用户名: 密码: 验证码:
Ce~(4+)对悬浮培养长春花细胞次生代谢产物诱导作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究稀土元素促进长春花悬浮培养细胞次生代谢产物的作用机理,以Ce~(4+)作为诱导子,建立了1mMCe~(4+)诱导长春花细胞悬浮培养体系,研究了1mMCe~(4+)诱导作用下长春花细胞的活性氧、MAPK途径、PAL、次生代谢产物以及胞内金属离子的变化,试图从信号转导角度探索Ce~(4+)诱导植物细胞次生代谢产物合成的基本规律。
     在研究Ce~(4+)诱导作用下长春花细胞体系中H_2O_2的变化及其作用中发现Ce~(4+)诱导长春花细胞出现了H_2O_2迸发现象;H_2O_2清除剂CAT的加入降低了Ce~(4+)诱导的长春花细胞PAL的活化和长春质碱的合成;研究表明Ce~(4+)诱导H_2O_2的产生先于长春质碱合成的激活,由此看出Ce~(4+)诱导H_2O_2的产生处于Ce~(4+)诱导长春质碱合成的上游。外加H_2O_2也能诱导细胞PAL的激活和长春质碱的合成,证明H_2O_2是Ce~(4+)诱导长春花细胞次生代谢所必需的。研究还发现只是低浓度的Ce~(4+)(0.5mM~1mM)促进长春花细胞H_2O_2的产生和长春质碱的合成。
     应用JNK、ERK和p38等途径特异性抑制剂的实验表明: JNK、ERK和p38等MAPK途径参与了Ce~(4+)诱导长春花细胞体系次生代谢产物合成的过程,而只有ERK和p38途径参与了Ce~(4+)诱导长春花细胞H_2O_2迸发的过程,但在H_2O_2迸发的下游JNK、ERK和p38等多条MAPK途径参与了将H_2O_2信号分子的传递调控次生代谢产物的合成。
     应用光谱学方法研究了不同浓度Ce~(4+)对离体的过氧化氢酶(CAT)活力和构象的影响,发现0.01mM Ce~(4+)在提高CAT活力的同时使其α-螺旋含量增加,β-折叠含量减小,而0.05 mM~0.2 mM Ce~(4+)对CAT活性和二级结构的作用则相反。
     运用电感耦合等离子发射光谱仪对1mMCe~(4+)诱导作用下的长春花细胞胞内的Ca~(2+)、Mg~(2+)、Zn~(2+)等金属离子进行了测定,分析了在不同的诱导时间金属离子含量的变化和吲哚生物总碱合成之间的关系。研究发现1mMCe~(4+)促进长春花细胞次生代谢产物合成的同时引起了细胞外Ca~(2+)的内流和细胞内K +的外渗。
The effect mechanism of rare earth on secondary metabolism productions in suspension cultured Catharanthus roseus was investigated by addition of 1mM Ce~(4+) to cultures. The changes of the activated oxygen species, mitogen-activated protein kinase (MAPK), PAL and secondary metabolites were studied in detail. We attempted to explain the mechanism of secondary metabolites production in Ce~(4+) induced Catharanthus roseus.
     The changes and physiological role of H_2O_2 in Catharanthus roseus induced by Ce~(4+) were investigated. H_2O_2 burst after addition of Ce~(4+). PAL activation and the catharanthine production decreased significantly while CAT, a H_2O_2 scavenger, was added into cultures. Moreover, H_2O_2 generation was earlier than the catharanthine synthesis. We can conclude that H_2O_2 was the up-stream signal in catharanthine synthesis regulation. The production of catharanthine also increased after addition of H_2O_2. These results indicated that H_2O_2 play a key role in PAL activation and catharanthine synthesis. We also found that the concentration of Ce~(4+) strongly influenced H_2O_2 concentration and catharanthine production. Meanwhile, there was a saturated effect according to Ce~(4+) concentration.
     Signal transduction pathway that Ce~(4+) induced secondary metabolites synthesis in Catharanthus roseus was investigated by the addition of harmacological inhibitors. JNK、ERK and p38 were all activated in secondary metabolites synthesis induced by Ce~(4+). However, only ERK and p38 were activated in H_2O_2 generation induced by Ce~(4+). H_2O_2 signal was transduced by JNK、ERK and p38 protein kinase pathway to activated the secondary metabolites synthesis.
     The effects of Ce~(4+) on CAT activation and conformation were investigated by uv-visible spectra, fluorescent emission spectra, synchronous fluorescence, ultraviolet differential spectra, circular dichroism, FT-IR. The CAT conformation was related to the Ce~(4+) concentration.α-helix andβ-fold in CAT increase and decrease at lower concentration of Ce~(4+), respectively. However, the results reversed at higher concentration of Ce~(4+). These changes were related with Ce~(4+) concentration.
     Intracellular contents of Ca~(2+), Mg~(2+), Zn~(2+), Mn~(2+), Cu~(2+), Fe~(2+) and K+ were analyzed by an inductively coupled plasma-optical emission spectrometry and the relationships between ions contents and total alkaloid in cells at different induced time were investigated. The results showed that the secondary metabolism productions synthesis induced by 1mM Ce~(4+) was companying the Ca~(2+) influx and K+ efflux.
