用户名: 密码: 验证码:
钙钛矿型La(1-x)Ca_xCoO_3双效氧电极的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以系统研究钙钛矿型双效氧电极的电化学性能为工作目的。选择La1-xCaxCoO3为研究对象,从La1-xCaxCoO3的B位Ca掺杂量入手,筛选出对氧还原和氧析出都具有高催化活性的La0.6Ca0.4CoO3作为双效氧电极的催化剂。
     为了进一步提高催化剂的催化活性和导电性,首次采用化学还原法将金属银包覆在La0.6Ca0.4CoO3催化剂表面,并将该二元催化剂应用于双效氧电极的研究,运用多种物理、化学的分析和测试手段及电化学研究方法,系统研究了银-La0.6Ca0.4CoO3二元催化中银含量对双功能氧电极电化学性能的影响。研究发现,与单元催化剂的La0.6Ca0.4CoO3双效氧电极相比,二元催化剂的银-La0.6Ca0.4CoO3双效氧电极具有更好的电化学性能,并且认为3wt.%载银量为最佳。
     首次采用改进的柠檬酸-硝酸盐自燃法制备出具有高比表面积的纳米多孔的La0.6Ca0.4CoO3催化剂,通过TG-DSC、XRD、SEM和粒径分布等测试手段确定了最佳的煅烧温度和造孔剂用量,并将其用于双效氧电极中。通过对该系列双效氧电极的阴极和阳极稳态极化曲线测试、恒电流测试和循环性能测试,发现纳米多孔的La0.6Ca0.4CoO3具有更好的催化活性,并将改善的电化学性能归咎于其高比表面积和新颖纳米多孔形貌
     采用电化学交流阻抗研究La0.6Ca0.4CoO3双效氧电极的电极过程,利用Z-view2.0软件对Nyquist曲线进行了非线性拟合并提出了相应的等效电路。拟合实验结果发现,双效氧电极过程主要是由高频区的多孔电极固有阻抗和低频区的电子转移与活性物质扩散电阻构成。同时,采用该等效电路研究了银-La0.6Ca0.4CoO3二元催化剂和高比表面积的纳米多孔La0.6Ca0.4CoO3催化剂的双效氧电极的电极过程。实验结果表明,纳米多孔La0.6Ca0.4CoO3和银-La0.6Ca0.4CoO3催化剂的引入不仅可以降低多孔电极的固有阻抗而且还可以提高催化剂对氧析出/还原的催化活性,从而提高了双效氧电极的电化学性能和循环性能。
     研究了高比表面积的纳米多孔Lal1-xCaxCoO3(0.2≤x≤0.5)钙钛矿型氧化物对H202电还原活性,使用循环伏安法和恒电流法,测试了La1-xCaxCoO3系列化合物对于过氧化氢的电催化还原性能。同时也检测了La1-xCaxCoO3化合物中La与Ca的比例及煅烧温度对其催化性能的影响。在La1-xCaxCoO3系列化合物中,650℃煅烧的La0.6Ca0.4CoO3展现出最佳的催化活性。首次将其应用于自制的铝-H2O2电池中,在含有0.4mol·dm-3H2O2的3.0mol·dm-3KOH的水溶液中,使用这种材料作为铝-H2O2半燃料电池的阴极催化剂,在150mA·cm-2电流密度下该电池的电压为1.34V,能量密度为201mWcm-2,发现这种新型的电池是一种很有潜力大功率的能源。
In this dissertation, electrochemical performance of perovskite bi-functional oxygen electrodes are studied. Perovskite-type series of compounds La1-xCaxCoO3powders were synthesized by citrate-nitrate auto-combustion method and used as electrocatalyst for bi-functional oxygen electrodes. The influence of the ratio of La to Ca of La1-xCaxCoO3on their catalytic performance was investigated by polarization curves in alkaline electrolyte. Among these compounds, La0.6Ca0.4CoO3calcined at650℃exhibited the highest catalytic activity for oxygen reduction and evolution.
     In order to further improve the catalytic activities and electron conductivity of the perovskite-electrocatalyst, the La0.6Ca0.4CoO3powder were modified with silver by chemical reduction method. The silver-modified La0.6Ca0.4CoO3powder was used as binary electrocatalyst for bi-functional oxygen electrodes. By means of the physical and chemical examinations and electrochemical methods, the silver loading was found to have a significant impact on the electrode performance, which could facilitate or block the electrochemical processes of the gas diffusion electrodes. The binary catalyst electrodes exhibited higher electrocatalytic activities than that of the electrodes with only La0.6Ca0.4CoO3as the catalyst. The best performance was achieved when the silver loading was3.0wt.%.
     Well-dispersed nanoporous La0.6Ca0.4CoO3catalyst for bi-functional oxygen electrode was synthesized by a modified citrate-nitrate auto-combustion method using Vulcan XC-72R as a pore-forming material. The calcination temperature and the content of the pore-forming material were optimized by TG-DSC, XRD, particle size distribution and SEM analysis. Compared with the traditional citrate-nitrate auto-combustion method, the perovskite La0.6Ca0.4CoO3prepared by this modified technique illustrated higher electrocatalytic activity mainly due to the high surface area and the novel nanostructure, which would provide potential applications in metal-air batteries and fuel cells.
     The La0.6Ca0.4CoO3bifunctional oxygen electrode processes were investigated by electrochemical impedance spectroscopy (EIS). The overall impedance data were fitted by a complex non-linear least squares fitting program in Z-view2.0software. The impedance spectra were analyzed by an equivalent circuit containing an electrode intrinsic resistance at the high frequency and kinetic impedance through the porous electrode at the low frequency. Meanwhile, the equivalent circuit was used for studying the silver-modified La0.6Ca0.4CoO3binary electrocatalyst and the nanoporous Lao.6Cao.4Co03with high specific surface area how to improve their electrode processes. The EIS results confirmed that the silver-modified La0.6Ca0.4CoO3and the nanoporous La0.6Ca0.4CoO3with high specific surface area used as electrocatalysts for bi-functional electrode could reduce both intrinsic and kinetic impedance, indicating that their electrical conductivity and electrocatalytic activity were higher than the common La0.6Ca0.4CoO3catalyst.
     Well-dispersed nanoporous La1-xCaxCoO3were also synthesized by the modified a citrate-nitrate auto-combustion method. Their catalytic activities for hydrogen peroxide electroreduction in3.0mol·dm-3KOH at room temperature were first evaluated by cyclic voltammetry and galvanostatic measurement. The influence of annealing temperature and the ratio of La to Ca of La1-xCaxCoO3on their catalytic performance were investigated. Among the series of compounds, La0.6Ca0.4CoO3calcined at650℃exhibited the highest catalytical activity. An aluminum-hydrogen peroxide semi fuel cell using La0.6Ca0.4CoO3as cathode catalyst showed a peak power density of201mW·cm-2at150mA·cm-2and1.34V running on0.4mol·dm-3H2O2.
