用户名: 密码: 验证码:
氧化物及氢氧化物纳米材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用液相法(水热法和溶剂热法)成功地制备了方形花状层次结构的ZnO微晶、类球形ZnO微球、六边形β-Ni(OH)2纳米片和花状β-Ni(OH)2微球,利用透射电镜、扫描电镜、X-射线衍射、紫外可见光谱等手段,研究了实验条件对产物结构、形貌和性质的影响以及可能的反应机理。
     1.以硝酸锌为锌源,以SDBS和OP-10为表面活性剂,利用它们的协同作用来共同修饰氧化锌,以柠檬酸三钠为配位剂,在100℃进行水热反应24h,可以得到方形花状的ZnO微晶。采用SEM对产物的形貌和微观形态进行表征,结果表明,所得ZnO层次结构为方形花状,大小均匀,分散性好。每个方形ZnO微晶的长度约为2.7μm,宽度约为2.1μm。ZnO层次结构微晶是由厚度为20nm的ZnO纳米片自组装成的。我们在室温下研究了ZnO微晶的光致发光性质和光催化性质,结果表明ZnO具有良好的光学性质。我们还详细考察了各种实验条件对产物微观形态的影响和产物的反应机理。
     2.在保持其他条件不变的情况下,选用乙二醇作为溶剂,采用溶剂热法在170℃制备了类球形的ZnO微晶。采用SEM和TEM对ZnO的形貌和微观结构进行表征,结果表明,产物主要为表面粗糙的类球形ZnO微晶,直径约为0.35μm。并且ZnO微球是由ZnO纳米粒子组装成的。我们在室温下考察了ZnO微晶的光致发光性质和紫外特性,结果表明ZnO具有良好的光学性质。我们还详细考察了各种实验条件对产物微观形态的影响和产物的反应机理。
     3.以硫酸镍为镍源,NaOH为碱源,在有机添加剂草酸铵的作用下,采用水热法可以在170℃下反应24h得到了氢氧化镍纳米片。而当使用乙二胺作为添加剂时,得到了花状氢氧化镍微球。采用SEM对产物的形貌和微观形态进行表征,结果表明,以草酸铵作为添加剂得到的六边形氢氧化镍纳米片大小约为96nm,厚度为约20nm;以乙二胺作为添加剂得到的花状氢氧化镍微球直径约为2.2μm,是由厚度为0.13μm六边形的纳米片的组装成的。我们采用循环伏安法测试了β-Ni(OH)2电化学性质,结果表明β-Ni(OH)2具有较好的电化学性质。
In this paper, cuboid-shaped ZnO with hierarchical structures, sphere-shaped ZnO microstructures, hexagon-likeβ-Ni(OH)2 nanoflakes and flower-likeβ-Ni(OH)2 microspheres were successfully prepared through a facile hydrothermal approach. The influence of fabrication conditions on the structure and morphology of ordered nanostuctures were characterized by TEM, SEM, XRD,PL and UV-Vis spectrometer. The synthesis mechanism and experiment conditions were also studied. The results and conclusions are as followed:
     1. Cuboid-shaped ZnO with hierarchical structures were prepared by rection of Zn(NO3)2 and NaOH through a mixed surfactants mediated hydrothermal method at 100℃for 24h. The morphologies and the structures were characterized by SEM and TEM. It has been found that the product consist of a large quantity of nearly monodisperse cuboid-shaped microparticles of 2.7μm in length and 2.1μm in width, and almost all of them have uniform size and present one kind of structure. The as-prepared samples were constructed with many interleaving nanosheets in a perfectly aligned manner. The nanosheet building blocks are about 20 nm in thickness and several hundred nanometers in width. Room temperature photoluminescence spectrum of the as-obtained ZnO hierarchitectures was recorded showing multiple peaks of visible emissions in bluegreen region. The influence of various experimental conditions on the reaction has been investigated in detail.
     2. ZnO microspheres has been successfully synthesized in glycol mixed solvent via a facile solvothermal process with SDBS and OP-10 surfactants in the presence of Trisodium citrate at 170℃for 24h. The results were characterized using scanning electron microscopy (SEM) and transmission electron microscope(TEM). It has been found that the products were consisted of a large quantity of nearly monodisperse microspheres of 3.5μm in diameter. The microspheres were constructed with ZnO nanoparticles and the surface of the microspheres is rough. The influence of various experimental conditions on the reaction has been investigated in detail.