引文
[1] 陈敏,廖志华,孙敏等, 生物技术在长春花研究中的应用,中草药,2001,32(1):78~79
    [2] 车秀芬,杨小波, 长春花细胞组织培养研究进展,农业生物技术,2006,3:11~13
    [3] 元英进,葛志强,王艳东等, 铈诱导悬浮培养的东北红豆杉细胞发生凋亡,中国稀土学报,2001,19:357~361
    [4] 元英进,胡宗定, 稀土元素对长春花植物细胞培养的影响,稀土,1993,14(3):38~40
    [5] Yuan Y J, Li C, Hu Z D, et al. Signal transduction pathway for oxidative burst and Taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium Oxysprum. Enzyme Microb. Tech, 2001,29:372~379
    [6] Thoma I, Loeffler C, Sinha AK, et al. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J, 2003.34:363~375
    [7] 蔡连捷, 闫有旺, 长春花的栽培及其利用, 特种经济动植物, 2003(5):19
    [8] 周煜, 溶氧浓度对长春花培养细胞的影响, 上海:上海中医药大学, 2000
    [9] 张荣涛,曹宇,顾峰旗等, 不同方法对长春花愈伤组织生长及吲哚生物碱积累的影响, 北方园艺, 2005(1):65~66
    [10] 高艳娇,孙虎,宋洪涛, 不同化学因子对长春花悬浮培养的研究, 科技文汇, 2006,06:191~192
    [11] 孙敏,曾建军, 长春花毛状根培养及抗癌生物碱产生的研究, 中国中药杂志, 2005,30(10):741~744
    [12] 杨显志, 张玲琪, 郭波等, 一株产长春新碱内生真菌的初步研究, 中草药, 2004,35(1):79~81
    [13] Oscar A. Moreno-Valenzuela,Yereni Minero-García,Wilson Chan, et al. Increase in the indole alkaloid production and its excretion into the culture medium by calcium antagonists in Catharanthus roseus hairy roots. Biotechnology Letters, 2003. 25(16):1345~1349
    [14] 汪洪, 孙敏, 伍春莲等, 长春花生物碱生物合成途径中关键步骤与代谢调控研究进展, 中国中药杂志, 2001,26(10):656~659
    [15] Pierre Laflamme, Benoit St-Pierre, Vincenzo De Luca., Molecular and Biochemical Analysis of a Madagascar Periwinkle Root-SpecificMinovincinine-19-Hydroxy-O-Acetyltransferase. Plant Physiology, 2001.125: 189~198
    [16] Hashimoto T., Yamada Y., New genes in alkaloid metabolism and transport. Curr. Opin. Biotechnol., 2003. 14: 163~168
    [17] Facchini P. J., Bird D. A., St. Pierre, et al. Can Arabidopsis make complex alkaloids? Trends Plant Sci., 2004. 9: 116~122
    [18] 聂丽丽, 长春花突变愈伤组织的培养及药用成分的研究:[硕士学位论文],天津:南开大学,2006
    [19] Young Hae Choi, Elisabet Casas Tapias, Hye Kyong Kim, et al. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis. Plant Physiol.,2005.135: 2398~2410
    [20] Serap Whitmer, Robert van der Heijden,Robert Verpoorte, Effect of precursor feeding on alkaloid accumulation by a strictosidine synthase over-expressing transgenic cell line S1 of Catharanthus roseus. Plant Cell, Tissus and Organ Culture , 2002. 69(1): 85~93
    [21] Jian Zhao, Wei Hua Zhu, Qiu Hu, Enhanced ajmalicine production in Catharanthus roseus cell cultures by combined elicitor treatment: from shake-flask to 20-l airlift bioreactor. Biotechnology Letters, 2000. 22(6):509~514
    [22] 张向飞,张荣涛,王宁宁等, 真菌诱导子对长春花愈伤组织中吲哚生物碱积累的影响, 中草药,2004,35(2):201~204
    [23] Naoto Mitsuhashi, Miwa Ohnishi, Yoko Sekiguchi, et al Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations Plant Physiol., 2005. 138: 1607~1614
    [24] Zhenggui Zheng,Madeline Wu, Cadmium treatment enhances the production of alkaloid secondary metabolites in Catharanthus roseus. Plant Science, 2004. 166: 507~514
    [25] Jian Zhao, Wei Hua Zhu, Qiu Hu, Improved alkaloid production in Catharanthus roseus suspension cell cultures by various chemicals. Biotechnology Letters , 2000. 22(15): 1221~1226
    [26] Qineng Lu, Qing Yang,Huawen Zou, Effects of Cerium on Accumulation of Anthocyanins and Expression of Anthocyanin Biosynthetic Genes in Potato. Cell Tissue Cultures Journal of Rare Earths, 2006. 24(2):479~484
    [27] Xin Hu, Zhuhong Ding, Yijun Chen, Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings, Chemosphere, 2002. 48(6): 621~629
    [28] Julia Bailey Serres,Ron Mittler, The Roles of Reactive Oxygen Species in Plant Cells. Plant Physiol., 2006.141: 311
    [29] Kozi Asada, Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions. Plant Physiol., 2006. 141: 391~396
    [30] Catherine Gapper,Liam Dolan, Control of Plant Development by Reactive Oxygen Species. Plant Physiol., 2006. 141: 341~345
    [31] Miguel Angel Torres, Jonathan D.G. Jones, Jeffery L. Dangl, Reactive Oxygen Species Signaling in Response to Pathogens. Plant Physiol., 2006. 141: 373~378
    [32] Wu G , Shoct B J, Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in potato plants. Plant cell, 1995. 7: 1357~1368
    [33] Bradley D J, Brisson P, Lamb C J, Elictor- and Wound-induced oxidative cross-linking of a cell wall protein: a novel, rapid defense response. Cell, 1992. 70: 21~30
    [34] Philip M. Mullineaux, Stanislaw Karpinski, Neil R., Baker Spatial Dependence for Hydrogen Peroxide-Directed Signaling in Light-Stressed Plants. Plant Physiol., 2006. 141: 346~350
    [35] Sandy Vanderauwera, Philip Zimmermann, Stéphane Rombauts, Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiol., 2005. 139: 806~821
    [36] Kroj T, Rudd J J, Nurnberger T, et al. Mitogenactivated protein kinases play an essential role in oxidative burstindependent expression of pathogenesis-related genes in parsley. J Biol Chem., 2003. 278: 2256~2264