引文
[1]Gulcow E. Alkaline fuel cells:a critical view [J]. Journal of Power Sources, 1996,61(1-2):99-104.
    [2]Geeter E D, Mangan M, Spaepen S, et al. Alkaline fuel cells for road traction [J]. Journal of Power Sources,1999,80(1-2):207-212.
    [3]Yang S H, Harold K. Design and analysis of aluminum/air battery system for electric vehicles [J]. Journal of Power Sources,2002,112(1):162-173.
    [4]余祖孝,陈昌国,罗忠礼.铝-空气电池电解液的研究现状[J].化学研究与应用,2004,16(5):612-614.
    [5]Mohamad A A. Electrochemical properties of aluminum anodes in gel electrolyte-based aluminum-air batteries [J]. Corrosion Science,2008,50(12): 3475-3479.
    [6]Li Q, Bjerrum N J. Aluminum as anode for energy storage and conversion:a review [J]. Journal of Power Sources,2002,110(1):1-10.
    [7]Chartouni D, Kuriyama N, Kiyobayashi T, et al. Metal hydride fuel cell with intrinsic capacity [J]. International Journal of Hydrogen Energy,2002,27(9): 945-952.
    [8]Chartouni D, Kuriyama N, Kiyobayashi T, et al. Air-metal hydride secondary battery with long cycle life [J]. Journal of Alloys and Compounds,2002, 330-332(1):766-770.
    [9]Sakai T, Iwaki T, Ye Z, et al. Air-metal hydride battery construction and evaluation [J]. Journal of The Electrochemical Society,1995,142(12): 4040-4045.
    [10]Anantha M V, Manimarana K, Rajb I A, et al. Influence of air electrode electrocatalysts on performance of air-MH cells [J]. International Journal of Hydrogen Energy,2007,32(17):4267-4271.
    [11]Nikolova V, Iliev P, Petrov K, Vitanov T, et al. Electrocatalysts for bifunctional oxygen/air electrodes [J]. Journal of Power Sources,2008,185(2): 727-733.
    [12]Swette L, Kackley N, McCatty S A. Oxygen electrodes for rechargeable alkaline fuel cells Ⅲ [J]. Journal of Power Sources,1991,36(3):323-339.
    [13]Drillet J F, Holzer F, Kallis T, et al. Influence of CO2 on the stability of bifunctional oxygen electrodes for rechargeable zinc/air batteries and study of different CO2 filter materials [J]. Physical Chemistry Chemical Physics,2001, 3(3):368-371.
    [14]Sato M, Ohta M, Sakaguchi M. Effect of carbon dioxide on electrochemical stability of gas diffusion electrodes in alkaline solution [J]. Electrochimica Acta,1990,35(6):945-950.
    [15]Millet P, alleau T, Eurand R. Charaterization of membrane-electrode assemblies for solid polymer electrolyte water electrolysis [J]. Journal of Applied Electrochemistry,1993,23(4):322-331.
    [16]Swette L, Giner J. Oxygen electrodes for rechargeable alkaline fuel cells [J]. Journal of Power Sources,1988,22(3-4):399-408.
    [17]Ioroi T, Kitazawa N, Yasuda K, et al. Iridium oxide/platinum electrocatalysts for unitized regenerative polymer electrolyte fuel cells [J]. Journal of The Electrochemical Society,2000,147(6):2018-2022.
    [18]Swette L L, Kackley N D, LaConti A B. Regenerative fuel cell [J].27th Intersociety energy conversion engineering conference,1992,1(1):101-106.
    [19]Horowitz H S, Longo J M, Horowitz H H. Oxygen Electrocatalysis on Some Oxide Pyrochlores [J]. Journal of The Electrochemical Society,1983,130(9): 1851-1859.
    [20]Prakash J, Tryk D, Alred W, et al. Transition-metal oxide electrocatalysts for O2 electrodes:the pyrochlores, in:O.J. Murphy, et al. (Eds.), Electrochemistry in Transition, Plenum Press, New York,1992, pp.93-106.
    [21]Goodenough J B, Manoharan R. New oxide catalysts for oxygen electrodes [J] Processing Electrochemical Society,1991,11(2):523-539.
    [22]Shukla A K, Kannan A M, Hedge M S, et al. Effect of counter cations on electrocatalytic activity of oxide pyrochlores towards oxygen reduction/evolution in alkaline medium:an electrochemical and spectroscopic study [J]. Journal of Power Sources,1991,35(2):163-173.
    [23]Prakash J, Tryk D, Aldred W, et al. Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes [J]. Journal of Applied Electrochemistry,1999, 29(12):1463-1469.
    [24]Tenkortenaar M V, Vente J F, Ijodo D J W, et al. Oxygen evolution and reduction on iridium oxide compounds [J]. Journal of Power Sources,1995, 56(1):51-60.
    [25]Davidson C R, Kissel G, Srinivasan S. Electrode kinetics of the oxygen evolution reaction at NiCo2O4 from 30% KOH. Dependence on temperature [J]. Journal of Electroanalytic Chemistry,1982,132(1):129-135.
    [26]Svegl F, Orel B, Grabec-Svegl I, et al. Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route [J]. Electrochimica Acta,2000,45(25-26):4359-4371.
    [27]Li N, Li J, Yang L, et al. Electrocatalytic activities of LiCo1-yMyO2(M=Ni or Fe) synthesized at low temperature and acid-delithiated products for oxygen evolution/reduction in alkaline solution [J]. Electrochimica Acta,2000, 46(5):717-722.
    [28]Li N, Yan X, Zhang W, et al. Electrocatalytic activity of spinel-type oxides LiMn2-xCoxO4 with large specific surface areas for metal-air battery [J]. Journal of Power Sources,1998,74(2):255-258.
    [29]Tseung A C C, Bevan H L, A reversible oxygen electrode [J]. Journal of Electroanalytic Chemistry,1973,45(3):429-438.
    [30]Tanaka H, Misono M. Advances in designing perovskite catalysts [J]. Current Opinion in Solid State and Materials Scicience,2001,5(5):381-387.
    [31]Wu N L, Liu W R, Su S J. Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode [J]. Electrochimica Acta,2003, 48(11):1567-1571.
    [32]曲昭君,于春英,李文钊等.掺杂钙钛矿型氧化物的固体结构及其可交换氧[J].物理化学学报,1994,10(9):796-801.