     3.β-Ni(OH)2 nanoflakes and flower-likeβ-Ni(OH)2 microspheres were synthesized by rection of NiSO4 and NaOH via a simple hydrothermal process with additives of ammonium oxalate or 1,2-ethylenediamine at 170℃for 24h. The SEM observation results displayed that the samples were uniform in size. The electrochemical property of the sample was obtained through cyclic voltammetry method.
引文
[1]程开富,崛起的纳米技术[J],纳米器件与技术, 2005, 3: 107-110
    [2]王涛,于峰,纳米技术-21世纪的技术革命[J],中国科技信息, 2005, 7: 8
    [3]张立得,牟季美,纳米材料和纳米结构[M],北京:科学出版社, 2001
    [4]刘维平,邱定蕃,卢惠民,纳米材料制备方法及应用领域[J], IM&P化工矿物与加工, 2003, 12: 1-5
    [5]殷景华,王雅珍,鞠刚,功能材料概论[M],哈尔滨:哈尔滨工业大学出版社, 2002: 161-168
    [6]高友良,超微粉末的研究进展[J],中国陶瓷, 1996, 32 (30) : 37-39
    [7]曹茂盛,超细颗粒制备科学与技术[M],哈尔滨:哈尔滨工业大学出版社, 1995:16
    [8]刘厚凡,高长华,邹海平等,固相法合成纳米氧化镧[J],无机盐工业, 2007, 6: 33-35
    [9]黄庆利,王淼,仲皓想等,室温固相法制备EuF3和SmF3纳米微粒[J],无机化学学报, 2007, 23: 1767-1770
    [10]李亚东,王鹏飞,室温固相法制备纳米γ-Fe2O3过程中形貌影响研究[J],信息记录材料, 2007, 8: 10-13
    [11]孙明,余林,余坚等,微波固相法合成纳米氧化镁[J],功能材料, 2006, 12: 1978-1984
    [12]李生英,许世红,徐飞等, Co3O4纳米粒子的固相合成及磁性研究[J],合成化学, 2006, 14: 571-573
    [13] Xie Y., Qian Y.T., Wang W.Z., et. al, A Benzene Thermal Synthesis Route to Nanocrystalline GaN[J], Science, 1996, 272: 1926-1927
    [14]杜仕国,超微粉制备技术及其应用[J],功能材料, 1997, 28: 237-240
    [15]邱春喜,姜继森,赵振杰等,固相法制备α-Fe2O3纳米粒子[J],无机材料学报, 2001, 16: 957-960
    [16] Won Seok Seo, Jae Ha Shim, Sang Jun Oh, et. al, Phase- and Size-Controlled Synthesis of Hexagonal and Cubic CoO Nanocrystals [J], J. Am. Chem. Soc., 2005, 127: 6188-6189
    [17] Sun Jin Q, Wang Ji S, Wu Xiu C, et. al, Novel Method for High-Yield Synthesis of Rutile SnO2 Nanorods by Oriented Aggregation[J], Cystal Growth and Design, 2006, 6 (7) : 1584-1587
    [18] Chen YuBiao, Chen Ling, Wu Li-Ming, et. al, Water-Induced Thermolytic Formation of Homogeneous Core-Shell CuS Microspheres and Their Shape Retention on Desulfurization [J], Crystal Growth & Design, 2008, 8 (3) : 2736-2740
    [19] Han XiGuang, Jin MingShang, Kuang Qin, et. al, Directional Etching Formation ofSingle-Crystalline Branched Nanostructures: A Case of Six-Horn-like Manganese Oxide[J], J. Phys. Chem. C, 2009, 113, 2867-2872
    [20] Fan Lei, Guo Rong, Growth of Dendritic Silver Crystals in CTAB/SDBS Mixed-Surfactant Solutions[J], Crystal Growth & Design, 2008, 8 (7) : 2150-2156
    [21] Suresh C.Pillai, Pradeepan Periyat, Reenamole George, et. al, Synthesis of High-Temperature Stable Anatase TiO2 Photocatalyst[J], J. Phys. Chem. C, 2007, 111: 1605-1611
    [22]林立,周继承,阳鹏飞等,控制中和水解法制备纳米TiO2及其光催化性能的研究[J],材料导报, 2006, 20: 91-96
    [23] Peng Wenqin, Qu Shengchun, Cong Guangwei, et. al, Synthesis and Structures of Morphology-Controlled ZnO Nano- and Microcrystals[J], Crystal Growth & Design, 2006, 8 (8) : 1518-1522
    [24] Wang Yonghao, Zhang Jing, Yang Yanlian, et. al, NaOH Concentration Effect on the Oriented Attachment Growth Kinetics of ZnS[J], J. Phys. Chem. B, 2007,111 (19) : 5290-5294