    [37] Jonak C, Okresz L, Bogre L, Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol., 2002. 5: 415~424
    [38] Ichimura K, Tena G , Henry Y, et al. Mitogen-activated protein kinase cascade in plant: a new nomenclature. Trends Plant Sci., 2002. 7: 301~308
    [39] Chihiro Yamamizo, Kazuo Kuchimura, Akira Kobayashi, et al. Rewiring Mitogen-Activated Protein Kinase Cascade by Positive Feedback Confers Potato Blight Resistance. Plant Physiol., 2006. 140: 681~692
    [40] Aying Zhang, Mingyi Jiang, Jianhua Zhang, et al. Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. Plant Physiol., 2006. 141: 475~487
    [41] Asai T, Tena.G, Plotnikova J, et al. MAP kinase signaling cascade in Arabidopsis immunity. Nature, 2002. 415: 977~983
    [42] Jonak C, Okresz L, Bogre L, Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol., 2002. 5: 415~424
    [43] Michal Shoresh, Amit Gal On, Diana Leibman, et al. Characterization of a Mitogen-Activated Protein Kinase Gene from Cucumber Required for Trichoderma-Conferred Plant Resistance. Plant Physiol., 2006. 142: 1169~1179
    [44] Zhang S, Klessig D F, MAPK cascades in plant defense signaling. Trends Plant Sci., 2001.6:520~527
    [45] Nakagami H, Pitzschke A, Hirt H, Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci ,2005. 10: 339~346
    [46] Dongtao Ren, Kwang-Yeol Yang, Guo-Jing Li, et al. Activation of Ntf4, a Tobacco Mitogen-Activated Protein Kinase, during Plant Defense Response and Its Involvement in Hypersensitive Response-Like Cell Death. Plant Physiol., 2006. 141: 1482~1493
    [47] Zhang S, Liu Y, Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell, 2001. 13: 1877~1889
    [48] Yang KY, Liu Y, Zhang S, Activation of a mitogen-activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci USA, 2001. 98: 741~746
    [49] Ahlfors R, Macioszek V, Rudd J, Stress hormone-independent activation and nuclear translocation of mitogen-activated protein kinases in Arabidopsis thaliana during ozone exposure. Plant J., 2004. 40: 512~522
    [50] Overmyer K, BroscheM, Pellinen R, et al. Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1mutant.Plant Physiol., 2005.137: 1092~1104
    [51] Teige M, Scheikl E, Eulgem T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell, 2004. 15: 141~152
    [52] Davis R J, Signal transduction by the JNK group of MAP kinases. Cell, 2000. 103:239~252
    [53] Komis G, Apostolakos P, Gaitanaki C, et al, Hyperosmotically induced accumulation of a phosphorylated p38-like MAPK involved in protoplast volume regulation of plasmolyzed wheat root cells. FEBS Lett., 2004. 573:168~174
    [54] Jiménez C, Berl T, Rivard C J, et al. Phosphorylation of MAP kinase-like proteins mediate the response of the halotolerant alga Dunaliella viridis to hypertonic shock. Biochimica et Biophysica Acta, 2004.1644:61~69
    [55] Liu Y, Jin H, Yang KY, Interaction between two mitogen-activated protein kinases during tobacco defense signaling. Plant J., 2003. 34: 149~160
    [56] Barry Halliwell, Reactive Species and Antioxidants: Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol., 2006, 141: 312~322
    [57] Vladimir Shulaev , David J. Oliver., Metabolic and Proteomic Markers for Oxidative Stress. New Tools for Reactive Oxygen Species Research. Plant Physiol., 2006. 141: 367~372
    [58] Aying Zhang, Mingyi Jiang, Jianhua Zhang, Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. Plant Physiol., 2006. 141: 475~487
    [59] Kovtun Y, Chiu WL, Tena G, Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA, 2000. 97: 2940~2945
    [60] Moon H, Lee B, Choi G, Shin D, et al. NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA, 2003. 100: 358~363
    [61] Rentel MC, Lecourieux D, Ouaked F, et al. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature, 2004. 427: 858~861
    [62] Nakagami H, Kiegerl S, Hirt H, OMTK1, a Novel MAPKKK, Channels Oxidative Stress Signaling through Direct MAPK Interaction. J. Biol. Chem., 2004.279:26959~26966
    [63] Apel K, Hirt H, Reactive oxygen species: metabolism, oxidative stress, and signal transduction.Annu Rev Plant Biol, 2004. 55: 373~399
    [64] Jonak C, Nakagami H, Hirt H, Heavy metal stress: activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol., 2004. 136: 3276~3283
    [65] Yeh C M, Hsiao L J, Huang H J, Cadmium activates a mitogenactivated protein kinase gene and MBP kinases in rice. Plant Cell Physiol., 2004. 45: 1306~1312
    [66] 杨松,葛志强,元英进, 铈诱导细胞凋亡过程中 O2-对 ERK-like 激酶的调控 化工学报, 2006,57(4):902~907
    [68] Moshe Sagi, Robert Fluhr, Production of Reactive Oxygen Species by Plant NADPH Oxidases. Plant Physiol., 2006. 141: 336~340
    [69] David M. Rhoads, Ann L. Umbach, Chalivendra C. Subbaiah, et al. Mitochondrial Reactive Oxygen Species, Contribution to Oxidative Stress and Interorganellar Signaling. Plant Physiol., 2006. 141: 357~366