    [33]Matsumoto Y, Yoneyama H, Tamura H. Influence of the nature of the conduction band of transition metal oxides on catalytic activity for oxygen reduction [J]. Journal of Electroanalytic Chemistry,1977,83(2):237-243.
    [34]Goodenough J B. Covalency criterion for localized vs collective electrons in oxides with the perovskite structure [J]. Journal of Applied Physics,1966, 37(3):1415-1422.
    [35]Hyodo T, Hayashi M, Miura N, et al. Catalytic activities of rare-earth manganites for cathodic reduction of oxygen in alkaline solution [J]. Journal of The Electrochemical Society,1996,143(11):L266-L267.
    [36]Isupova L A, Tsybulya S V, Kryukova G N, et al. Real structure and catalytic activity of La1-xCaMnO3+δ perovskites [J]. Solid State Ionics,2001, 141-142(1):417-425.
    [37]清山哲郎著黄敏明译,金属氧化物及其催化作用[M].合肥:中国科学 技术大学出版社,1991:137-196.
    [38]高利珍,于作龙,吴越.在镍系钙钛石型催化剂上的氨氧化Ⅰ.催化剂La1-xSrxNiO3-λ的结构与催化性能[J].催化学报,1992,13(5):351-356.
    [39]高利珍,于作龙,吴越.在镍系钙钛石型催化剂上的氨氧化Ⅱ.催化剂La1-1.333xThxNiO3-λ的结构与催化性能[J].催化学报,1992,13(6):438-442.
    [40]高利珍,于作龙,吴越.在镍系钙钛石型催化剂上的氨氧化Ⅲ.焙烧温度对催化剂结构和活性的影响[J].应用化学,1992,9(6):21-25.
    [41]Carbonino R E, Fierro C, Tryk D, et al. Perovskite-type oxide:oxygen electrocatalysis and bulk structure [J]. Journal of Power Sources,1988, 22(3-4):387-398.
    [42]Hollingworth J, Flavell W R, Thomas A G, et al. Electronic structure and reactivity of La1-xSrxCo1-yCuyO3 and La2-xSrxCo1-yCuyO4 [J]. Journal of Electron Spectroscopy and Related Phenomena,1999,101-103(1):765-769.
    [43]Singh R N, Lal B. High surface area lanthanum cobaltate and it's A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution [J]. International Journal of Hydrogen Energy,2002,27(1):45-55.
    [44]Lamminen J, Kivisaari J, Preparation of air electrodes and long run tests [J]. Journal of The Electrochemical Society,1991,138(4):905-908.
    [45]Shimizu Y, Uemuro K, Matsuda H, et al. Bi-functional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air batteries [J]. Journal of The Electrochemical Society,1990,137 (11):3430-3433.
    [46]Karlsson G. Reduction of oxygen of LaNiO3 in alkaline solution [J]. Journal of Power Sources,1983,10(4):319-331.
    [47]方书农,印洪元,马福泰.稀土钙铁矿型复合氧化物SmCoxFe1-xO3体系结构研究[J].杭州大学学报,1999,17(4):493-494.
    [48]Mori M, Sammes N M, Tompsett G A. Fabrication processing condition for dense sintered Lao.6AEo 4MnO3 perovskites synthesized by the coprecipitation method (AE=Ca and Sr) [J]. Journal of Power Sources,2000,86(1-2): 395-400.
    [49]马紫峰,林维明,黄传荣等.固体氧化物燃料电池电极材料研究Ⅰ:La1-xSrxMnO3的合成及其导电特性[J].电源技术,1993,17(6):1-5.
    [50]Uskokovic V, Drofenik M. Synthesis of lanthanum-strontium manganites by oxalate-precursor co-precipitation methods in solution and in reverse micellar microemulsion [J]. Journal of Magnetism and Magnetic Materials,2006, 303(1):214-220.
    [51]Tian Z, Huang W, Liang Y. Preparation of spherical nanoparticles of LaAlO3 via the reverse microemulsion process [J].Ceramics International,2009,35(2): 661-664.
    [52]Lee M H, Tai C Y, Lu C. H. Synthesis of spherical Zirconia by Reverse Emulsion Precipitation-Effects of Surfactant Type [J]. Korean Journal of Chemical Engeering,1999,16(6):818-822.
    [53]李熙,赵慕愚,王子忱等.柠檬酸盐法合成钙钛矿复合氧化物纳米固体材料LaFeO3 [J]高等学校化学学报,1991,12(11):1542-1544.
    [54]宋崇林,王军,沈美庆等.干燥条件对纳米晶体LaCoO3的结构与合成机理的影响[J]应用化学,1998,15(5):65-67.
    [55]张喜梅,李琳,郭祀远等.用溶胶-凝胶法制备纳米粉体时聚集现象的探讨[J].化学工业与工程,2000,17(3):155-159.
    [56]林纪筠,赵孟科,陈康宁.含镧复合氧化物的合成及其电催化性能[J].中国稀土学报,1999,17(1):78-80.
    [57]康振晋,孙尚梅,王轶等.La1-xSrxCoO3快速溶胶-凝胶法合成[J].延边大学学报,2000,26(1):38-40.
    [58]王秉济,李梅君.溶胶-凝胶法合成LaCr1-xFexO3超细粉末[J].中国稀土学报,1997,15(1):74-76.
    [59]赵静,颜其洁,张鎏.纳米钙钛矿LaMnO3+λ的制备与表征[J].南京大学学报,1997,33(2):247-252.
    [60]邵忠宝,张丽君,王颖等.用溶胶-凝胶法合成La0.8Sr0.2CrO3纳米粉料[J].材料研究学报,2001,15(2):166-170.
    [61]董相廷,吴春光,刘桂霞等.溶胶-凝胶法合成超微LaNiO3及电性质研究[J].长春光学精密机械学院学报,1999,22(2):7-10.
    [62]Teraoka Y, Kakebayashi H, Moriguchi I, et al. Hydroxy acid-aided synthesis of perovskite-type oxides of cobalt and manganese [J]. Chemistry Letters,1991, 20(4):673-676.
    [63]顾军,隋升,李光强等.La1-xCaxFe1-yCoyO3(?)对氧气还原的催化活性[J].无机材料学报,1999,14(4):618-622.
    [64]Manoharan R, Shukla A K. Oxides supported carbon air-electrodes for alkaline solution power devices [J]. Electrochimica Acta,1985,30(2):205-209.
    [65]Viswanathan S, Charkey A. Proceedings of the air electrodes [J].20th Intersociety Energy Conversion Engineering Conference,1985,2(1):221-226.
