not calcium load,determine neuronal vulnerability to calcium neurotoxicity.J Neurochem.1998; 71:2349-2364.
    [5]Sattler R,Xiong Z,Lu WY,Hafner M,MacDonald JF,Tymianski M.Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein.Science.1999; 284: 1845-1848.
    [6]Aarts M,Liu Y,Liu L,Besshoh S,Arundine M,Gurd JW,Wang YT,Salter MW,Tymianski M.Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 2002; 298: 846-850.
    [7] Arts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF,Tymianski M. A key role for TRPM7 channels in anoxic neuronal death. Cell. 2003;115:863-77.
    [8] Davis SM, Albers GW, Diener HC, Lees KR, Norris J. Termination of acute stroke studies involving selfotel treatment.ASSIST Steering Committed. Lancet. 1997;349(9044):32.
    [9] Morris GF, Bullock R, Marshall SB, Marmarou A, Maas A, Marshall LF. Failure of the competitive N-methyl- D-aspartate antagonist selfotel (CGS 19755) in the treatment of severe head injury: results of two phase III clinical trials. J Neurosurg.1999; 91: 737-743.
    [10]Lees KR, Asplund K, Carolei A, Davis SM, Diener HC, Kaste M, Orgogozo JM,Whitehead J. Glycine antagonist (gavestinel) in neuroprotection (GAIN International) in patients with acute stroke: a randomised controlled trial. Lancet.2000;355: 1949-1954.
    [11]Shigeno T, Mima T, Takakura K, Graham DI, Kato G, Hashimoto Y, Furukawa S. Amelioration of delayed neuronal death in the hippocampus by nerve growth factor. J Neurosci. 1991; 11:2914-2919.
    [12]Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M. Neurotrophins and brain insults. Trends Neurosci. 1994; 17:490-496.
    [13]Semkova I, Krieglstein J. Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. [Review]. Brain Res Brain Res Rev. 1999; 30:176-88.
    [14] Cheng B, Mattson MP. NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron.1991; 7(6):1031-41.
    [15] Mattson MP, Lovell MA, Furukawa K, Markesbery WR. Neurotrophic Factors Attenuate Glutamate-Induced Accumulation of Peroxides, Elevation of Intracellular Ca~(2+) Concentration, and Neurotoxicity and Increase Antioxidant Enzyme Activities in Hippocampal Neurons. J Neurochem. 1995; 65:1740-1751.
    [16]Sombati S, DeLorenzo RJ. Recurrent spontaneous seizure activity in hippocampal neuronal networks in culture. J. Neurophysiol. 1995; 73:1706-1711 [17]Aarts MM, Tymianski M. TRPM7 and ischemic CNS injury. Neuroscientist. 2005;11:116-123.
    [18]Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ.Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res. 2006; 1077:187-99.
    [19]Crowder J, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J. Neurosci. 1998; 18: 2933-2943.
    [20]Culmsee C; Gerling N; Lehmann M; Nikolova-Karakashian M; Prehn JHM; Mattson MP; Krieglstein J. Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75.Neuroscience. 2002; 115: 1089-108. [21]Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-DrakeM, Chan PH.Neuroprotective Role of a Proline-Rich Akt Substrate in Apoptotic Neuronal Cell Death after Stroke: Relationships with Nerve Growth Factor. J Neurosci. 2004; 24:1584-1593.
    [22]Tabakman HR, Jiang I, Shahar H, Arien-Zakay RA, Levine, Lazarivici P.Neuroprotection by NGF in the PC 12 in vitro OGD model: involvement of mitogen-activated protein kinases and gene expression. Ann N Y Acad Sci. 2005;1053:84-96.
    [23]Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995; 267: 2003-2006.
    [24] Saito A, Tominaga T, Chan PH. Neuroprotective role of neurotrophins: relationship between nerve growth factor and apoptotic cell survival pathway after cerebral ischemia.Curr Atheroscler Rep.2005; 7: 268-73.
    [25]Jiang H,Tian SL,Zeng Y,Li LL,Shi J.TrkA pathway(s) is involved in regulation of TRPM7 expression in hippocampal neurons subjected to ischemic-reperfusion and oxygen-glucose deprivation.Brain Res Bull.2008; 76:124-130.