    [70] Desikan R, Cheung M K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J Exp Bot., 2004. 55: 205~212
    [71] Massimo E. Maffei, Axel Mith?fer, Gen Ichiro Arimura, et al. Effects of Feeding Spodoptera littoralis on Lima Bean Leaves. III. Membrane Depolarization and Involvement of Hydrogen Peroxide. Plant Physiol., 2006. 140: 1022~1035
    [72] Sasabe M, Takeuchi K, Kamoun S, et al. Independent pathways leading to apoptotic cell death, oxidative burst and defense gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem, 2000. 267: 5005~5013
    [73] Samuel MA, Miles GP, Ellis BE, Ozone treatment rapidly activates MAP kinase signalling in plant. Plant J., 2000. 22: 367~376
    [74] Narasimha Sreerama, Robert W.Woody, Estimation of Protein Secondary Structure from Circular Dichrosim Spectra: Comparoson of CONTIN, SELCON, and CDSSTR Methods with an Expanded Reference Set. Analytical Biochemistry. 2000. 287: 252~260
    [75] 焦铭,过氧化氢酶去折叠及其与超氧化物歧化酶相互作用的研究: [硕士学位论文],湖北:武汉大学,2003
    [76] 张树政,孟广震,何忠效,酶学研究技术(上),北京:科学出版社,1987.338~369
    [77] 肖厚荣,徐小龙,解永树等, 胱氨酸与烟草多酚氧化酶相互作用的研究, 光谱学与光谱分析,2004,24(12):1618~1622
    [78] 梁贤振,李连之,胡绪英等,牛红细胞超氧化物歧化酶活性中心的紫外光谱研究,中国生物化学与分子生物学报,1998,14:175~180
    [79] 王守业,徐小龙,刘清亮等, 荧光光谱在蛋白质分子构象研究中的应用, 化学进展,2001,13(4):257~260
    [80] 赵南明,周海梦,生物物理学,北京:高等教育出版社,2000.287~311
    [81] 刘默芳,王恩多,绿色荧光蛋白,生物化学与生物物理进展,2000,27(3):238~243
    [82] 徐志防,罗广华,柯德森等,超氧阴离子诱导的叶绿素荧光淬灭,生物化学与生物物理进展,2002,29(1):139~143
    [83] 沈星灿,梁宏,何锡文等,圆二色光谱分析蛋白质构象的方法及研究进展,分析化学, 2004,32(3): 388~394
    [84] 王建华,卫亚丽,文宗河等, 蛋白质结构的 FT-IR 研究进展,化学通报,2004,7:482~486
    [85] 蒋俊光,王振新,刘长伟等, 红外光谱和圆二色光谱法研究氰根配位的辣根过氧化物酶(HRP)的热伸展过程,高等学校化学学报,2001,22: 1131~1133
    [86] 夏炳乐, 彭敦耕,郑晓云等, 外源镧(Ⅲ)对辣根过氧化物酶的结构的影响,化学学报,2004,64(14):1318~1322
    [87] 袁联群,杨永桃,沈鹤百等, 铈氨基酸配合物的 UV 和 CV 方法, 上海师范大学学报(自然科学版), 2002,31(4):62~65
    [88] 范小娜,李蕾,余磊, 稀土—蛋白质配合物合成及其傅立叶红外光谱分析, 赣南医学院学报, 2001,21(2):107~110
    [89] 吉红念,陆天红,李邨等, La3+离子对过氧化氢酶活性的影响, 化学学报,2004,62(11):1085~1088
    [90] Hu Ruiding,Lin Qiuyue,Huang Wei,et al. Spectroscopy Study on Crystal Structure 0f Ce(NO3)3(phen)2 and Interactions of Ce(NO3)3(phen)2 with DNA. Journal of Rare Earths,2005. 23(3): 372~376
    [91] 程驿,李荣昌,王夔,稀土离子与胰岛素结合引起构象和聚集态的变化, 中国科学(B 辑),2002,32(3):261~267
    [92] 红枫,王夔,李荣昌,稀土离子对 BEL-7402 细胞蛋白质构象变化的影响,首都医科大学学报, 2003,24(3):225~227
    [93] 秦身钧, 申金山, 李艳廷等,稀土金属离子及 pH 诱导牛血清白蛋白构象变化的同步荧光光谱研究,中国稀土学报, 2004,22(3):393~397
    [94] Sigal Shcolnick, Nir Keren, Metal Homeostasis in Cyanobacteria and Chloroplasts. Balancing Benefits and Risks to the Photosynthetic Apparatus. Plant Physiol., 2006. 141: 805~810
    [95] Hui Wei , David B. Layzell.,Adenylate-Coupled Ion Movement. A Mechanism for the Control of Nodule Permeability to O2 Diffusion. Plant Physiol., 2006. 141: 280~287
    [96] Marc Hanikenne, Ute Kr?mer, Vincent Demoulin, et al. A Comparative Inventory of Metal Transporters in the Green Alga Chlamydomonas reinhardtii and the Red Alga Cyanidioschizon merolae. Plant Physiol., 2005, 137: 428~446
    [97] P. M. C. Antunes,B. A.Hale, The effect of metal diffusion and supply limitations on conditional stability constants determined for durum wheat roots. Plant and soil, 2006. 284(1-2): 229~241
    [98] Kimberly J. Delaney, Ruqiang Xu, Jingxian Zhang, et al. Calmodulin Interacts with and Regulates the RNA-Binding Activity of an Arabidopsis Polyadenylation Factor Subunit. Plant Physiol., 2006. 140: 1507~1521
    [99] Sunghun Park, Ning Hui Cheng, Jon K. Pittman, et al. Increased Calcium Levels and Prolonged Shelf Life in Tomatoes Expressing Arabidopsis H+/Ca2+ Transporters. Plant Physiol., 2005. 139: 1194~1206
    [100] Chamnongpol S, Willekens H, Moeder W, et al., Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc Natl Acad Sci USA,1998. 95 : 5815-5823
    [101] Zhao J, Hu Q, Guo Y Q, et al. Elicitor-induced indole alkaloid biosynthesis in Catharanthus roseus cell cultures is related to Ca2+ influx and the oxidative burst.Plant Sci., 2001.161: 423~431
    [102] Sergey Shabala, Vadim Demidchik, Lana Shabala, et al. Extracellular Ca2+ Ameliorates NaCl-Induced K+ Loss from Arabidopsis Root and Leaf Cells by Controlling Plasma Membrane K+-Permeable Channels. Plant Physiol., 2006. 141: 1653~1665
    [103] 胡国武,李景川,元英进, 稀土对细胞内游离钙含量的影响, 天津大学学报,2000,33(1):19~20
    [104] Ivan Baxter, Jason Tchieu, Michael R. Sussman, et al. Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiol. 2003.132: 618-628
    [104] Kristian B. Axelsen , Michael G. Palmgren, Inventory of the Superfamily of P-Type Ion Pumps in Arabidopsis. Plant Physiol , 2001.126: 696~706
    [105] 尚忠林,毛国红,孙大业, 植物细胞内钙信号的特异性, 植物生理学通讯,2003,39(2):93~100