    [66]Trasatti S. Physical electrochemistry of ceramic oxides [J]. Electrochimica Acta,1990,36(2):225-241.
    [67]王连驰,于作龙,吴越.稀土催化新貌[J].稀土,1990,11(1):36-49.
    [68]Kannan A M, Shukla A K, Sathyanarayana S. J. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries [J]. Journal of Power Sources,1989,25(2):141-150.
    [69]Kannan A M, Shukla A K. Rechargeable iron/air cells employing bifunctional oxygen electrodes of oxide pyrochlores [J]. Journal of Power Sources,1990, 35(2):113-121.
    [70]Swette L, Kackley N. Oxygen electrodes for rechargeable alkaline fuel cells-Ⅱ [J]. Journal of Power Sources,1990,29(3-4):423-436.
    [71]Tiwari S K, Chartier P, Singh R N. Preparation of Perovskite-Type Oxides of Cobalt by the Malic Acid Aided Process and Their Electrocatalytic Surface Properties in Relation to Oxygen Evolution [J]. Journal of The Electrochemical Society,1995,142(1):148-153.
    [72]Tiwari S K, Koenig J F, Poillerat G, et al. Electrocatalysis of oxygen evolution/reductionon LaNiO3 prepared by a novel malic acid-aided method [J]. Journal of Applied Electrochemistry,1998,28(1):114-119.
    [73]Gonzalez M, Elizalde M P, Banos L, et al. Surface characterization of LaNiO3/ Ni-PVC composite [J]. Electrochimica Acta,1999,45(4-5):741-750.
    [74]Meadowcroft D B. Low-cost Oxygen Electrode Material [J]. Nature,1970, 226(5):847-848.
    [75]Shimizu Y, Matsuda H, Miura N, et al. Bi-functional oxygen electrode using large surface area perovskite-type oxide catalyst for rechargeable metal-air batteries [J].Chemistry Letters,1992,21(6):1033-1036.
    [76]Zhang H M, Teraoka Y, Yamazoe N. Preparation of Perovskite-type Oxides with Large Surface Area by Citrate Process, Chemistry Letters,1987,16(4): 665-668.
    [77]Lee C K, Striebel K A, Mclarnon F R, et al. Thermal Treatment of La0.6Ca0.4CoO3 Perovskites for Bifunctional Air Electrodes, Journal of The Electrochemical Society 1997,144(11):3801-3806.
    [78]Haas O, Holzer F, Muller S, et al. X-ray absorption and diffraction studies of La0.6Ca0.4CoO3 perovskite, a catalyst for bifunctional oxygen electrodes [J]. Electrochimica Acta,2002,47(19):3211-3217.
    [79]Wu N L, Liu W R, Su S J. Effect of oxygenation on electrocatalysis of La0.6Ca0.4CoO3-x in bifunctional air electrode [J]. Electrochimica Acta,2003, 48(11):1567-1571.
    [80]Muller S, Holzer F, Haas O, et al. Development of Rechargeable Monopolar and Bipolar Zinc/Air Batteries [J] Chimia,1995,49(1):27-32.
    [81]Wang G, Bao Y, Tian Y, Xia J, et al. Electrocatalytic activity of perovskite La1-xSrxMnO3 towards hydrogen peroxide reduction in alkaline medium [J]. Journal of Power Sources,2010,195(19):6463-6467.
    [82]Karlsson G. Perovskite catalysts for air electrodes [J]. Electrochimica Acta, 1985,30(11):1555-1561.
    [83]Sakaguchi M, Uematsu K, Sakata A. Electrocatalytic activity and oxygen adsorption property of perovskite-type oxides, LnMnO3 (Ln:rare earth) [J]. Electrochimica Acta,1990,35(1):65-67.
    [84]Hyodo T, Hayashi M, Mitsutake S, et al. Praseodymium-calcium manganites (Pr1-xCaxMnO3) as electrode catalyst for oxygen reduction in alkaline solution [J]. Journal of Applied Electrochemistry,1997,27(6):745-746.
    [85]Arai H, Miiller S, Haas O. AC Impedance Analysis of Bifunctional Air Electrodes for Metal-Air Batteries [J]. Journal of The Electrochemical Society, 2000,147(10):3584-3591.
    [86]Suresh K, Panchapagesan T S, Patil K C. Synthesis and properties of La1-xSrx FeO3 [J]. Solid State Ionics,1999,126(3-4):299-305.
    [87]池玉娟,王占良,景晓燕.钙钛矿型La1-xSrxFeO3和LaNiO3纳米晶在双功能氧电极上的应用[J].电源技术,1999,23(5):275-278.
    [88]Hermann V, Muller S, Comninellis C. Oxygen and Hydrogen peroxide reduction on perovskite electrodes [J]. Processing Electrochemical Society, 1998,97(1):159-170.
    [89]宋文顺.化学电源工艺学[M].北京:中国轻工业出版社,1998:120-139.
    [90]Tseung A C C. Semiconducting oxide oxygen electrodes [J]. Journal of The Electrochemical Society,1978,125(10):1660-1664.
    [91]Evans U R. Cathodic reduction of oxygen in fuel cell and corrosion cells [J]. Nature,1968,218(11):602-603.
    [92]Winter E R S. Adsorption upon pure and lithium-doped nickel oxide I. oxygen [J]. Journal of Catalysis,1966,6(11):35-49.
    [93]Van Buren F R, Broers G H J, Boesveld C, et al. An electrochemical method for the determination of oxygen ion diffusion coefficients in La1-xSrxCoO3-y compounds [J]. Journal of Electroanalytic Chemistry,1978,87(3):389-394.
    [94]王世勋,马英,王雪琳.作为氧电极材料的Nd0.8Sr0.2CoO3的研究[J].山东大学学报,1979,4(1):66-78.
    [95]Bronel G, Grenier J C, Reby J. Comparative behaviour of various oxides in the electrochemical reactions of oxygen evolution and reduction in alkaline medium [J]. Electrochimica Acta,1980,25(8):1015-1018.
    [96]Matsumoto Y, Yoneyama H, Tamura H. On the intermediates in electrooxidation of nickel amalgam in aqueous solutions of halogen and pseudohalogen ion [J]. Journal of Electroanalytic Chemistry,1977,78(2): 319-324.
    [97]Yeager E. Electrocatalysts for O2 reduction [J]. Electrochimica Acta,1984, 29(11):1527-1537.
    [98]Shimizu Y, Nemoto A, Hyodo T, et al. Gas diffusion-type oxygen electrode using perovskite-type oxides for rechargeablemetal-air batteries [J]. Denki Kagaku,1993,61(12):1458-1460.