    [25] Wang Wenzhong, Ling Ao, Synthesis and Optical Properties of Mn3O4 Nanowires by Decomposing MnCO3 Nanoparticles in Flux[J], Crystal Growth & Design, 2008, 8 (1) : 358-362
    [26] Yu Jiaguo, Liu Wen, Yu Huogen, et. al, A One-Pot Approach to Hierarchically Nanoporous Titania Hollow Microspheres with High Photocatalytic Activity[J], Crystal Growth & Design, 2008, 8 (3) : 930-934
    [27] Fan Hai, Zhang Yuanguang, Zhang Maofeng, et. al, Glucose-Assisted Synthesis of CoTe Nanotubes in Situ Templated by Te Nanorods[J], Crystal Growth & Design, 2008, 8 (8) : 2838-2841
    [28] Huang Ji-quan, Huang Zhi, Guo Wang, et. al, Facile Synthesis of Titanate Nanoflowers by a Hydrothermal Route[J], Crystal Growth & Design, 2008, 8 (7) : 2444-2446
    [29]吴宗斌,王丽萍,洪广言,反相胶束微乳液法制备氧化钇纳米微晶[J],应用化学, 1999,16: 9-11
    [30] Magali B, Jeriy K, Per A, et. al, Preparation of Monodisperse Colloidal Metal Particles From Micromulsions[J], Colloids and Surfaces, 1982, 5: 209-212
    [31] Toshiyuke M, Kazuyasu F, Ken-Ich M, et. al, Machida And Gin-Ya Adachi/Takao Sakata And Hirotaro Mori[J], J. Chem. Mater., 1997, 9: 2197-2204
    [32] A.K.Panda, S.P.Moulik, B.B.Bhowmik, et. al, Dispersed molecular aggregates-II synthesis and characterization of nanoparticles of Tungstic acid in H20/(TX-100+alkanol)/n-heptane W./O microemulsion media[J], J. of Colloid and Interface Sci., 2001, 235: 218-226
    [33] Xu Jing, Yang Haibin, Fu wuyou, et. al, Preparation and magnetic properties of Magnetitenanopartiecles by sol-gel method[J], J. Magn. Mater. 2007, 309 (l) : 307-311
    [34] Lu Tian, Yao Tan Han, J. Jagadese Vittal, Morphology-Controlled Synthesis of Bi2S3 Nanomaterials via Singleand Multiple-Source Approaches[J], Crystal Growth & Design 2008, 8 (2) : 734-738
    [35] Lin Yanhong, Wang Dejun, Zhao Qidong, et. al, A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy[J], J. Phys. Chem. B, 2004, 108 (10) : 3202-3206
    [36] Zheng J, Song X B, Chen N, et. al, Highly Symmetrical CdS Tetrahedral Nanocrystals Prepared by Low-Temperature Chemical Vapor Deposition Using Polysulfide as the Sulfur Source[J], Cryst Growth Des, 2008, 8: 1760-1765
    [37] Matthew J B, Lau Y K A, Song J, Hyperbranched PbS and PbSe Nanowires and the Effect of Hydrogen Gas on Their Synthesis[J], Nano Lett, 2007, 7: 2907-2912
    [38] Yoshimura M, Processing and properties of pydroxyapatite-based biomaterial for use as tissue replacement implants[J], Mater. Res., 1998, 13: 94-98
    [39] Song Xuefeng, Gao Lian, Facile Synthesis and Hierarchical Assembly of Hollow Nickel Oxide Architectures Bearing Enhanced Photocatalytic Properties[J], J. Phys. Chem. C, 2008, 112, 15299-15305
    [40] Luo Zhijun, Li Huaming, Shu Huoming, et. al, Synthesis of BaMoO4 Nestlike Nanostructures Under a New Growth Mechanism[J], Crystal Growth & Design, 2008, 8 (7) : 2275-2281