    [106] Markus Gierth, Pascal M?ser, Julian I. Schroeder, The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 , K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots, Plant Physiol., 2005, 137: 1105~1114
    [107] Miguel A. Pi?eros, Leon V. Kochian., Differences in Whole-Cell and Single-Channel Ion Currents across the Plasma Membrane of Mesophyll Cells from Two Closely Related Thlaspi Species. Plant Physiol., 2003. 131: 583~594
    [108] Frans J M M , Ichida A M, Sanders D, et a1. Roles of higher plant K channels. Plant Physio1, 1997. 114: 1141~1149
    [109] Gerhard Obermeyer, Stephen D, Tyerman NH4+ Currents across the Peribacteroid Membrane of Soybean. Macroscopic and Microscopic Properties, Inhibition by Mg2+, and Temperature Dependence Indicate a SubpicoSiemens Channel Finely Regulated by Divalent Cations. Plant Physiol., 2005. 139: 1015~1029
    [110] Hunseung Kang, Min Young Kang, Kyung Hwan Han, Identification of Natural Rubber and Characterization of Rubber Biosynthetic Activity in Fig Tree. Plant Physiol., 2000. 123: 1133~1142
    [111] 汪洪,褚天铎,植物镁素营养的研究进展,植物学通报,1999, 16(3): 245~250
    [112] 徐晓燕,杨肖娥,杨玉爱,锌在植物中的形态及生理作用机理研究进展,广东微量元素科学,1999,6(11):1~6
    [113] Matthias Wissuwa, Abdelbagi M. Ismail, Seiji Yanagihara,Effects of Zinc Deficiency on Rice Growth and Genetic Factors Contributing to Tolerance,Plant Physiol., 2006, 142: 731~741
    [114] Ana-Flor López-Millán, Danielle R. Ellis, Michael A. Grusak, Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula. Plant Molecular Biology, 2004. 54(4): 583~596
    [115] 张福锁,锌营养状况对小麦根细胞膜透性的影响,植物生理学报,1992,l8(1):20~28
    [116] Ina N. Talke, Marc Hanikenne, Ute Kr?mer, Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiol., 2006. 142: 148~167
    [117] Daichi Mizuno, Kyoko Higuchi, Tatsuya Sakamoto, et al. Three Nicotianamine Synthase Genes Isolated from Maize Are Differentially Regulated by Iron Nutritional Status. Plant Physiol., 2003.132: 1989~1997
    [118] Ana-Flor López-Millán, Danielle R. Ellis, Michael A. Grusak, Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula, Plant Molecular Biology, 2004, 54(4): 583~596
    [119] Judith E. van de Mortel, Laia Almar Villanueva, Henk Schat, Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiol., 2006, 142: 1127~1147
    [120] Ulrich Eckhardt, Andreas Mas Marques, Thomas J. Buckhout, Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Molecular Biology., 2001. 45(4): 437~448
    [121] Overmyer K, Brosche M, Kangasjarvi J, Reactive oxygen species and hormonal control of cell death.Trends Plant Sci., 2003. 8: 335~342
    [122] Miguel Angel Torres, Jonathan D.G. Jones, Jeffery L. Dangl, Reactive Oxygen Species Signaling in Response to Pathogens. Plant Physiol., 2006. 141: 373~378
    [123] Barry Halliwell, Reactive Species and Antioxidants, Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol., 2006. 141: 312~322
    [124] Jabs T, Tsch?pe M, Colling C, et al. Elicitor-stimulated ion fluxes and O2-· from the oxidative burst are essential components in triggering defense gene activation and phytoalexins synthesis in parsley. Proc. Natl. Acad. Sci. USA, 1997. 94: 4800~4805
    [125] Menke FL, Parchmann S, Mueller MJ, et al. Involvement of the octadecanoidpathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol., 1999. 19: 1289~1296
    [126] Yuan Y J, Li C, Hu Z D, et al, Signal transduction pathway for oxidative burst and Taxol production in suspension cultures of Taxus chinensis var. mairei induced by oligosaccharide from Fusarium Oxysprum. Enzyme Microb. Tech., 2001.29:372~379
    [127] Sandy Vanderauwera, Philip Zimmermann, Stéphane Rombauts, et al. Genome-Wide Analysis of Hydrogen Peroxide-Regulated Gene Expression in Arabidopsis Reveals a High Light-Induced Transcriptional Cluster Involved in Anthocyanin Biosynthesis. Plant Physiol., 2005. 139: 806~821
    [128] Mukherjee SP, Choudhuri MA, Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedings. Physiol. Plant, 1983. 58:166~170
    [129] Wang AG, Lou GH, Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol. Commun., 1990. 6: 55~57
    [130] Yuan Y J, Li C, Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var. mairei for taxol production. Process Biochem., 2002. 38: 193~198
    [131] Bradford MM, A rapid and sensitive method for the quantification of microgram quantities of proteins using the principle of dye binding. Anal. Biochem., 1976. 72: 248~254
    [132] Paulo R M, Charlotte P, Robert V H, Effect of elicitation on different metabolic pathways in Catharanthus roseus (L) G.Don cell suspension cultures. Enzyme Microb. Technol., 1996. 18: 99~107
    [133] 赵剑,朱蔚华,吴蕴祺等,反相高效液相色谱法测定长春花组织培养物中吲哚生物碱含量,药学学报,1999,34(7):539~542