    [99]Falcon H, Carbonio R E. Study of the heterogeneous decomposition of hydrogen peroxide:its application to the development of catalysts for carbon-based oxygen cathodes [J] Journal of Electroanalytic Chemistry,1992, 339(1-2):69-83.
    [100]周运鸿,骆培方,吴智远等.钙钛矿型氧化物电极极化过程的导电特性[J].高等学校化学学报,1990,11(12):1396-1399.
    [101]Hermann V, Dutriat D, Miiller S. et al. Mechanistic studies of oxygen reduction at La0.6Ca0.4CoO3-activited carbon electrodes in a channel flow cell [J]. Electrochimica Acta,2000,46(2-3):365-372.
    [102]Hollingworth J, Flavell W R, Thomas A G, et al. Electronic structure and reactivity of La1-xSrxCo1-yCuyO3 and La2-xSrxCo1-yCuyO4 [J] Journal of Electron Spectroscopy and Related Phenomena,1999,101-103(6):765-769.
    [103]Lee Y N, Lago R M, Fierro J L G, et al. Hydrogen peroxide decomposition over Lni-xAxMnO3(Ln=La or Nd and A=K or Sr)perovskites [J]. Applied Catalysis A:General,2001,215(1-2):245-256.
    [104]Bockris J OM, Otagawa T. Mechanism of oxygen evolution perovskites [J]. Journal of Physical Chemistry,1983,87(15):2960-2971.
    [105]Singh N K, Tiwari S K, Singh R N. Electrocatalytic properties of lanthanum manganites obtained by a novel malic acid-aided route, International Journal of Hydrogen Energy,1998,23(9):775-780.
    [105]王鹏,姚立广,王明贤等La1-xSrxCoO3钙钛矿在碱性溶液中的析氧电催化[J].催化学报,2000,2(11):23-26.
    [106]王鹏,姚立广,王明贤等.复合氧化物La0.8Sr0.2CoO3的合成及其析氧电催化,化学工业与工程,2000,17(1):19-22.
    [107]衣宝廉.燃料电池—高效、环境友好的发电方式.第1版.北京:化学工业出版社,2003.
    [108]Gamburzev S, Zhang W, Velev O A, et al. Prospects for development of metal hydride-air secondary battery [J]. Processing Electrochemical Society,1996, 96(1):166-173
    [109]Kiros Y, Lindstrom O, Kaimakis T. Cobalt and cobalt-based macrocycle blacks as oxygen-reduction catalysts in alkaline fuel cells [J]. Journal of Power Sources,1993,45(2):219-227.
    [110]Miiller S, Holzer F, Haas O. Development of a 12 V/20 Ah electrically rechargeable zinc-air battery [J]. Processing Electrochemical Society,1998, 98(1):101-110.
    [111]Kiros Y, Schwartz S. Pyrolyzed macrocycles on high surface area carbons for the reduction of oxygen in alkaline fuel cells [J]. Journal of Power Sources, 1991,36(4):547-555.
    [112]Muller S, Striebel K, Haas O. La0.6Ca0.4CoO3:A stable and powerful catalyst for bifunctional air electrodes [J]. Electrochimica Acta,1994, 39(11-12):1661-1668.
    [113]Chan D S, Wan C C. Influence of PTFE dispersion in the catalyst layer of porous gas-diffusion electrodes for phosphoric acid fuel cells [J]. Journal of Power Sources,1994,50(1-2):163-176.
    [114]Chan D S, Wan C C. Effect of structure on porous gas-diffusion electrodes for phosphoric acid fuel cells [J]. Journal of Power Sources,1994,50(3):261-281.
    [115]Merino N A, Barbero B P, Eloy P, et al. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS [J]. Applied Surface Science,2006,253(3):1489-1493.
    [116]Kahoul A, Hammouche A, Poillerat G, et al. Electrocatalytic activity and stability of La1-xCaxCoO3 perovskite-type oxides in alkaline medium [J]. Catalysis Today,2004,89(3):287-291.
    [117]Marinsek M, Zupan K, Maeek J. Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis [J]. Journal of Power Sources,2002, 106(l-2):178-188.
    [118]Patil K C, Aruna S T, Mimani T. Combustion synthesis:an update [J]. Current Opinion in Solid State and Materials Science,2002,6(6):507-512.
    [119]Erri P, Pranda P, Varma A. Oxidizer-fuel interactions in aqueous combustion synthesis.1. Iron(Ⅲ) nitrate-model fuels [J]. Industrial & Engineering Chemistry Research,2004,43(12):3092-3096.
    [120]Hwang C C, Wu T Y, Wan J, et al. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders [J]. Materials Science and Engineering:B,2004,111(1):49-56.
    [121]Chakroborty A, Das Sharma A, Maiti B, et al. Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique [J]. Materials Letters,2002,57(4):862-867.
    [122]Hwang B J, Santhanam R, Liu D G. Effect of various synthetic parameters on purity of LiMn2O4 spinel synthesized by a sol-gel method at low temperature [J]. Journal of Power Sources,2001,101(1):86-89.
    [123]Xu G, Ma H, Zhong M, et al. Influence of pH on characteristics of BaFe12O19 powder prepared by sol-gel auto-combustion [J]. Journal of Magnetism and Magnetic Materials,2006,301(2):383-388.
    [124]Poth J, Haberkorn R, Beck H P. Combustion-synthesis of SrTiO3. Part I. Synthesis and properties of the ignition products [J]. Journal of the European Ceramic Society,2000,20(6):707-713.
    [125]Deganello F, Marci G, Deganello G. Citrate-nitrate auto-combustion synthesis of perovskite-type nanopowders:A systematic approach [J]. Journal of the European Ceramic Society,2009,29(3):439-450.
    [126]Tulloch J, Donne S W. Activity of perovskite Lal-xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes [J]. Journal Power Sources, 2009,188(1):113-121.
    [127]钟子宜,曹学强,曾跃等.纳米钙钛矿型氧化物LaFe1-yAlyO3-λ制备及催化性能[J].分子催化,1997,11(2):95-100.
    [128]Koninck M D, Marsan B. MnxCu1-xCo2O4 used as bifunctional electrocatalyst in alkaline medium Electrochimica Acta,2008,53(23):7012-7021.
    [129]Weidenkaff A, Ebbinghaus S G, Lippert T. Ln1-xAxCoO3 (Ln=Er, La; A=Ca, Sr)/Carbon Nanotube Composite Materials Applied for Rechargeable Zn/Air Batteries [J]. Chemistry of Material,2002,14(4):1797-1805.