    [26]Tian SL,Jiang H,Zeng Y,Li LL,Shi J.NGF-induced reduction of an outward-rectifying TRPM7-like current in rat CA1 hippocampal neurons.Neurosci Lett.2007; 419:93-98.
    [1]Moss SE,Morgan RO.The annexins.Genome Biol.2004; 5(4): 219.
    [2]Raynal P,Pollard HB.Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys Acta. 1994;1197(1): 63-93.
    [3] Blackwell GJ, Carnuccio R, Di Rosa M, Flower RJ, Parente L, Persico P.Macrocortin: a polypeptide causing the anti-phospholipase effect of glucocorticoids. Nature. 1980; 287(5778): 147-149.
    [4] Rothhut B, Russo-Marie F, Wood J, DiRosa M, Flower RJ. Further characterization of the glucocorticoidinduced antiphospholipase protein "renocortin". Biochem Biophys Res Commun. 1983; 117(3): 878-884.
    [5] Hirata F, del Carmine R, Nelson CA, Axelrod J, Schiffmann E, Warabi A, De Blas AL, Nirenberg M, Manganiello V, Vaughan M, Kumagai S, Green I, Decker JL,Steinberg AD. Presence of autoantibody for phospholipase inhibitory protein,lipomodulin, in patients with rheumatic diseases. Proc Natl Acad Sci U S A. 1981;78(5): 3190-3194.
    [6] Schlaepfer DD, Haigler HT. Characterization of Ca~(2+)-dependent phospholipid binding and phosphorylation of lipocortin I. J Biol Chem. 1987; 262(14):6931-6937.
    [7] Buckingham JC, John CD, Solito E, Tierney T, Flower RJ, Christian H, Morris J. Annexin 1, glucocorticoids, and the neuroendocrine-immune interface. Ann N Y Acad Sci. 2006; 1088: 396-409.
    [8] de Coupade C, Gillet R, Bennoun M, Briand P, Russo-Marie F, Solito E. Annexin 1 expression and phosphorylation are upregulated during liver regeneration and transformation in antithrombin III SV40 T large antigen transgenic mice.Hepatology. 2000; 31(2): 371-380.
    [9] Solito E, de Coupade C, Parente L, Flower RJ, Russo-Marie F. Human annexin 1 is highly expressed during the differentiation of the human epithelial cell line A 549.Involvement of NF-IL6 in phorbol ester induction of annexin 1. Cell Growth Differ.1998; 9(4): 327-336.
    [10]McKanna JA. Lipocortin 1 in apoptosis: mammary regression. Anat Rec. 1995;242(1): 1-10.
    [11]Solito E, de Coupade C, Canaider S, Goulding NJ, Perretti M. Transfection of annexin 1 in monocytic cells produces a high degree of spontaneous and stimulated apoptosis associated with caspase-3 activation. Br J Pharmacol. 2001; 133(2):217-228.
    [12]Lim LH, Solito E, Russo-Marie F, Flower RJ, Perretti M. Promoting detachment of neutrophils adherent to murine postcapillary venules to control inflammation: effect of lipocortin 1. Proc Natl Acad Sci USA. 1998; 95(24), 14535-14539.
    [13]Fan X, Krahling S, Smith D, Williamson P, Schlegel RA. Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes. Mol Biol Cell. 2004; 15(6): 2863-2872.
    [14] Flower RJ. Eleventh Gaddum memorial lecture. Lipocortin and the mechanism of action of the glucocorticoids. Br J Pharmacol. 1988; 94(4): 987-1015.
    [15]Rothwell N, Allan S, Toulmond S. The role of interleukin 1 in acute neurodegeneration and stroke: pathophysiological and therapeutic implications. J Clin Invest. 1997; 100(11): 2648-2652.
    [16] Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M. Activation of the annexin 1 counterregulatory circuit affords protection in the mouse brain microcirculation.FASEB J. 2007; 21(8):1751-1758.
    [17]Rothwell NJ, Relton JK. Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehav Rev. 1993; 17(2), 217-227. [18] Young KA, Hirst WD, Solito E, Wilkin GP. De novo expression of lipocortin-1 in reactive microglia and astrocytes in kainic acid lesioned rat cerebellum. Glia. 1999;26(4): 333-343.