    [41] Jia Zhiyong, Tang Yiwen, Luo Lijuan, et. al, Shape-Controlled Synthesis of Single-Crystalline CdCO3 and Corresponding Porous CdO Nanostructures[J], Crystal Growth & Design, 2008, 8 (7) : 2116-2120
    [42] Guo Zhiyan, Du Fanglin, Li Guicun, et. al, Synthesis of Single-crystalline CeCO3OH with Shuttle Morphology and Their Thermal Conversion to CeO2[J], Crystal Growth & Design 2008, 8 (8) : 2674-2677
    [43] Yan Lai, Yu Ranbo, Chen Jun, et. al, Template-Free Hydrothermal Synthesis of CeO2 Nano-octahedrons and Nanorods: Investigation of the Morphology Evolution [J], Crystal Growth & Design, 2008, 8 (5) : 1474-1477
    [44] Shi Liang, Xu Yeming, and Li Quan, et. al, Controlled Growth of Lead Oxide Nanosheets, Scrolled Nanotubes and Nanorods[J], Crystal Growth & Design, 2008,8 (10) : 3521-3525
    [45] Zhao Jianzhi, Tao Zhanliang, Liang Jing, et. al, Facile Synthesis of Nanoporousγ-MnO2 Structures and Their Application in Rechargeable Li-Ion Batteries[J], Crystal Growth & Design, 2008, 8 (8) : 2799-2805
    [46] Zhu H. T., Luo J., Yang H. X., et. al, Birnessite-type MnO2 Nanowalls and Their MagneticProperties[J], J. Phys. Chem. C, 2008, 112: 17089-17094
    [47] L. Benhaddad, L. Makhloufi, B. Messaoudi, et. al, Reactivity of Nanostructured MnO2 in Alkaline Medium Studied with a Micro-Cavity Electrode: Effect of Synthesizing Temperature [J], 2009, 1 (2) : 424-432
    [48] Du Jimin, Yang Mino, Cha SeungNam, et. al, Indium Hydroxide and Indium Oxide Nanospheres, Nanoflowers, Microcubes and Nanorods: Synthesis and Optical Properties[J], Crystal Growth & Design, 2008, 8 (7) : 2312-2317
    [49] Geng B. Y., Ma J. Z., You J. H, Controllable Synthesis of Single-Crystalline Fe3O4 Polyhedra Possessing the Active Basal Facets[J], Crystal Growth & Design, 2008, 8 (5) : 1443-1447
    [50] Hu T, Michael Z.C, Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Vomogeneous Precipitation Methods[J], J. Am. Ceram, 1999, 82: 2313-2320
    [51] Bhaviripudi S., Ervin M., Steiner S.A., et. al, CVD Synthesis of Single-Walled Carbon Nanotubes from Gold Nanoparticle Catalysts[J], J. Am. Chem. Soc, 2007, 129: 1516-1517
    [52]施尔畏,水热法的应用与发展[J],无机化学学报, 1996, 11(2): 193-197
    [53]徐如人,无机合成与制备化学[M],北京:高等教育出版社, 2001: 12-20
    [54] Wang ChangWei, Liu HongGuo, Bai XiangTao, et. al, Triangular PbS Nano-Pyramids, Square Nanoplates, and Nanorods Formed at the Air/Water Interface[J], Crystal Growth & Design, 2008, 8 (8) : 2660-2664
    [55] Biswas Subhajit, Ghoshal Tandra, Kar Soumitra, et. al, ZnS Nanowire Arrays: Synthesis, Optical and Field Emission Properties[J], Crystal Growth & Design, 2008, 8 (7) : 2171-2176
    [56] Xia Feng, Kang Junyong, Inami Wataru, et. al, ZnO Films Grown on Si Substrates with Au Nanocrystallites as Nuclei[J], Crystal Growth & Design, 2007, 7 (3) : 564-568