    [130]Dong H, Kiros Y, Noreus D. An air-metal hydride battery using MmNi3.6Mn0.4Al0.3Co0.7 in the anode and a perovskite in the cathode [J]. International Journal of Hydrogen Energy,2010,35(9):4336-4341.
    [131]Hu W K, Noreus D. Lab-size rechargeable metal hydride-air cells [J]. Journal of Power Sources,2010,195(17):5810-5813.
    [132]Jorissen L. Bifunctional oxygen/air electrodes [J]. Journal of Power Sources, 2006,155(1):23-32.
    [133]Jung H Y, Park S, Popov B N. Electrochemical studies of an unsupported PtIr electrocatalyst as a bifunctional oxygen electrode in a unitized regenerative fuel cell [J]. Journal of Power Sources,2009,191(2):357-361.
    [134]Bursell M, Pirjamali M, Kiros Y. La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J]. Electrochimica Acta,2002,47(10): 1651-1660.
    [135]Neburchilov V, Wang H J, Martin J J, et al. A review on air cathodes for zinc-air fuel cells [J]. Journal of Power Sources,2010,195(5):1271-1291.
    [136]Zhang H M, Shimizu Y, Teraoka Y, et al. Oxygen sorption and catalytic properties of La1-xSrxCo1-yFeyO3 Perovskite-type oxides [J]. Journal of Catalysis,1990,121(2):432-440.
    [137]Wang X Y, Sebastian P J, Smit M A, et al. Studies on the oxygen reduction catalyst for zinc-air battery electrode [J]. Journal of Power Sources,2003, 124(1):278-284.
    [138]Chang Y M, Wu P W, Wu C Y. Mechanical Alloying Preparation of La0.6Ca0.4CoIr0.25O3.5-σ as a Bifunctional Electrocatalyst in Alkaline Electrolyte [J]. Electrochemical Solid State Letter,2008,11(4):B47-B50.
    [139]Chang Y M, Hsien Y C, Wu P W, et al. Enhancement of bifunctional catalysis by Ir doping of La0.6Ca0.4CoO3 perovskites [J]. Materials Letters,2008,62(26): 4220-4222.
    [140]Chang Y M, Wu P W, Wu C Y, et al. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte [J]. Journal of Power Sources,2009,189(2):1003-1007.
    [141]Simner S P, Anderson M D, Templeton J W, et al. Silver-perovskite composite SOFC cathodes processed via mechanofusion [J]. Journal of Power Sources, 2007,168(1):236-239.
    [142]Kenjo T, Osawa S, Fujikawa K. High Temperature Air Cathodes Containing Ion Conductive Oxides [J]. Journal of The Electrochemical Society,1991, 138(2):349-355.
    [143]Simner S P, Anderson M D, Coleman J E, et al. Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode [J]. Journal of Power Sources,2006, 161(1):115-122.
    [144]Sasakia K, Hosodaa K, Lanb T N, et al. Ag-Zr(Sc)O2 cermet cathode for reduced temperature SOFCs [J]. Solid State Ionics,2004,174(1-4):97-102.
    [145]Zhang J D, Ji Y, Gao H B, et al. Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells [J]. Journal of Alloys and Compounds,2005, 395(1-2):322-325.
    [146]Zhang G Q, Zhang X G, Wang Y G. A new air electrode based on carbon nanotubes and Ag-MnO2 for metal air electrochemical cells [J], Carbon,2004, 42(15):3097-3102.
    [147]Hu F P, Zhang X G, Xiao F, et al. Oxygen reduction on Ag-MnO2/SWNT and Ag-MnO2/AB electrodes [J]. Carbon,2005,43(14):2931-2936.
    [148]Zhang G Q, Zhang X G. MnO2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells [J]. Electrochimica Acta,2004,49(6):873-877.
    [149]Carlsson L, Ojefors L. Bifunctional Air Electrode for Metal-Air Batteries [J] Journal of The Electrochemical Society,1980,127(3):525-528.
    [150]Wagner N, Schulze M, Gulzow E. Long term investigations of silver cathodes for alkaline fuel cells [J]. Journal of Power Sources,2004,127(1-2):264-272.
    [151]Huang H, Zhang W, Li M, et al. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries [J]. Journal of Colloid and Interface Science,2005,284(2):593-599.
    [152]Pirjamali M, Kiros Y. Effects of carbon pretreatment for oxygen reduction in alkaline electrolyte [J]. Journal of Power Sources,2002,109(2):446-451.
    [153]Zhou W, Ran R, Shao Z P, et al. Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition [J]. Electrochimica Acta,2008,53(13):4370-4380.
    [154]Wang J H, Liu M L, Lin M C. Oxygen reduction reactions in the SOFC cathode of Ag/CeO2 [J]. Solid State Ionics,2006,177(9-10):939-947.
    [155]Lima F H B, Sanches C D, Ticianelli E A. Physical characterization and electrochemical activity of bimetallic platinum-silver particles for oxygen reduction in alkaline electrolyte [J]. Journal of The Electrochemical Society, 2005,152(7):A1466-A1473.
    [156]Burchardt T. Bifunctional air electrode. America, US Patent,200701666602, 2007.
    [157]Shao M H, Sasaki K, Adzic R R. Pd-Fe Nanoparticles as Electrocatalysts for Oxygen Reduction [J]. Journal of the American Chemical Society,2006, 128(11):3526-3527.
    [158]Sapkota P, Kim H. Zinc-air fuel cell, a potential candidate for alternative energy [J]. Journal of Industrial Engeering Chemistry,2009,15(4):445-450.
    [159]Kahoul A, Hammouche A, Naamounce F., et al. Solvent effect on synthesis of perovskite-type La1-xCaxCoO3 and their electrochemical properties for oxygen reactions [J]. Materials Research Bulletin,2000,35(12):1955-1966.
    [160]Shu J, Kaliaguine S. Well-dispersed perovskite-type oxidation catalysts [J]. Applied Catalysis B:Environmental,1998,16(4):L303-L308.
    [161]Kaliaguine S, Neste A V, Szabo V, et al. Perovskite-type oxides synthesized by reactive grinding Part Ⅰ. Preparation and characterization [J]. Applied Catalysis A:General,2001,209(1-2):345-358.
    [162]Szabo V, Bassir M, Kaliaguine S. Perovskite-type oxides synthesized by reactive grinding Part Ⅱ:Catalytic properties of LaCo(1-x) FexO3 in VOC oxidation [J]. Applied Catalysis B:Environmental,2002,37(2):175-180.
    [163]Nguyen S V, Szabo V, Kaliaguine S. Mesoporous silica supported LaCoO3 perovskites as catalysts for methane oxidation [J]. Microporous and Mesoporous Materials,2002,54(1-2):51-61.