    [19]Kovacic RT, Tizard R, Cate RL, Frey AZ, Wallner BP. Correlation of gene and protein structure of rat and human lipocortin I. Biochemistry. 1991; 30(37):9015-9021.
    [20]Rosengarth A, Gerke V, Luecke H. X-ray structure of full-length annexin 1 and implications for membrane aggregation. J Mol Biol. 2001; 306(3): 489-498.
    [21]Rosengarth A, Luecke H. A calcium-driven conformational switch of the N-terminal and core domains of annexin A1. J Mol Biol. 2003; 326(5):1317-1325.
    [22]Rothhut B. Participation of annexins in protein phosphorylation. Cell Mol Life Sci. 1997; 53(6): 522-526.
    [23]Dorovkov MV, Ryazanov AG. Phosphorylation of Annexin I by TRPM7 Channel-Kinase. J Biol Chem. 2004; 279(49): 50643-50646.
    [24]Hamre KM, Chepenik KP, Goldowitz D. The annexins: specific markers of midline structures and sensory neurons in the developing murine central nervous system. J Comp Neural. 1995; 352(3): 421-435.
    [25]Fava RA, McKanna J, Cohen S. Lipocortin 1 (p35) is abundant in a restricted number of differentiated cell types in adult organs. J Cell Physiol. 1989; 141(2):284-293.
    [26] McKanna JA. Optic chiasm and infundibular decussation sites in the developing rat diencephalon are defined by glial raphes expressing p35 (lipocortin 1, annexin I).Dev Dyn. 1992; 195(2): 75-86.
    [27]Mizuno H, Asai K, Fujita K, Uemura K, Wada Y, Moriyama A, Ogawa H, Kimura S, Kato T. Neurotrophic action of lipocortin 1 derived from astrocytes on cultured rat cortical neurons. Brain Res Mol Brain Res. 1998; 60(1): 28-39. [28] Smith T, Flower RJ, Buckingham JC. Lipocortins 1, 2 and 5 in the central nervous system and pituitary gland of the rat: selective induction by dexamethasone of lipocortin 1 in the anterior pituitary gland. Mol Neuropharmacol. 1993; 3: 45-55.
    [29] Woods MD, Kiss JZ, Smith T, Buckingham JC, Flower R, Antoni FA. Localization of lipocortin-1 in rat hypothalamus and pituitary gland. Biochem Soc Trans. 1990;18(6): 1236-1237.
    [30] McKanna JA, Zhang MZ. Immunohistochemical localization of lipocortin 1 in rat brain is sensitive to pH, freezing, and dehydration. J Histochem Cytochem. 1997;45(4): 527-538.
    [31] Johnson MD, Kamso-Pratt JM, Whetsell WO Jr, Pepinsky RB. Lipocortin-1 immunoreactivity in the normal human central nervous system and lesions with astrocytosis. Am J Clin Pathol. 1989; 92(4): 424-429.
    [32]Dreier R, Schmid KW, Gerke V, Riehemann K. Differential expression of annexins I, II and IV in human tissues: an immunohistochemical study. Histochem Cell Biol.1998; 110(2): 137-148.
    [33]Gabrion JB, Herbut(?) S, Bouill(?) C, Maurel D, Kuchler-Bopp S, Laabich A,Delaunoy JP. Ependymal and choroidal cells in culture: characterization and functional differentiation. Microsc Res Tech. 1998; 41(2): 124-157.
    [34]Markoff A, Gerke V. Expression and functions of annexins in the kidney. Am J Physiol Renal Physiol. 2005; 289(5): F949-956.
    [35]Savchenko VL, McKanna JA, Nikonenko IR, Skibo GG. Microglia and astrocytes in the adult rat brain: comparative immunocytochemical analysis demonstrates the efficacy of lipocortin 1 immunoreactivity. Neuroscience. 2000; 96(1): 195-203.
    [36]Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain: a matter of fat. J Neurochem. 2007; 101(3): 577-599.
    [37]Marchetti B, Abbracchio MP. To be or not to be (inflamed) - is that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci. 2005; 26(10): 517-525.
    [38] Magnus T, Chan A, Grauer O, Toyka KV, Gold R. Microglial phagocytosis of apoptotic inflammatory T cells leads to down-regulation of microglial immune activation. J Immunol. 2001;167(9): 5004-5010.