    [57] Yan Youguo, Zhou Lixia, Zhang Ye, et. al, Large-Scale Synthesis of In2O3 Nanocubes Under Nondynamic Equilibrium Model[J], Crystal Growth & Design, 2008, 8 (9) : 3285-3289
    [58] Chen Y.W., Qiao Q., Liu Y.C., et. al, Size-Controlled Synthesis and Optical Properties of Small-Sized ZnO Nanorods[J], J. Phys. Chem. C, 2009, 113: 7497-7502
    [59] Hongxing Li, Mingxia Xia, Guozhang Da, et. al, Growth of Oriented Zinc Oxide Nanowire Array into Novel Hierarchical Structures in Aqueous Solutions[J], J. Phys. Chem. C , 2008, 112: 17546-17553
    [60] Liu X.X., Jin, Z.G., Bu, S.J., et. al, Growth of ZnO Films with controlled Morphology by Aqueous Solution Method[J], J. Am. Ceram. Soc, 2006, 89 (4) : 1226
    [61] Jia Li, Yu Shi, Cai Qiang, et. al, Patterning of Nanostructured Cuprous Oxide by Surfactant-Assisted lectrochemical Deposition[J], Crystal Growth & Design, 2008, 8 (8) :2652-2659
    [62] Yang Mei, Yin Guangfu, Z Huang hongbing, Preparation and Optical Properties of Biomimic Hierarchical ZnO Column Arrays[J], Crystal Growth & Design, 2009, 9 (2) : 707-714
    [63] Gao Y.F., Miao H.Y., Luo H.J., et. al, Precipitation of ZnO Powders from Aqueous Solutions with Water-Soluble Polymers[J], Crystal Growth & Design, 2008, 8 (7) : 2187-2193
    [64] Shen Liming, Bao Ningzhong, Kazumichi Yanagisawa, et. al, Controlled Synthesis and Assembly of Nanostructured ZnO Architectures by a Solvothermal Soft Chemistry Process[J], Crystal Growth & Design, 2007, 7 (12) : 2742-2748
    [65] Lee Yun-Ju, Thomas L. Sounart, Liu Jun, et. al, Tunable Arrays of ZnO Nanorods and Nanoneedles via Seed Layerand Solution Chemistry[J], Crystal Growth & Design, 2008, 8 (6) : 2036-2040
    [66] Dewei Chu, Yoshitake Masuda, Tatsuki, et. al, Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution[J], Langmuir, 2010, 26 (4) : 2811-2815
    [67] Zhu Pengli, Zhang Jingwei, Wu Zhishen, et. al, Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven[J], Crystal Growth & Design, 2008, 8 (9) : 3148-3153
    [68] Jia Lichao, Cai Weiping, Wang Hongqiang, et. al, Polar-Field-Induced Double-Layer Nanostructured ZnO and Its Strong Violet Photoluminescence[J], Crystal Growth & Design, 2008, 8 (12) : 4367-4371
    [69] Shi Xixi, Pan Lingling, Chen Shuoping, et. al, Zn(II)-PEG 300 Globules as Soft Template for the Synthesis of Hexagonal ZnO Micronuts by the Hydrothermal Reaction Method[J], Langmuir, 2009, 25 (10) : 5940-5948
    [70]李春明,刘会冲,徐华芯,纳米ZnO材料的制备与应用研究进展[J],材料导报, 2003, 17 (5) : 39-41
    [71] Ristic M, Music S, Ivanda M, et. al, Sol-gel Synthesis and Characterization of Nanocrystalline ZnO Powders[J], Journal of Alloys and Compounds, 2005, 397: 4-12
    [72]姚超,吴凤芹,林西平等,纳米氧化锌的制备和表征[J],涂料工业, 2003, 33(12): 9212
    [73]丁士文,张绍岩,刘淑娟等,直接沉淀法制备纳米ZnO及其光催化性能[J],无机化学学报, 2002, 18 (10) : 1015-1019
    [74]汤皎宁,龚晓钟,李均钦,均匀沉淀法制备纳米氧化锌的研究[J],无机材料报, 2006, 26 (1) : 65-69
    [75]王金敏,高濂,纳米ZnO的沉淀法制备表征及影响因素分析[J],无机材料学报, 2003, 18 (6) : 1357-1361