    [164]Deng J G, Zhang L, Dai H X, et al. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts:High activity for the complete oxidation of toluene and ethyl acetate [J]. Applied Catalysis A:General,2009, 352(1-2):43-49.
    [165]Jakab E, Omastova M. Thermal decomposition of polyolefin/carbon black composites [J]. Journal of Analytical and Applied Pyrolysis,2005,74(1-2): 204-214.
    [166]Tulloch J, Donne S W. Activity of perovskite La1-xSrxMnO3 catalysts towards oxygen reduction in alkaline electrolytes [J]. Journal of Power Sources,2009, 188(2):359-366.
    [167]Gaudon M, Robert C L, Ansart F, et al. Evaluation of a sol-gel process for the synthesis of La1-xSrxMnO2+δ cathodic multilayers for solid oxide fuel cells [J]. Journal of Power Sources,2004,133(2):214-222.
    [168]Liu H P, Wang Z X, Li X H, et al. Synthesis and electrochemical properties of olivine LiFePO4 prepared by a carbothermal reduction method [J]. Journal of Power Sources,2008,184(2):469-472.
    [169]Deiss E, Holzer F, Haas O. Modeling of an electrically rechargeable alkaline Zn-air battery [J]. Electrochimica Acta,2002,47(25):3995-4010.
    [170]Yang C C, Lin S J. Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery [J]. Journal of Power Sources,2002,112(2): 497-503.
    [171]Mohamad A A. Zn/gelled 6 M KOH/O2 zinc-air battery [J]. Journal of Power Sources,2006,159(1):752-757.
    [172]Lee C W, Sathiyanarayanan K, Eoma S W, et al. Novel electrochemical behavior of zinc anodes in zinc/air batteries in the presence of additives [J]. Journal of Power Sources,2006,159(2):1474-1477.
    [173]Masri M N, Mohamad A A. Effect of adding potassium hydroxide to an agar binder for use as the anode in Zn-air batteries [J]. Corrosion Science,2009, 51(12):3025-3029.
    [174]Wu G M, Lin S J, Yang C C. Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes [J]. Journal of Membrane Science,2006,280(1-2):802-808.
    [175]Lee C W, Sathiyanarayanan K, Eoma SW, et al. Novel alloys to improve the electrochemical behavior of zinc anodes for zinc/air battery [J] Journal of Power Sources,2006,160(2):1436-1441.
    [176]Girishkumar G, McCloskey B, Luntz A C, et al. Lithium-Air Battery:Promise and Challenges [J]. Journal of Physical Chemistry Letters,2010,1(14): 2193-2203.
    [177]Laoire C O, Mukerjee S, Abraham K M Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery [J]. Journal of Physical Chemistry C,2010,114(19):9178-9186.
    [178]Yoo E, Zhou H. Li-Air Rechargeable Battery Based on Metal-free Graphene Nanosheet Catalysts [J]. ACS NANO,2011,5(4):3020-3026.
    [179]Wagner F T, Lakshmanan B, Mathias M F. Electrochemistry and the Future of the Automobile [J]. Journal of Physical Chemistry Letters,2010,1(14): 2204-2219.
    [180]宋世栋.钙钛矿型双功能氧电极的研究:[博士学位论文].天津:天津大学,2003.
    [181]刘浩.双效氧电极及其应用:[博士学位论文].大连:中国科学院研究生院,2004.
    [182]刘东任.铝/空气电池阴极及其催化剂的研究:[硕士学位论文].长沙:中南大学,2004.
    [183]郭瑞敏.铝/空气电池钙钛矿型空气电极的研究:[硕士学位论文].长沙:中南大学,2007.
    [184]Holze R, Vielstich W. The Kinetics of Oxygen Reduction at Porous Teflon-Bonded Fuel Cell Electrodes [J]. Journal of The Electrochemical Society, 1984,131(10):2298-2303.
    [185]Arico A S, Alderrucci V, Antonucci V, et al. AC Impedance spectroscopy of porous gas diffusion electrode in sulphuric acid [J]. Electrochimica Acta,1992,37(3):523-529.
    [186]Selman J R, Lin Y P. Application of ac impedance in fuel cell research and development [J]. Electrochimica Acta,1993,38(14):2063-2073.
    [187]Ahn S, Tatarchuk B J. Air Electrode:Identification of Intraelectrode Rate Phenomena via AC Impedance [J]. Journal of The Electrochemical Society, 1995,142(12):4169-4175.
    [188]Springer T E, Zawodzinski T A, Wilson M S, et al. Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy [J]. Journal of The Electrochemical Society,1996,143(2):587-599.
    [189]Schmidt J P, Chrobak T, Ender M, et al. Studies on LiFePO4 as cathode material using impedance spectroscopy [J]. Journal of Power Sources,2011, 196(12):5342-5348.
    [190]Jiang S P, Lin Z G, Tseung A C C. Homogeneous and Heterogeneous Catalytic Reactions in Cobalt Oxide/Graphite Air Electrodes [J]. Journal of The Electrochemical Society,1990,137(3):764-769.
    [191]Zhou D B, Poorten H V. Electrochemical characterisation of oxygen reduction on teflon-bonded gas diffusion electrodes [J]. Electrochimica Acta,1995, 40(12):1819-1826.
    [192]崔晓莉,江志裕.交流阻抗谱的表示及应用[J].上海师范大学学报,2001,30(4):53-61.
    [193]孙伟,鄂利海.电极微分电容的交流阻抗测量方法[J].抚顺石油学院学报,2000,20(2):18-22.
    [194]刁鹏,蒋殿录,贾振斌等.电容平面图在交流阻抗数据处理中的应用[J].河北师范大学学报,1999,23(3):372-392.
    [195]张亚利,孙典亭,郭国霖等.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则Ⅱ[J].高等学校化学学报,2000,21(7):1086-1092.
    [196]张亚利,孙典亭.电化学交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则Ⅲ[J].青岛大学学报,2000,15(3):1-6.
    [197]张亚利,查全性.交流阻抗复数平面图和电容复数平面图上相似图形的等效电路变换规则[J].青岛化工学院学报,1991,12(2):38-50.
    [198]Svensson A M, Weydahl H, Sunde S. Impedance modelling of air electrodes in alkaline media [J]. Electrochimica Acta,2008,53(25):7483-7490.
    [199]Thiele D, Zuttel A. Electrochemical characterization of air electrodes based on Lao.6Sro.4CoO3 and carbon nanotubes [J]. Journal of Power Sources,2008, 183(2):590-594.
    [200]Sung W, Choi J W. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution [J]. Journal of Power Sources,2007,172(1): 198-208.