    [39] Gavins FN, Dalli J, Flower RJ, Granger DN, Perretti M. Activation of the annexin 1 counterregulatory circuit affords protection in the mouse brain microcirculation. FASEB J. 2007; 21(8): 1751-1758.
    [40] Johnson MD, Kamso-Pratt JM, Whetsell WO Jr, Pepinsky RB. Lipocortin-1 immunoreactivity in the normal human central nervous system and lesions with astrocytosis. Am J Clin Pathol. 1989; 92(4): 424-429.
    [41]Eberhard DA, Brown MD, VandenBerg SR. Alterations of annexin expression in pathological neuronal and glial reactions. Immunohistochemical localization of annexins I, II (p36 and pi 1 subunits), IV, and VI in the human hippocampus. Am J Pathol. 1994; 145(3): 640-649.
    [42] Herbert SP, Odell AF, Ponnambalam S, Walker JH. The confluence-dependent interaction of cytosolic phospholipase A2-{alpha} with annexin Al regulates endothelial cell prostaglandin E2 generation. J Biol Chem. 2007; 282(47):34468-34478.
    [43]Traverso V, Christian HC, Morris JF, Buckingham JC. Lipocortin 1 (annexin 1): a candidate paracrine agent localized in pituitary folliculo-stellate cells.Endocrinology. 1999; 140(9): 4311-.4319.
    [44] McKanna JA. Lipocortin 1 immunoreactivity identifies microglia in adult rat brain J Neurosci Res. 1993; 36(4): 491-500.
    [45]Johnson MD, Kamso-Pratt J, Pepinsky RB, Whetsell WO Jr. Lipocortin-1 immunoreactivity in central and peripheral nervous system glial tumors. Hum Pathol. 1989; 20(8): 772-776.
    [46]Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson's disease:iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci. 2000; 16(6):724-739.
    [47]Naciff JM, Kaetzel MA, Behbehani MM, Dedman JR. Differential expression of annexins I-VI in the rat dorsal root ganglia and spinal cord. J Comp Neurol. 1996;368(3):356-370.
    [48]Hannon R, Croxtall JD, Getting SJ, Roviezzo F, Yona S, Paul-Clark MJ, Gavins FN,Perretti M, Morris JF, Buckingham JC, Flower RJ. Aberrant inflammation and resistance to glucocorticoids in annexin 1-/-mouse. FASEB J. 2003; 17(2):253-255.
    [49] Elderfield AJ, Newcombe J, Bolton C, Flower RJ. Lipocortins (annexins) 1, 2, 4 and 5 are increased in the central nervous system in multiple sclerosis. J Neuroimmunol. 1992; 39(1-2): 91-100.
    [50] Probst-Cousin S, Kowolik D, Kuchelmeister K, Kayser C, Neundorfer B, Heuss D.Expression of annexin-1 in multiple sclerosis plaques. Neuropathol Appl Neurobiol.2002; 28(4): 292-300.
    [51] Williams AE, van Dam AM, Man-A-Hing WK, Berkenbosch F, Eikelenboom P, Fraser H. Cytokines, prostaglandins and lipocortin-1 are present in the brains of scrapie-infected mice. Brain Res. 1994; 654(2): 200-206.
    [52] Williams A, Van Dam AM, Ritchie D, Eikelenboom P, Fraser H.Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res. 1997; 754(1-2): 171-180.
    [53] Mullens L, Marriott DR, Young KA, Tannahill L, Lightman SL, Wilkin GP.Up-regulation of lipocortin-1 and its mRNA in reactive astrocytes in kainate-lesioned rat cerebellum. J Neuroimmunol. 1994; 50(1): 25-33.
    [54]Hirst WD, Young KA, Newton R, Allport VC, Marriott DR, Wilkin GP. Expression of COX-2 by normal and reactive astrocytes in the adult rat central nervous system.Mol Cell Neurosci. 1999; 13(1): 57-68.
    [55]Huitinga I, Bauer J, Strijbos PJ, Rothwell NJ, Dijkstra CD, Tilders FJ. Effect of annexin-1 on experimental autoimmune encephalomyelitis (EAE) in the rat. Clin Exp Immunol. 1998; 111(1): 198-204.