    [76]崔若梅,张文礼,徐中理等,纳米氧化锌的制备与表征[J],化学世界, 1999, 12: 630-633
    [77] Ohara S., Mousavand T. Umet su M, Hydrothermal synthesis of fine zinc oxide particles under supercritical conditions[J], Solid State Ionics, 2004, 172: 261-264
    [78] Baruwati B., Kumar D.K, Manorama S.V Manorama, Hydrothermal Synthesis of highly Crystalline ZnO Nanoparticles: Acompetitive Sensor for LPG and EtOH[J], Sensors and Actuators B, 2006, 119: 676-682
    [79] Zhang J., Sun L.D., Yin J.L., et. al, Control of ZnO Morphology via a simple Solution Route[J], Chem Mater, 2002, 14: 4172-4177
    [80] Wu Qingzhi, Chen Xia, Zhang Ping, et. al, Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities[J], Crystal Growth & Design, 2008, 8 (8) : 3010-3018
    [81] Garcia Simon P., Semancik Steve, Controlling the Morphology of Zinc Oxide Nanorods Crystallized from Aqueous Solutions: The Effect of Crystal Growth Modifiers on Aspect Ratio[J], Chem. Mater., 2007, 19: 4016-4022
    [82] Zhang Yuan, Xu Jiaqiang, Brush-Like Hierarchical ZnO Nanostructures: Synthesis, Photoluminescence and Gas Sensor Properties[J], J. Phys. Chem. C, 2009, 113: 3430-3435
    [83] Zeng Yi, Zhang Tong, Fu Wuyou, et. al, Fabrication and Optical Properties of Large-Scale Nutlike ZnO Microcrystals via a Low-Temperature Hydrothermal Route[J], J. Phys. Chem. C, 2009, 113, 8016-8022
    [84] Zhu Pengli, Zhang Jingwei, Wu Zhishen, et. al, Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven[J], Crystal Growth & Design, 2008, 8 (9) : 3148-3153
    [85] Wang Qintao, Wang Guanzhong, et. al, Non-aqueous Cathodic Electrodeposition of Large-scale uniform ZnO Nanowire Arrays embeded in Anodic Alumina Membrane[J], Materials Letters, 2005, 59: 1378-1382
    [86] Zhang T.R., Dong W.J., Site-Specific Nucleation and Growth Kinetics in Hierarchical Nanosyntheses of Branched ZnO Crystallites[J], J .Am .Chem .Soc., 2006, 128 (33) : 10960-10968
    [87] Sornart T.L., Liu J., Secondary Nucleation and Growth of ZnO[J], J. Am Chem. Soc., 2007, 129 (51) : 15786-15793
    [88] Gao P., Ying C., Wang S., et. al, Low Temperature Hydrothermal Synthesis of ZnO Nanodisk Arrays Utilizing Self-assembly of Surfactant Molecules at Solid–liquid Interfaces[J],J. Nanopart. Res., 2006,8:131-136
    [89] Cao X.L., Zeng H.B., M. Wang, et. al, Large Scale Fabrication of Quasi-Aligned ZnO Stacking Nanoplates[J], J. Phys. Chem. C, 2008, 112 (14) : 5267-5270
    [90] Cao B.Q., Cai W.P., Li Y., et. al, Ultraviolet-light-emitting ZnO Nanosheets Prepared by a Chemical Bath Deposition Method[J], Nanotechnology, 2005,16 (9) :1734-1738
    [91] Xu C.X., Sun X.W., Dong Z.L., et. al, Nanostructured Single-Crystalline Twin Disks of Zinc Oxide[J], Crystal Growth & Design, 2007, 7 (3) : 541-544
    [92] Shalish I., Temkin H., Narayanamurti V., Size-dependent Surface Luminescence in ZnO Nanowires[J], Phys. Rev. B, 2005,69 (24) :245401.