    [134] Levine A, Tenhaken R, Dixon RA, et al. H2O2 from the oxidative burst orchestrates the pant hypersensitive disease resistance response as a local trigger of programmed cell death and a diffusible inducer of cellular protectant genes. Cell, 1994. 79: 583~593
    [135] Baker C J, Orlandi E W, Mock N M, Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol.,1993. 102: 1341~1344
    [136] Maojun Xu, Jufang Dong, O2- from elicitor-induced oxidative burst is necessary for triggering phenylalanine ammonia-lyase activation and catharanthine synthesis in Catharanthus roseus cell cultures. Enzyme and Microbial Technology, 2005. 36: 280~284
    [137] 李景川,Ce4+诱导红豆杉细胞紫杉醇合成和凋亡的信号转导研究:[博士学位论文],天津;天津大学,2002
    [138] V. ALEXIEVA, I. SERGIEV, S. MAPELLI, et al. The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell and Environment, 2001. 24:1337~1344
    [139] Mauch-Mani B, Slusarenko A J, Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Perenospora parasitica. Plant Cell, 1996. 8: 203~212
    [140] 欧阳光察, 薛应龙, 植物苯丙烷类代谢的生理意义及其调控,植物生理学通讯,1988, 3: 9~16
    [141] Yuan Y J, LI J C, GE Z Q, et al. Superoxide anion burst and taxol production induced by Ce4+ in suspension cultures of Taxus cuspidata. J. Mol.Catal.B Enzymatic, 2002. 18: 251~260
    [142] Tang M, Smith J C, Elicitor induced defense responses in Medicago Sativa. New Physiologist, 2001. 149: 401~418
    [143] Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci., 2000. 57: 779~795
    [144] Andrew J. Love, Byung Wook Yun, Valérie Laval, et al. Cauliflower mosaic virus, a Compatible Pathogen of Arabidopsis, Engages Three Distinct Defense-Signaling Pathways and Activates Rapid Systemic Generation of Reactive Oxygen Species. Plant Physiol, 2005.139: 935~948
    [145] Aying Zhang, Mingyi Jiang, Jianhua Zhang, et al. Mitogen-Activated Protein Kinase Is Involved in Abscisic Acid-Induced Antioxidant Defense and Acts Downstream of Reactive Oxygen Species Production in Leaves of Maize Plants. Plant Physiol, 2006. 141: 475~487
    [146] Asai T , Tena G , Plotnikova J, et al. MAPK kinase signaling cascade in Arabidopsis immunity. Nature, 2002. 415: 977~983
    [147] Ichimura K, Tena G , Henry Y, et al. Mitogen-activated protein kinase cascade in plants: a new nomenclature. Trends Plant Sci., 2002. 7: 301~308
    [148] 王元忠,ERK 在 Ce4+诱导红豆杉细胞次生代谢过程中的信号转导作用: [硕士学位论文],天津;天津大学,2006
    [149] Vasconsuelo A, Giulietti AM, Boland R, Signal transduction events mediating chitosan stimulation. Plant Sci., 2004. 166: 405-413
    [150] Thoma I, Loeffler C, Sinha AK, et al. Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plant. Plant J., 2003.34:363~375
    [151] Tena G, Asai T, Chiu WL, et al. Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol., 2001. 4: 392~400
    [152] Jing Sheng Cheng, Ying Jin Yuan, Comparison of JNK (c-Jun N-terminal kinase)-like MAPK (mitogen-activated protein kinase) phosphorylation between immobilized cultures and Couette-type shear reactor cultures of Taxus cuspidata (Japanese yew) cells, Biotechnol. Appl. Biochem., 2006. 44: 109~117
    [153] Komis G, Apostolakos P, Gaitanaki C, et al. Hyperosmotically induced accumulation of a phosphorylated p38-like MAPK involved in protoplast volume regulation of plasmolyzed wheat root cells. FEBS Lett.,2004.573:168~174
    [154] Capone R, Tiwari BS, Levine A,Rapid transmission of oxidative and nitrosative stress signals from roots to shoots in Arabidopsis. Plant Physiol. Biochem., 2004. 42: 425~429
    [155] Zhi Qiang Ge, Song Yang, Ying Jin Yuan, Ce4+ induced down-regulation of ERK-like MAPK and activation of nucleases during the apoptosis of cultured Taxus cuspidata cells. Journal of Inorganic Biochemistry, 2006. 100: 167~177
    [156] 胡向阳, 激发子诱导植物防卫反应过程中的信号分子: [博士学位论文],上海;中国科学院,2003
    [157] Ren D, Yang H, Zhang S,Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem., 2002. 277: 559~565
    [158] Oksman Caldentey, Plant cell factories in the post-genomic era: new ways to produce designer secondary metabolites. Trends Plant Sci., 2004. 9: 433~440
    [159] Menke F.L.H., Parchmann S., Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitorinduced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol.,1999. 119: 1289~1296
    [160] 何汉平,杨立荣,朱自强,有机相酶催化中溶剂工程的进展,生物工程进展,1998,18(1):10~16
    [161] 倪嘉缵,稀土生物无机化学(第二版), 北京:科学出版社,2002.245~248
    [162] 郑海雷,赵中秋,张春光等,稀土生物效应机理研究进展,稀土,2000,21(4):55~60
    [163] 艾伦弗斯塔,酶的测定方法,北京:中国轻工业出版社,1992.186~188
    [164] 王凡强,王正祥,邵蔚蓝等,重组大肠杆菌热稳定性过氧化氢酶的纯化及性质研究, 微生物学报,2002,42(3):348~353
    [165] 程传煊,生物物理化学,北京:科学技术文献出版社,1998. 279~281
    [166] 张朝平,夏敏,蛋白质-银(Ⅰ)-铜(Ⅱ)络合物的生成及其紫外与红外光谱,光谱学与光谱分析,1996,16(5):43~49
    [167] 陈惠黎,生物大分子的结构和功能,上海:上海医科大学出版社,1999. 37~40
    [168] 冯永君,李德顺,孙丽等,火茹素酪氨酸微区的研究,化学学报,2000,58(8):1037~1042
    [169] 张军,孙凡,陈德万等,0.23T 稳恒磁场对不同温度离体过氧化氢酶的磁效应研究,激光生物学报,2001,10(3):191~194
    [170] 刘媛,谢孟峡,康娟, 三七总皂甙对牛血清白蛋白溶液构象的影响, 化学学报,2003,61(8):1305~1310.