    [56]Bolton C, Elderfield AJ, Flower RJ. The detection of lipocortins 1, 2 and 5 in central nervous system tissues from Lewis rats with acute experimental allergic encephalomyelitis. J Neuroimmunol. 1990; 29(1-3): 173-181.
    [57]Mizuno H, Uemura K, Moriyama A, Wada Y, Asai K, Kimura S, Kato T.Glucocorticoid induced the expression of mRNA and the secretion of lipocortin 1 in rat astrocytoma cells. Brain Res. 1997; 746(1-2):256-264. [58]Minghetti L, Nicolini A, Polazzi E, Greco A, Perretti M, Parente L, Levi G.Down-regulation of microglial cyclooxygenase-2 and inducible nitric oxide synthase expression by lipocortin 1. Br J Pharmacol. 1999; 126(2): 1307-1314.
    [59]Relton JK, Strijbos PJ, O'Shaughnessy CT, Carey F, Forder RA, Tilders FJ,Rothwell NJ. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991; 174(2): 305-310.
    [60] Black MD, Carey F, Crossman AR, Relton JK, Rothwell NJ. Lipocortin-1 inhibits NMDA receptormediated neuronal damage in the striatum of the rat. Brain Res.1992; 585(1-2): 135-140.
    [61] Carey F, Forder R, Edge MD, Greene AR, Horan MA, Strijbos PJ, Rothwell NJ.Lipocortin 1 fragment modifies pyrogenic actions of cytokines in rats. Am J Physiol. 1990; 259(2 Pt 2): R266-269.
    [62]Loxley HD, Cowell AM, Flower RJ, Buckingham JC. Loxley HD, Cowell AM,Flower RJ, Buckingham JC. Modulation of the hypothalamo-pituitary-adrenocortical responses to cytokines in the rat by lipocortin 1 and glucocorticoids: a role for lipocortin 1 in the feedback inhibition of CRF-41 release? Neuroendocrinology. 1993; 57(5): 801-814.
    [63]Loxley HD, Cowell AM, Flower RJ, Buckingham JC. Effects of lipocortin 1 and dexamethasone on the secretion of corticotrophin-releasing factors in the rat: in vitro and in vivo studies. J Neuroendocrinol. 1993; 5(1): 51-61.
    [64] Pistritto G, Mancuso C, Tringali G, Perretti M, Preziosi P, Navarra P. The relative contribution of constitutive and inducible cyclooxygenase activity to lipopolysaccharide-induced prostaglandin production by primary cultures of rat hypothalamic astrocytes. Neurosci Lett. 1998; 246(1): 45-48.
    [65] Rothwell NJ, Relton JK. Involvement of interleukin-1 and lipocortin-1 in ischaemic brain damage. Cerebrovasc Brain Metab Rev. 1993; 5(3): 178-98.
    [66] Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147( Suppl 1): S232-240.
    [67] Perry VH, Cunningham C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol. 2007; 7(2): 161-167.
    [68]Nguyen MD, D'Aigle T, Gowing G, Julien JP, Rivest S. Exacerbation of motor neuron disease by chronic stimulation of innate immunity in a mouse model of amyotrophic lateral sclerosis. J Neurosci. 2004; 24(6): 1340-1349. [69] De Caterina R, Sicari R, Giannessi D, Paggiaro PL, Paoletti P, Lazzerini G, Bernini W, Solito E, Parente L. Macrophage-specific eicosanoid synthesis inhibition and lipocortin-1 induction by glucocorticoids. J Appl Physiol, 1993; 75(6): 2368-2375.
    [70] Carey F, Forder R, Edge MD, Greene AR, Horan MA, Strijbos PJ, Rothwell NJ. Lipocortin 1 fragment modifies pyrogenic actions of cytokines in rats. Am J Physiol, 1990; 259(2 Pt 2): R266-269.
    [71] Strijbos PJ, Hardwick AJ, Relton JK, Carey F, Rothwell NJ. Inhibition of central actions of cytokines on fever and thermogenesis by lipocortin-1 involves CRF. Am J Physiol. 1992; 263(4 Pt 1): E632-636.