    [201]Bewer T, Beckmann T, Dohle H, et al. Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution [J]. Journal of Power Sources,2004,125(1):1-9.
    [202]Prater D N, RusekJ J. Energy density of a methanol/hydrogen-peroxide fuel cell [J]. Applied Energy,2003,74(1-2):135-140.
    [203]Gu L, Luo N, Miley G H. Cathode electrocatalyst selection and deposition for a direct borohydride/hydrogen peroxide fuel cell [J]. Journal of Power Sources, 2007,173(1):77-85.
    [204]Raman R K, Prashant S K, Shukla A K. A 28-W portable direct borohydride-hydrogen peroxide fuel-cell stack [J]. Journal of Power Sources,2006,162(2): 1073-1076.
    [205]Chatenet M, Micoud F, Roche I, et al. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte:Part Ⅱ. O2 reduction [J]. Electrochimica Acta,2006,51(25):5452-5458.
    [206]Pei F, Wang Y, Wang X, el al. Performance of supported Au-Co alloy as the anode catalyst of direct borohydride-hydrogen peroxide fuel cell [J]. International Journal of Hydrogen Energy,2010,35(15):8136-8142.
    [207]Ponce de Leon C, Walsh F C, Patrissi C J, et al. A direct borohydride-peroxide fuel cell using a Pd/Ir alloy coated micro fibrous carbon cathode [J]. Electrochemistry Communications,2008,10(10):1610-1613.
    [208]Raman R K, Choudhury N A, Shukla A K. A High Output Voltage Direct Borohydride Fuel Cell [J]. Electrochemical and Solid-State Letters,2004, 7(12):A488-A491.
    [209]Brodrecht D J, Rusek J J. Aluminum-hydrogen peroxide fuel-cell studies [J] Applied Energy,2003,74(1-2):113-124.
    [210]Yang W, Yang S, Sun W, et al. Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell [J]. Journal of Power Sources,2006,160(2):1420-1424.
    [211]Popovich N A, Govind R. Studies of a granular aluminum anode in an alkaline fuel cell [J]. Journal of Power Sources,2002,112(1):36-40.
    [212]Hasvold (?), Johansen K H, Mollestad O, et al. The alkaline aluminium/hydrogen peroxide power source in the Hugin Ⅱ unmanned underwater vehicle [J]. Journal of Power Sources,1999,80(1-2):254-260.
    [213]Hasvold (?), Storkersen N J, Forseth S, et al. Power sources for autonomous underwater vehicles [J]. Journal of Power Sources,2006,162(2):935-942.
    [214]Yang W, Yang S, Sun W, et al. Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells [J]. Electrochimica Acta,2006,52(1):9-14.
    [215]Patrissi C J, Bessette R R, Kim Y K, et al. Fabrication and Rate Performance of a Microfiber Cathode in a Mg-H2O2 Flowing Electrolyte Semi-Fuel Cell Journal of The Electrochemical Society,2008,155(6):B558-B562.
    [216]Savinova E R, Wasle S, Doblhofer K. Structure and activity relations in the hydrogen peroxide reduction at silver electrodes in alkaline NaF/NaOH electrolytes [J]. Electrochimica Acta,1998,44(8-9):1341-1348.
    [217]Prakash J, Joachin H. Electrocatalytic activity of ruthenium for oxygen reduction in alkaline solution [J]. Electrochimica Acta,2000,45(14): 2289-2296.
    [218]Strbac S. The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode [J]. Electrochimica Acta,2011,56(3):1597-1604.
    [219]Zeis R, Lei T, Sieradzki K, et al. Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold [J]. Journal of Catalysis,2008,253(1):132-138.
    [220]Qin X, Wang H, Wang X, et al. Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction [J]. Electrochimica Acta,2011,56(9):3170-3174.
    [221]符蓉,郑俊生,王喜照等.还原热处理条件对Pt-Fe/C合金催化剂性能的影响[J].物理化学学报,2011,27(9):2141-2147.
    [222]吴燕妮,廖世军.以切短多壁碳纳米管为载体制备高活性Pt/SCNT及PtRu/SCNT燃料电池催化剂[J].物理化学学报,2010,26(3):669-674.
    [223]Bouwkamp-Wijnoltz A L, Visscher W, R. van Veen J A. The selectivity of oxygen reduction by pyrolysed iron porphyrin supported on carbon [J]. Electrochimica Acta,1998,43(21-22):3141-3152.
    [224]RAMAN R K, SHUKLA A K. Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells [J]. Journal of Applied Electrochemistry,2005, 35(11):1157-1161.
    [225]Herrmann I, Kramm U I, Fiechter S, et al. Oxalate supported pyrolysis of CoTMPP as electrocatalysts for the oxygen reduction reaction [J]. Electrochimica Acta,2009,54(18):4275-4287.
    [226]Lara Gonzalez G L, Kahlert H, Scholz F. Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis [J]. Electrochimica Acta,2007,52(5):1968-1974.
    [227]Cao D, Chao J, Sun L, et al. Catalytic behavior of Co3O4 in electroreduction of H2O2 [J]. Journal of Power Sources,2008,179(1):87-91.
    [228]Goldik J S, Nesbitt H W, Noel J J, et al. Surface electrochemistry of UO2 in dilute alkaline hydrogen peroxide solutions [J]. Electrochimica Acta,2004, 49(11):1699-1709.
    [229]Keech P G, Noel J J, Shoesmith D W. The electrochemical reduction of hydrogen peroxide on uranium dioxide under intermediate pH to acidic conditions [J]. Electrochimica Acta,2008,53(18):5675-5683.
    [230]Muller S, Holzer F, Haas O. Optimized zinc electrode for the rechargeable zinc-air battery [J]. Journal of Applied Electrochemistry,1998,28(9): 895-898.
    [231]Tiwari S K, Singh S P, Singh R N. Effects of Ni, Fe, Cu, and Cr Substitutions for Co in Lao.8Sro.2Co03 on Electrocatalytic Properties for Oxygen Evolution [J]. Journal of The Electrochemical Society,1996,143(5):1505-1510.
    [232]Luo G P, Wang Y S, Chen S Y, et al. Electrical and magnetic properties of Lao.5Sro.5Co03 thin films [J]. Applied Physics Letter,2000,76(14):1908-1911.
    [233]Li Q, Bjerrum N J. Aluminum as anode for energy storage and conversion:a review [J]. Journal of Power Sources,2002,110(1):1-10.
    [234]Cao D, Chao J, Sun L, et al. Catalytic behavior of Co3O4 in electroreduction of H2O2 [J]. Journal of Power Sources,2008,179(1):87-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700