    [93] Tong Y.H., Cheng J., Liu Y.L., et. al, Enhanced Photocatalytic Performance of ZnO Hierarchical Nanostructures Synthesized via a Two-temperature Aqueous Solution Route[J], Scr. Mater, 2009,60 (12) : 1093-1096
    [94] Zhang D.F., Sun L.D., Zhang J., et. al, Hierarchical Construction of ZnO Architectures Promoted by Heterogeneous Nucleation[J], Crystal Growth & Design, 2008, 8 (10) : 3609-3615
    [95] Li Z.Q., Ding Y., Xiong Y.J., et. al, Room-Temperature Surface-Erosion Route to ZnO Nanorod Arrays and Urchin-like Assemblies[J], Chem. Eur. J., 2004,10 (22) :5823-5828
    [96] Huang M.H., Mao S., Feick H., et. al, Room-temperature ultraviolet nanowire nanolasers[J], Science, 2001, 292 (5523) :1897-1899
    [97]李玲.表面活性剂与纳米技术[M],北京:化学工业出版社, 2004:1-7
    [98] Park J., Privman V., Matijevic E., et. al, Size Distribution in Growth of Fine Particles [J], J. Phys. Chem. B, 2001, 105: 11630-11635
    [99] Zhang Z.Q., Mu J., Hydrothermal Synthesis of ZnO Nanobundles Controlled by PEO-PPO-PEO Block Copolymers[J], J. Colloid, 2007, 307 (1) : 79-82
    [100] Yao K.X., Sinclair R., Zeng H.C, ZnO/PVP Nanocomposite Spheres with Two Hemispheres[J], J. Phys. Chem. C, 2007, 111: 13301-13308
    [101] Yu J.G., Li C., Liu S.W., et. al, Surface Reactions, Crystallization, Catalysis and Electrochemistry[J], J. Colloid Interface Sci., 2008,326 (2) :433-438
    [102] Liang J.B., Bai S., Zhang Y.S., et. al, Malate-Assisted Synthesis of ZnO Hexagonal Architectures with Porous Characteristics and Photoluminescence Properties Investigation[J], J. Phys. Chem. C, 2007, 111(3): 1113-1118
    [103] Yan C.L., Xue D.F, Morphosynthesis of hierarchical hydrozincite with tunable surface architectures and hollow zinc oxide[J], J. Phys. Chem. B, 2006, 110 (23) : 11076-11080
    [104] Wu Q.Z., Chen X., Zhang P., et. al, Amino Acid-Assisted Synthesis of ZnO Hierarchical Architectures and Their Novel Photocatalytic Activities [J], Cryst. Growth & Design, 2008, 8 (8) : 3010-3018
    [105] Liu L., Ge M., Liu H.J., et. al, Colltrolled Synthesis of ZnO with Adjustable Morphologiesfrom Nanosheets to Microspheres[J], Colloids Surf., A, 2009, 348(1-3): 124-129
    [106] Zhang X. L., Qiao R., Qiu R., et. al, Fabrication of hierarchical ZnO nanostructures via a surfactant-directed process[J], Crystal Growth & Design, 2009, 9: 2906-2910
    [107] Xu L., Sithambaram S., Zhang, Y., et. al, Novel Urchin-like CuO Synthesized by a Facile Reflux Method with Efficient Olefin Epoxidation Catalytic Performance[J], Chem. Mater., 2009, 21: 1253-1259
    [108] Gao S.Y., Zhang H.J., Wang X.M., et. al, ZnO-Based Hollow Microspheres: Biopolymer-Assisted Assemblies from ZnO Nanorods[J],J. Phys. Chem. B, 2006,110: 15847-15852
    [109] Vanheusden K., Warren W.L., Seager C.H., Mechanisms Behind Green Photoluminiescence In ZnO Phosphor Powders[J], J. Appl. Phys., 1996,79: 7993
    [110] Kong Y.C., Yu D.P., Zhang B., et. al, Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J], Appl. Phys. Lett., 2001, 78: 407-409
    [111] Zhang S.B., Ei S.H., Zunger A, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J], Appl. Phys. Rev. B, 2001, 63: 075205-075211
    [112] Mitra A., Thareja R. K, Photoluminescence and ultraviolet laser emission from nanocrystalline ZnO thin films[J], J. Appl. Phys., 2001, 89 (4) : 2025-2028