    [72] Davidson J, Flower RJ, Milton AS, Peers SH, Rotondo D. Antipyretic actions of human recombinant lipocortin-1. Br J Pharmacol. 1991; 102(1): 7-9. [73] Strijbos PJ, Horan MA, Carey F, Rothwell NJ. Impaired febrile response of aging mice are mediated by endogenous lipocortin-1 (annexin-1). Am J Physiol. 1993;265(2 Pt 1):E289-297.
    [74]Taylor AD, Cowell AM, Flower RJ, Buckingham JC. Dexamethasone suppresses the release of prolactin from the rat anterior pituitary gland by lipocortin 1 dependent and independent mechanisms. Neuroendocrinology. 1995; 62(5):530-542.
    [75] Philip JG, John CD, Cover PO, Morris JF, Christian HC, Flower RJ, Buckingham JC. Opposing influences of glucocorticoids and interleukin-lbeta on the secretion of growth hormone and ACTH in the rat in vivo: role of hypothalamic annexin 1.Br J Pharmacol. 2001; 134(4): 887-895.
    [76] Philip JG, Flower RJ, Buckingham JC. Glucocorticoids modulate the cellular disposition of lipocortin 1 in the rat brain in vivo and in vitro. Neuroreport. 1997;8(8): 1871-1876.
    [77] Philip JG, Flower RJ, Buckingham JC. Blockade of the classical pathway of protein secretion does not affect the cellular exportation of lipocortin 1. Regul Pept. 1998;73(2):133-139.
    [78] Buckingham JC, Flower RJ. Lipocortin 1: a second messenger of glucocorticoid action in the hypothalamo-pituitary-adrenocortical axis. Mol Med Today. 1997; 3(7):296-302.
    [79]Adcock IM. Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther.2001; 14(3): 211-219.
    [80]Antonicelli F, De Coupade C, Russo-Marie F, Le Garrec Y. CREB is involved in mouse annexin Al regulation by cAMP and glucocorticoids. Eur J Biochem. 2001;268(1): 62-69.
    [81]Solito E, De Caterina R, Giannessi D, Paggiaro PL, Sicari R, Parente L. Studies on the induction of lipocortin-1 by glucocorticoids. Ann Ist Super Sanita. 1993; 29(3):391-394.
    [82] Green PG, Strausbaugh HJ, Levine JD. Annexin I is a local mediator in neural-endocrine feedback control of inflammation. J Neurophysiol. 1998; 80(6):3120-3126.
    [83]Abraham IM, Harkany T, Horvath KM, Luiten PG. Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol. 2001; 13(9): 749-760.
    [84] Constantini S, Young W. The effects of methylprednisolone and the ganglioside GM1 on acute spinal cord injury in rats. J Neurosurg. 1994; 80(1): 97-111.
    [85]Sudlow AW, Carey F, Forder R, Rothwell NJ. Lipocortin-1 inhibits CRH stimulation of plasma ACTH and 1L-1 beta-stimulated hypothalamic CRH release in rats. Am J Physiol. 1996; 270(1 Pt 2): R54-60.
    [86]Jessop DS. Review: Central non-glucocorticoid inhibitors of the hypothalamo-pituitary-adrenal axis. J Endocrinol. 1999; 160(2): 169-180.
    [87] Buckingham JC, Loxley HD, Taylor AD, Flower RJ. Cytokines, glucocorticoids and neuroendocrine function. Pharmacol Res. 1994; 30(1): 35-42.
    [88]Taylor AD, Christian HC, Morris JF, Flower RJ, Buckingham JC. Evidence from immunoneutralization and antisense studies that the inhibitory actions of glucocorticoids on growth hormone release in vitro require annexin 1 (lipocortin 1).Br J Pharmacol. 2000; 113(7): 1309-1316. [89] Taylor AD, Philip JG, John CD, Cover PO, Morris JF, Flower RJ, Buckingham JC. Annexin 1 (lipocortin 1) mediates the glucocorticoid inhibition of cyclic adenosine 3',5'-monophosphate-stimulated prolactin secretion. Endocrinology. 2000; 141(6):2209-2219.
    [90] Johnson MD, Kamso-Pratt J, Pepinsky RB, Whetsell WO Jr. Lipocortin-1 immunoreactivity in central and peripheral nervous system glial tumors. Hum Pathol. 1989; 20(8): 772-776.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700