    [171] 陶慰孙,李惟,姜涌明等,蛋白质分子基础,北京:高等教育出版社,1995. 260~261
    [172] 陈国珍,黄贤智,许金钩等,荧光分析法(第二版),北京:科学出版社,1990.88~92
    [173] Chapeaurouge A, Johansson J S, Ferreira S T. Folding intermediates of a model three-helix bundle protein. J. Biol Chem., 2001. 276(18): 14861~14866
    [174] 杜秀莲,李荣昌,用同步荧光光谱法研究铽(Ⅲ)与脱铁运铁蛋白的作用, 科学通报,2001,46(5):394~396
    [175] Price N C,Conformational issues in the characterization of proteins. Biotechnol Appl Biochem., 2000. 31: 29~40
    [176] 黄惠华,梁汉华,郭乾初,超声波对大豆胰蛋白酶抑制剂活性及二级结构的影响,食品科学,2004,25(3):29~33
    [177] 阎隆飞,孙之荣,蛋白质分子结构,北京:清华大学出版社,1999.177~181
    [178] Hahlbrock K, Scheel D, Logemann E, et al. Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc.Natl.Acad.Sci.USA, 1995. 92 : 4150~4157
    [179] O. Halloran, T.V. Culotta, Metallochaperones, an intracellular shuttle service for metal ions. J. Biol. Chem., 2000. 275: 25057~25060
    [180] Clemens S, Molecular mechanisms of plant metal homeostasis and tolerance. Planta, 2001. 212: 475~486
    [181] Armengaud P, Breitling R, Amtmann A, The potassium-dependent transcriptome of arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol., 2004. 136: 2556~2576
    [182] Su H, Golldack D, Katsuhara M, et al. Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol., 2001. 125: 604~614
    [183] Lecourieux D, Mazars C, Pauly N, et al. Analysis and effects of cytosolic free calcium increases in response to elicitors in Nicotiana plumbaginifolia cells. Plant Cell, 2002. 14: 2627~2641
    [184] Rashed M N, Trace element determination in warm-climate plants by atomic absorption spectroscopy and ion selective electrodes. J. Arid Environ., 1995. 30: 463~478
    [185] Yin De ming, Wu Jin chuan, Yuan Ying-jin, Spatio-temporal distribution of metal ions content and taxol production of Taxus cuspidata cells immobilized on polyurethane foam. Biotechnology Letters, 2006. 28: 29~32
    [186] J. Zhao,W.H. Zhu,Q. Hu, Promotion of indole alkaloid production in Catharanthus roseus cell cultures by rare earth elements. Biotechnology Letters, 2000. 22: 825~828
    [187] 徐秋曼,元英进,程景胜等, 稀土元素铈对红豆杉细胞膜透性的影响, 稀土,2004,25(2):50~53
    [188] Xiang Chun Yu, Mei Jun Li, Gui Feng Gao, et al., Abscisic Acid Stimulates a Calcium-Dependent Protein Kinase in Grape Berry. Plant Physiol., 2006. 140: 558~579
    [189] Jadwiga Szczegielniak, Maria Klimecka, Aneta Liwosz, et al.,A Wound-Responsive and Phospholipid-Regulated Maize Calcium-Dependent Protein Kinase. Plant Physiol., 2005. 139: 1970~1983
    [190] Ivan Baxter, Jason Tchieu, Michael R. Sussman, Genomic Comparison of P-Type ATPase Ion Pumps in Arabidopsis and Rice. Plant Physiol., 2003. 132: 618~628
    [191] Kimberly J. Delaney, Ruqiang Xu, Jingxian Zhang, Calmodulin Interacts with and Regulates the RNA-Binding Activity of an Arabidopsis Polyadenylation Factor Subunit. Plant Physiol., 2006. 140: 1507~1521
    [192] 郑志侠,黄碧霞,芮蕾等, 稀土元素对Ca2+在细胞中分布影响机制的探讨,稀土,2001,22(6):27~31
    [193] Volker Knoop, Milena Groth-Malonek, Michael Gebert, et al., Transport of magnesium and other divalent cations: evolution of the 2-TM-GxN proteins in the MIT superfamily. Molecular Genetics and Genomics, 2005. 274(3): 205~216
    [194] Lange BM, Rujan T, Martin W, et al. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc.Natl.Acad.Sci.USA, 2000. 97: 13172~13177
    [195] Fernando Alfredo Lattanzi, Hans Schnyder, Barry Thornton, The Sources of Carbon and Nitrogen Supplying Leaf Growth. Assessment of the Role of Stores with Compartmental Models. Plant Physiol., 2005. 137: 383~395
    [196] Sugiyama T,Matsumoto C,Akazawa T, et a1. Structure and function of chloroplast protein. Arch Biochem Biophys, 1968. 26:734~765
    [197] Stephan Clemens, Molecular mechanisms of plant metal tolerance andhomeostasis. Planta, 2001. 212(4): 475~486
    [198] Weiqiang Li, Mohammad A. Khan, Shinjiro Yamaguchi, et al. Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 2005. 46(1): 45~50
    [199] Luisa Lanfranco, Mara Novero, Paola Bonfante,The Mycorrhizal Fungus Gigaspora margarita Possesses a Cu-Zn Superoxide Dismutase That Is Up-Regulated during Symbiosis with Legume Hosts. Plant Physiol., 2005. 137: 1319~1330
    [200] Sholpan Davletova, Karen Schlauch, Jesse Coutu, et al. The Zinc-Finger Protein Zat12 Plays a Central Role in Reactive Oxygen and Abiotic Stress Signaling in Arabidopsis. Plant Physiol., 2005. 139: 847~856
    [201] Gabriel Guillet , Vincenzo De Luca, Wound-Inducible Biosynthesis of Phytoalexin Hydroxycinnamic Acid Amides of Tyramine in Tryptophan and Tyrosine Decarboxylase Transgenic Tobacco Lines. Plant Physiol., 2005, 137: 692~699
    [202] Kevin B. Cordes, Aradhana Mehra, Margaret E. Farago, Uptake of Cd, Cu, Ni and Zn by the Water Hyacinth, Eichhornia Crassipes (Mart.) Solms from Pulverised Fuel Ash (PFA) Leachates and Slurries. Environmental Geochemistry and Health, 2000. 22(4): 297~316
    [203] 徐晓燕,杨肖娥,杨玉爱,锌在植物中的形态及生理作用机理研究进展,广东微量元素科学,1999,6(11):1~6