    [113] Usui, H, Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution[J], J. Phys. Chem. C, 2007, 111: 9060-9065
    [114] Sun X., Qiu X., Li L., et. al, ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate[J], Inorg. Chem., 2008, 47 (10) : 4146-4152
    [115] Ye C.H., Bando Y., Shen G.Z., et. al, Thickness dependent photocatalytic performance of ZnO nanoplatelets[J], J. Phys. Chem. B, 2006, 110 (31) : 15146-15151
    [116] Liu B., Zeng H.C., Fabrication of ZnO“dandelions”via a modified kirkendall process[J], J. Am. Chem. Soc., 2004, 126 (51) : 16744-16746
    [117] Zhou X.F., Chen S.Y., Zhang D.Y., et. al, Microsphere organization of nanorods directed by PEG linear Polymer[J], Langmuir, 2006, 22 (4) : 1383-1387
    [118] Neves M.C., Synthetic Hollow Zinc Oxide Microparticles[J], Mater. Res. Bul1., 2001, 36: 1099-1108
    [119] Yan C.L., Polyhedral Construction of Hollow ZnO Microspheres by CO2 Bubble Templates[J], J Alloys Comp, 2007, 431: 241-245
    [120] Kong Y.C., Ultraviolet-emitting ZnO Nanowires Synthesized by a Physical Vapor Deposition Approach[J], App1 Phys Lett, 2001, 78: 407-409
    [121] He Yong jun, A novel Surfactant-free Emulsion Approach to ZnO Microspheres with Nanostructured Surfaces[J], Materials Chemistry and Physics, 2005, 92: 609–612
    [122]杨合情,李丽,宋玉哲等, ZnO纳米片自组装空心微球的无模板水热法制备与发光性质[J],中国科学B辑:化学, 2007, 37 (5) : 417-425
    [123] Hao Jianga, Junqing Hub, Feng Gua, et. al, Template-free Approach for Hydrothermal Fabrication of ZnO Microspheres[J], Particuology, 2009, 7: 225–228
    [124] Wang Huihu, Xie Changsheng, Zeng Dawen, et. al, Controlled Organization of ZnO Building Blocks into complex Nanostructures[J], Colloid and Interface Science, 2006, 297: 570–577
    [125] Kenji Matsumoto, Noriko Saito, Toshitsugu Mitate, et. al, Surface Polarity Determination of ZnO Spherical Particles Synthesized via Solvothermal Routes[J], Crystal Growth & Design, 2009, 12 (9) : 5014-5016
    [126] Jiang Peng, Zhou Jian-Jun, Fang Hai-Feng, et. al, Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays[J], Adv. Funct. Mater. 2007, 17: 1303–1310
    [127] Yang Lixia, Zhu Yingjie, Tong Hua, et. al, Hierarchical Ni(OH)2 and NiO Carnations Assembled from Nanosheet Building Blocks[J], Crystal Growth & Design, 2007, 7 (12) : 2716-2719
    [128]王汝娜,李群艳,王志宏,等,无模板剂液相合成Ni(OH)2花状微球[J],高等学校化学学报, 2008, 29 (1) : 18-22
    [129] Cao Minhua, He Xiaoyan, Chen Jun, et. al, Self-assembled Nickel Hydroxide Three-Dimensional Nanostructures: A Nanomaterial for Alkaline Rechargeable Batteries[J], Crystal Growth & Design, 2007, 7 (1) : 170-174
    [130]陶菲菲,鲁金萍,郎雷鸣,等,氢氧化镍微米棒的合成和表征[J],无机化学学报, 2009, 25 (2) : 296-300
    [131] Zhou Wei, Yao Meng, Guo Lin, Hydrazine-Linked Convergent Self-Assembly of Sophisticated Concave Polyhedrons ofβ-Ni(OH)2 and NiO from Nanoplate Building Blocks[J], J. Am. Chem. Soc., 2009, 131: 2959-2964
    [132] Kuang DaiBin, Lei BingXin, Pan YuPing, et. al, Fabrication of Novel Hierarchicalβ-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process[J], J. Phys. Chem. C, 2009, 113: 5508-5513
    [133] Liu Yuangang, Tang Zhiyuan, Xu Qiang, et. al, Effects of doped Elements on Electrochemical Performance of Ni(OH)2 Materials[J], Chem. Res. Chinese, 2007, 23 (4) : 452-455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700