    [204]Fabio F. Nocito, Clarissa Lancilli, Barbara Crema, et al. Heavy Metal Stress and Sulfate Uptake in Maize Roots. Plant Physiol., 2006. 141: 1138~1148
    [205] Elif Eren, José M. Argüello, Arabidopsis HMA2, a Divalent Heavy Metal-Transporting PIB-Type ATPase, Is Involved in Cytoplasmic Zn2+ Homeostasis. Plant Physiol., 2004. 136: 3712~3723
    [206] Stephan Clemens, Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 2001. 212(4): 475~486
    [207] Hiroshi Yoda, Yoshinobu Hiroi, Hiroshi Sano,Polyamine Oxidase Is One of the Key Elements for Oxidative Burst to Induce Programmed Cell Death in Tobacco Cultured Cell. Plant Physiol., 2006. 142: 193~206
    [208] Paraskevi Tavladoraki, Marianna Nicoletta Rossi, Giuseppe Saccuti, et al. Heterologous Expression and Biochemical Characterization of a Polyamine Oxidase from Arabidopsis Involved in Polyamine Back Conversion. Plant Physiol., 2006. 141: 1519~1532
    [209] Toshiharu Shikanai, Patricia Müller-Moulé, Yuri Munekage, PAA1, a P-Type ATPase of Arabidopsis, Functions in Copper Transport in Chloroplasts. Plant Cell, 2003. 15: 1333~1346
    [210] Chiung Chih Chu, Wen Chi Lee, Wen Yu Guo, et al. A Copper Chaperone for Superoxide Dismutase That Confers Three Types of Copper/Zinc Superoxide Dismutase Activity in Arabidopsis. Plant Physiol., 2005. 139: 425~436
    [211] Luisa Lanfranco, Mara Novero, Paola Bonfante,The Mycorrhizal Fungus Gigaspora margarita Possesses a CuZn Superoxide Dismutase That Is Up-Regulated during Symbiosis with Legume Hosts. Plant Physiol., 2005. 137: 1319~1330
    [212] Pufahl R A,Singer C P,Peariso K L, et al . Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science,1997. 278:853~856
    [213] Jonak C, Heavy metal stress, Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol., 2004. 136: 3276~3283
    [214] Schu tzendu bel A, Polle A, Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot., 2002. 53: 1351~1365
    [215] Wintz H, Fox T, Wu Y Y,et al. Expression proles of Arabidopsis thaliana in mineral deiciencies reveal novel transporters involved in metal homeostasis. J. Biol. Chem., 2003. 278: 47644~47653
    [216] Indrani Mukherjee, Nathan H. Campbell, Joshua S. Ash, et al. Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta, 2006. 223(6): 1178~1190
    [217] A. R. Sheldon, N. W. Menzies, The Effect of Copper Toxicity on the Growth and Root Morphology of Rhodes Grass (Chloris gayana Knuth.) in Resin Buffered Solution Culture. Plant and Soil, 2005. 278(1-2): 341~349
    [218] Carlos Gabaldón, Matías López-Serrano, María A. Pedre?o, et al. Cloning and Molecular Characterization of the Basic Peroxidase Isoenzyme from Zinnia elegans, an Enzyme Involved in Lignin Biosynthesis. Plant Physiol., 2005, 139: 1138~1154
    [219] M. Sottomayor, A. Ros Barceló , Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of α-3’,4’-anhydrovinblastine: a specific role for a multifunctional enzyme. Protoplasma,2003. 222(1-2): 97~105
    [220] Clara K. Cohen, David F. Garvin,Leon V. Kochian, Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil. Planta, 2004. 218(5): 784~792
    [221] Daichi Mizuno, Kyoko Higuchi, Tatsuya Sakamoto, Three Nicotianamine Synthase Genes Isolated from Maize Are Differentially Regulated by Iron Nutritional Status. Plant Physiol., 2003, 132: 1989~1997
    [222] 戚金亮,王忆,印莉萍等,与植物铁素营养相关的蛋白和基因, 植物生理与分子生物学,2003,39(3):294~299
    [223] Becana M,Moran J F,Iron-dependent oxygen free radical generationin plants subjected to environmental stress:toxicity and antioxidant protection. Plant Soil, 1998. 201:137~147
    [224] 邱全胜,植物质膜钾离子转运体研究进展,植物学通报,2000,17(1):34~38
    [225] Miguel A. Pi?eros , Leon V. Kochian, Differences in Whole-Cell and Single-Channel Ion Currents across the Plasma Membrane of Mesophyll Cells from Two Closely Related Thlaspi Species. Plant Physiol., 2003. 131: 583~594
    [226] Markus Gierth, Pascal M?ser, Julian I. Schroeder,The Potassium Transporter AtHAK5 Functions in K+ Deprivation-Induced High-Affinity K+ Uptake and AKT1 K+ Channel Contribution to K+ Uptake Kinetics in Arabidopsis Roots. Plant Physiol., 2005. 137: 1105~1114
    [227] Ana-Flor López-Millán, Danielle R. Ellis, Michael A. Grusak, Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago Truncatula. Plant Molecular Biology, 2004. 54(4) : 583~596
    [228] Zhong Chen , Daniel R. Gallie, Dehydroascorbate Reductase Affects Leaf Growth, Development, and Function. Plant Physiol., 2006. 142: 775~787
    [229] Marina Leterrier, Francisco J. Corpas, Juan B. Barroso, et al. Peroxisomal Monodehydroascorbate Reductase. Genomic Clone Characterization and Functional Analysis under Environmental Stress Conditions. Plant Physiol., 2005. 138: 2111~2123
    [230] 饶立华,植物矿质营养及其诊断,北京:农业出版社,1993.30~35
    [231] Kendal D. Hirschi, Victor D. Korenkov, Nathaniel L. Wilganowski, Expression of Arabidopsis CAX2 in Tobacco Altered Metal Accumulation and Increased Manganese Tolerance. Plant Physiol., 2000. 124: 125~134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700